氟胺氰菊酯

仪器信息网氟胺氰菊酯专题为您提供2024年最新氟胺氰菊酯价格报价、厂家品牌的相关信息, 包括氟胺氰菊酯参数、型号等,不管是国产,还是进口品牌的氟胺氰菊酯您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氟胺氰菊酯相关的耗材配件、试剂标物,还有氟胺氰菊酯相关的最新资讯、资料,以及氟胺氰菊酯相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

氟胺氰菊酯相关的资料

氟胺氰菊酯相关的论坛

  • 农残求教,氟胺氰菊酯几个峰??

    各位老师大家好,想请教一个问题,本人参照农业部公告781-9-2006做蜂蜜中的氟胺氰菊酯,标准里是出单峰,但是我做出来好像是双峰,用质谱走也是双峰,我问下各位老师,氟胺氰菊酯到底几个峰?http://ng1.17img.cn/bbsfiles/images/2017/03/201703062357_01_3193564_3.jpg

  • 氟胺氰菊酯的出峰问题

    氟胺氰菊酯用[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url],AB4500,用甲醇配0.2ug/mL,不出峰,用3:2乙腈水配制也不出峰,用1:1甲醇水配制,出峰很好,e的6次方。这是为什么,用1:1甲醇水配制出峰,用甲醇却不出峰,这正常吗?

氟胺氰菊酯相关的方案

氟胺氰菊酯相关的资讯

  • 果汁业将重蹈乳业“三聚氰胺”事件覆辙?
    近日,汇源、安德利、海升等企业公然收购腐烂变质的水果生产果汁的报道备受关注,这种做法与果汁企业标榜的健康概念背道而驰,更是对消费者的欺诈。   业内人士指出,收购烂果、瞎果制作果汁早已经成为果汁产业的一个&ldquo 潜规则&rdquo 。如果连业内声名赫赫的企业都明目张胆地做这种勾当,其他企业更加令人担忧&hellip   汇源等企业被曝公然收购&ldquo 烂果&rdquo 做果汁 软饮料行业正在发生结构性变革资料   &ldquo 天天有汇源,健康每一天&rdquo 。汇源等果汁企业标榜的健康概念正受到质疑。事件源于《21世纪经济报道》23日一则报道,报道称汇源、安德利、海升等企业公然收购腐烂变质的水果生产果汁,附近的果农都不喝他们生产的果汁。   在后续的报道中,有业内人士表示收购烂果、瞎果制作果汁早已成为果汁产业的一个&ldquo 潜规则&rdquo 。可怕的是,业内声名赫赫的企业竟然明目张胆地做这种勾当,其他企业的状况更令人担忧。   据了解,以上三家企业均为在港上市企业,尼尔森数据显示,汇源在100%浓度果汁和中高浓度果蔬汁中,市场份额分别占54.2%和44.1%,均位列第一。安德利是中国浓缩果汁行业首家上市公司。海升则是浓缩苹果汁、浓缩梨汁和苹果香精三大产品的全球最大供应商。   一些果汁企业不遗余力地宣称所用原料皆是优质水果,但是这样的果汁连果农都不喝,又怎能让消费者接受? 这种做法与果汁企业标榜的健康概念背道而驰,是对消费者的欺骗。 中低浓度果汁占90%以上 资料来源:中国社会经济调查研究中心,民生证券研究院   陷入&ldquo 烂果门&rdquo 的三家企业主营业务均是中高浓度果汁,与低浓度果汁相比,中高浓度果汁对上游原材料的依赖性更强,尤其是2012年以来这一市场逐渐萎缩,相关企业也更倾向于铤而走险。   以汇源果汁为例,其业绩在2012年直线下降,2012年汇源果汁净利润1616万元,较2011年大幅下滑94.8%,海升果汁仅2012年上半年净利润就同比减少了98.6%,而安德利果汁的日子也不好过,2012年净利润同比减少近5成。   在此情况下,果汁企业收购烂果做原料显然是看中了其中巨大的利润空间。据业内人士称,以苹果为例,用烂果提取一升100%浓度果汁,成本不到品相好的苹果的四分之一,而消费者则很难识别。   另外,相关标准不健全,也造成了监管的盲区。我国果汁业目前执行的国家标准为《GB 19297-2003果、蔬汁饮料卫生标准》,其中并未对加工原料做出要求。而且市面销售的除浓缩橙汁、橙汁及橙汁饮料果汁含量有据可依外,其他果汁饮料的标准一片混乱,也成为商家利用的漏洞。   回顾近年来国内发生的食品安全事件,几乎都遵循媒体曝光,监管部门跟进的套路,事件平息后也难以引起行业的反思。事故频发的背后折射出食品安全部门的监管不力和行业自律缺失。对消费者来说,食品安全问题比垄断更具危害性,近期反垄断部门开出的几张&ldquo 天价&rdquo 罚单对行业起到了很好的震慑作用。但与《反垄断法》相比,《食品安全法》处罚力度明显偏低,&ldquo 货值金额二倍以上五倍以下罚款&rdquo 的处罚很难让无良企业&rdquo 长记性&ldquo 。   果汁业或重蹈&ldquo 三聚氰胺&rdquo 事件覆辙 中国果汁消费量同发达家差距巨大 资料来源:Euromonitor,民生证券研究院   同样是企业迫于成本压力,同样是存在标准缺失与监管不力等问题,本轮烂果风波与几年前的塑化剂、瘦肉精、三聚氰胺事件何其相似。   去年底&ldquo 酒鬼酒塑化剂含量超标260%&rdquo 的消息传出仅一天时间,白酒板块就遭受重挫。截至收盘,两市白酒股总市值共蒸发近330亿元。曾在火腿肠行业如日中天的双汇,也因为瘦肉精事件不得不在海外收购肉源重树形象。   2008年,三聚氰胺奶粉使得全国成千上万名婴幼儿身染重病,也使乳业巨头三鹿公司轰然倒下,整个乳制品行业受到重创。从2008年至今,外国乳企几乎垄断了中国市场。市场份额在短短五年内由20%上升到60%,价格也升了38%。   反观国内果汁市场,汇源等企业也面临可口可乐、百事可乐等外资品牌的挑战。如果因为食品安全问题失去消费者的信任,将会对国内果汁行业造成巨大的打击。   受&ldquo 烂果汁&rdquo 报道影响,汇源股价一度跌逾7%。此时不知汇源董事长朱新礼做何感想。2008年,可口可乐曾提出以当时市价的3倍收购汇源,但因未通过商务部反垄断审查而作罢。此后汇源果汁似乎一直萎靡不振,靠政府补贴勉强维持。汇源在2010年获政府补贴1.08亿元,占净利润的54% 而到了2011年,这一补贴数字达到2.01亿元,占净利润的64%,2012年政府补贴收入更高达2.5亿元,是净利润的15倍。目前来看,未被收购的汇源日子并不好过。   在果汁行业的产品格局中,低浓度果汁占据80%的市场份额,而中高浓度果汁仅占有20%的市场份额。受限于市场空间,再加上使用烂果做原料的事件曝光,无疑会使相关企业的生存更加艰难。   政府对企业、行业的保护应该是&ldquo 有所为有所不为&rdquo 。果汁饮料属于充分竞争行业,并不影响国计民生,也不涉及核心专利,应属于&ldquo 不为&rdquo 的范畴,过度干预往往适得其反,如果什么都要保护都要限制,那就什么都保护不了。
  • 奶制品中三聚氰胺、三聚氰酸二酰胺、三聚氰酸一酰胺及三聚氰酸的同时分析方法
    自奶粉污染事件发生以来,奶制品中三聚氰胺的分析方法已经公布了许多。但目前国内普遍采用的方法都专注于三聚氰胺单一化合物的分析。而根据2007年春季美国宠物食品检出三聚氰胺的研究结果,科学家们相信除了三聚氰胺,其类似物――三聚氰酸二酰胺、三聚氰酸一酰胺及三聚氰酸都有可能导致宠物生病。为完成对含蛋白质原材料的调查,需要测定包括三聚氰胺及其类似物的所有可以提高原料中含氮量的化合物。故此次对于奶粉的检测也应该注意不只分析三聚氰胺,同时对所有类似物进行同时分析。实验证明,在某些乳酸类样品中,没有检出三聚氰胺,但有可能检出其类似物。 珀金埃尔默公司的三聚氰胺分析仪做为目前市场上唯一的一台专门用于食品中三聚氰胺及其类似物的基于气质联用分析技术的分析仪,可以完全符合美国FDA有关快速消费品中筛查三聚氰胺及其类似物的方法要求。经过对样品前处理过程的优化,该分析仪适合于液体奶、奶粉、乳酪、雪糕及各种奶制品中三聚氰胺及其类似物的同时分析。该分析仪除了提供分析所要求的仪器、消耗品和标样、试剂,还包括标准的实验操作步骤,数据验证方法以及经过实验证明的数据。以下是奶粉实际样品加入四种标样后所得到的数据,以及实际样品中检测到的三聚氰酸一酰胺。该分析仪对奶制品类样品中三聚氰胺及其类似物有很好的检出能力。 奶粉实际样品加入四种标样的结果 实际酸性口味奶制品中测出三聚氰酸一酰胺 相关详细信息,请访问 http://www.perkinelmer.com/melamine
  • 新西兰称目前所产乳制品无二聚氰胺
    新西兰初级产业部称,二聚氰胺本身无毒害 乳品巨头恒天然集团称,残留物不到欧盟限值的1%   ■ “新西兰奶粉被检出二聚氰胺”追踪   新京报讯 (记者 李静)针对乳品被检出含有二聚氰胺(DCD,也称双氰胺)残留,昨日新西兰乳品巨头恒天然集团再次发布声明重申保证食品安全。恒天然表示,检测到的DCD残留水平是极其微量的,还不到欧盟食品安全限值的百分之一。   此外,昨日新西兰初级产业部表示,自去年9月之后在新西兰就没有任何DCD的使用,新西兰目前所生产的任何乳制品都不可能有DCD的残留。   恒天然:残留不到安全限值的1%   新西兰初级产业部官员25日证实,在新西兰出产的小部分牛奶和奶粉中检测出少量双氰胺化学残留物,但这些残留物不会影响食品安全或导致健康问题。新西兰政府已经下令禁售含DCD产品。   恒天然集团CEO史毕根思昨日再次就此发布声明向全球消费者保证,新西兰乳制品是安全的,可以放心食用。“我们知道,部分消费者和监管机构心存疑问。我们必须打消他们的疑问。目前,我们正在和他们保持密切沟通,提供相应解释。我们拥有强大的科学依据证明恒天然产品的安全性,并且一再就我们产品的食品安全做出保证。”   史毕根思昨日表示,“整件事情的来龙去脉是这样的。首先,我们在少数产品样本中检测出了DCD的微量残留。需要提请大家注意的是,我们检测到的DCD残留水平是极其微量的,还不到欧盟食品安全限值的百分之一。”   新西兰产业部:外界有误解   对于这一引起广泛关注的事件,新西兰政府方面昨日也对此做出表态。   新西兰初级产业部局长Wayne McNee昨日表示,对于新西兰暂停在牧场施用DCD及其对新西兰乳制品的安全性意味着什么,外界有所误解。   据其介绍,DCD的残留只在少量的奶粉产品中被发现,并不存在于任何其他乳制品,如奶油与乳酪。   “这些少量的残留并不会对食品安全造成危害。DCD本身是无毒害的。”McNee表示。   McNee表示,DCD从未被加入或是被使用在新西兰的食品上,它是被用来使用在牧草上以降低温室气体的排放和减少硝酸盐进入水中。   对特定化合物残留无国际标准   据介绍,虽然目前对于特定的化合物的残留并无国际标准,新西兰两家化肥公司已经主动暂停出售和在牧场使用DCD,因为新西兰的国际乳制品消费者期待新西兰产品是零残留。目前对于DCD尚无国际标准。   McNee表示,欧盟委员会设定有每日可接受的DCD含量。根据目前在新西兰乳品所检测出的最高DCD残留,一个60公斤体重的人必须饮用超过130公升的液态牛奶,或是摄取60公斤的奶粉才会达到欧盟委员会所设定的每日可接受含量的限额, 只有摄入比该上限高得多的数量,才会对健康产生影响。   “在出口的乳制品中存在DCD残留的机会是微乎其微的,”McNee昨日强调,“自2012年9月之后在新西兰就没有任何DCD的使用,并且目前也已被停止使用。新西兰目前所生产的任何乳制品都不可能有DCD的残留。”   新西兰国内并没有因为本次在牧场停用DCD而对乳制品的销售有任何限制。   1月26日,在新西兰部分奶粉被曝出含二聚氰胺残留物后,中国国家质检总局已紧急要求新西兰相关部门尽快提供奶粉的二聚氰胺含量、批次等详细情况。但相关部门尚未表态是否会对奶粉启动二聚氰胺检测。   ■ 小知识   二聚氰胺(DCD,也称双氰胺)主要用途有:   (1)作为胍盐、三聚氰二胺类的原料。   (2)用作染料固色剂,双氰胺和甲醛反应制得的双氰胺树脂,可用作染料固色剂。   (3)双氰胺化肥,双氰胺复合肥料可控制硝化菌的活动,使氮肥在土壤中的转化速度得到调节,减少氮的损失,提高肥料的使用效率。   (4)作为精细化工中间体。在医药上用于制取硝酸胍、磺胺类药物等。   ■ 相关   “二聚氰胺是否有毒”无明确说法   新西兰政府及恒天然公司一再强调检测到的二聚氰胺DCD残留水平是极其微量的,产品是安全的,并且DCD本身无毒无害。   然而也有国内专家指出检测出的DCD奶类产品可能会对脆弱婴幼儿产生副作用。   面对各方不同的声音,消费者该相信谁?   上周六,国家质检总局已紧急要求新西兰相关部门尽快提供奶粉的DCD含量、批次等详细情况。但相关部门尚未表态是否会对奶粉启动二聚氰胺检测。   而对于含有DCD的奶制品到底有没有毒?毒性多大?我国官方目前尚无明确说法。   新京报记者 李静   ■ 专家声音   “消费者不必太惊慌”   此事与三聚氰胺事件性质完全不同   上海奶业行业协会副秘书长曹明昨日表示,根据目前掌握到的情况来看,被检测出的双氰胺并非人为恶意往奶制品中添加,这与此前三聚氰胺事件的性质完全不同,而且经过土地、草木、乳牛、牛奶的层层转化,含量极少,对成人不会有太大影响。   但曹明昨日也指出,含有双氰胺的奶类产品可能会对婴幼儿产生副作用,婴幼儿器官的构造、发育和机能都不完善,对食品十分敏感,容易导致堵塞肾脏等情况发生。   中国农业大学食品科学与营养工程学院副教授朱毅在接受新华社采访时表示,根据目前已知情况分析判断,此次新西兰奶粉双氰胺残留事件并非是奶粉加工过程中蓄意添加,而是牧草使用了氮肥增效剂双氰胺,奶牛吃了这种牧草后,在奶中残留的。双氰胺毒性小于三聚氰胺,消费者不必太惊慌。   但他强调,中外奶粉企业都应积极采取措施,在技术允许范围内最大可能减少双氰胺残留值。同时他建议可以采取双氰胺婴儿奶粉每公斤1毫克的限量值标准来评估其安全风险。   新京报记者 李静   ■ 消费者   “不知该去哪儿买放心奶”   新西兰二聚氰胺事件让不少将对新西兰奶源很放心的妈妈们“崩溃”。尽管有些消费者对此事件了解得并不透彻,但面对近年来频频发生的奶粉安全事件,妈妈们脆弱的神经再次陷入恐慌之中。   马女士昨日表示,之前一直是委托朋友从新西兰代买奶粉,虽然很麻烦,但是为了孩子也一直坚持着,就是为了安心。但这两天看新闻发生这个事情,现在完全不知道该怎么办了。   “家里还有这么多新西兰的奶粉呢,无论事大事小,都不敢再给孩子喝了,可中途换奶粉对孩子也很不好。”马女士说,“连新西兰的奶粉都有问题,真不知道以后到底该去哪买放心奶了。”   担忧的不仅仅是马女士,昨日已经怀孕7个月的刘女士也郁闷起来,她表示:“自从怀孕后家里人就四处打听哪些奶粉品牌好,很多妈妈都推荐新西兰奶粉,为此家里已经囤了一些,现在突然传出这个消息,那我们是不是应该改选一些欧洲奶粉品牌呢?”   新京报记者 李静   ■ 市场   相关产品均正常销售   记者了解到,新西兰是全球最大的奶制品出口国,我国进口原料奶粉的70%-80%来自新西兰。   由于恒天然集团是全球最大的乳制品加工企业,国内外众多奶粉品牌的原料粉都由恒天然集团供应,使得“双氰胺”事件的波及范围很大。   昨日有业内人士指出,雅培、美赞臣、惠氏等消费者日常熟悉的知名奶粉品牌大多是从新西兰恒天然集团进口原料。在中国市场上,安怡中国和安满品牌均是恒天然集团完全掌控下的品牌。除此之外,国内半数以上的烘焙连锁店都选用恒天然旗下的安佳乳品。   此外,昨日记者走访北京一些超市,在奶粉专柜看到有的奶粉品牌直接在包装上写明“新西兰奶源”,这些产品均在正常销售。   对此,昨日一家超市销售人员表示,已经听说新西兰奶粉的事情,但目前涉及新西兰奶源的奶粉究竟能不能销售,国家相关部门并未有相关说明。

氟胺氰菊酯相关的仪器

  • 三聚氰胺检测仪 400-860-5168转3452
    一﹑机台名称:三聚氰胺检测仪二、型号:CSY-E96SJ三、仪器简介:CSY-E96SJ三聚氰胺检测仪采用固相酶联免疫吸附ELISA的原理,即酶联免疫法;可定量快速检测饲料、奶粉、纯牛奶、酸奶、酸乳、果乳等奶制品以及其它食品中的三聚氰胺含量。从原料采购到成品检验均可使用,三聚氰胺检测仪广泛应用于养殖场、乳制品加工、检验检疫单位使用。四、技术参数:☆波长范围:300nm-1000nm☆波长准确度:±2nm☆吸光度范围: 0.000~4.000ABS☆分辨率 :0.001Abs☆稳定性 : ±0.001A/hr☆透射比重复性: ≤0.5%T☆光源 : 进口LED☆样品池 : 微孔板★三聚氰胺检测仪96通道设计,9通道光路系统,其中8路光源用于96孔板的光路信号检测。另外一道光路用于校准光源,作光源系统的补偿及光源工作情况的监测。★准确性高:采用进口特制LED光源,具有良好的波长准确度和重复性,全面提高检测结果的 准确性。★自动化程度高:仪器自动诊断系统故障、波长校准:自动校准★仪器使用寿命长:采用LED光源,自动开关节能设计,非连续工作模式。使用寿命可达10年★三聚氰胺检测仪仪器自动硬盘存储测量数据。内置微型热敏打印机,终身无需更换色带,可实时打 印检测结果检测报告可打印样品名称、含量、是否合格、检测日期、检测单位。更能体现检测结果的权威性,并利于公示★ 内置以太网卡接口,可实现无线传输数据,无线上网,收发邮件等★windows电脑操作程序,彩色液晶触摸屏操作,操作简捷方便★三聚氰胺检测仪内置振荡功能,可根据需要编辑振荡形式,促使终止液充分混匀,保证结果的可靠性。★具有查询、打印、汇总、报表等功能,可直接输出检测结果,软件终身免费升级★三聚氰胺检测仪配备RS-232接口和USB口,可通过计算机进行数据处理、统计分析以及结果上传。如选配本公司食品安全监控网络软件,可根据用户要求组建省、市、地、县等各级网络。以上是三聚氰胺检测仪的技术参数,如果您想了解更多三聚氰胺检测仪产品信息,请致电深圳市芬析仪器制造有限公司
    留言咨询
  • 三聚氰胺检测手段主要有液相色谱法、气相色谱-质谱法、液相色谱-质谱法等。其中,液相色谱法具有灵敏度高、准确、可靠、仪器成本低等优势,因而是检测三聚氰胺的理想方法。  大连依利特分析仪器有限公司经过大量实验,为您提供符合三聚氰胺检测国标的包括分析方法及推荐仪器配置在内的全套解决方案。 三聚氰胺检测液相色谱仪推荐配置序号名称数量等度高效液相色谱系统1P3100高压恒流泵1台2UV3100紫外-可见检测器1台3Rheodyne 7725i高压六通进样阀1个4ZJ-1阀支架1个5TD-1-15梯度混合器(选配)1个6W5100色谱数据工作站1套7O3100色谱柱恒温箱1台8TP3100溶剂托盘1台色谱柱9Elite MSP C18三聚氰胺专用柱1支高级配置(更多功能,人性化配置,工作效率更高)10DG3100在线脱气机1台11S3100自动进样器1台 三聚氰胺测试用分析方法包序号名称规格型号1柠檬酸分析纯2辛烷磺酸钠色谱纯3三聚氰胺标准品CAS108-78-01,纯度≥99.0%4水系滤膜(100片/盒)φ50mm,0.45μm5有机系滤膜(100片/盒)φ50mm,0.45μm6针筒式有机相过滤器(100支/包)φ13mm,0.22μm7混合型阳离子固相萃取柱(50支/盒)HyperSep Retain-CX,60mg/3mL三聚氰胺测试用前处理配置包序号名称规格型号1超声波水浴AS3120型,3L,功率:120W2隔膜真空泵GM型3溶剂过滤器1000mL4分析天平AL104,感量0.0001gJD60-4,0.0001g5pH计FE20K酸度计6010酸度计6离心机TG16G,16000转,6×50mLTD5G,5000转,12×10mL7固相萃取仪SPE-128氮气吹干仪PGC-01D9涡旋混合器QL-86110研钵90,氧化铝 性能指标分析速度分析时间25min线性范围≥80μg/mL检出限0.016mg/kg注意:参数及性能描述仅供参考,最新版本信息请和当地销售联系,依利特科技保留最终解释权。
    留言咨询
  • 乳制品三聚氰胺检测仪采用手提式一体化系统检测技术,将分光光度模块、胶体金检测模块、新型农残检测模块、数字化管理模块、无线通讯模块高度集成于一体,支持检测200种食品安全检测项目,同时预留升级检测方法。仪器检测模块标准化、智能化,可随意自由组合。检测箱体内置多个标准检测单元,检测模块可以调整配置。  乳制品三聚氰胺检测仪采用全新安卓智能系统,主控芯片采用 ARM Cortex-A7,RK3288/4核处理器,10.1寸高清液晶触摸竖屏,更加高效的UI交互界面,运转快捷 仪器配备无线通信模块: 4G(APN)通讯模块、Wifi模块,蓝牙传输,同时具有双USB接口以及RJ45接口能以多种方式实现数据保存和数据传输功能。  创新检测模式:  检测通道:≥12通道 采用精密旋转比色池设计,使用同芯片同光源校准精度,解决不同光源之间的误差值。  仪器具有自动识别比色皿检测功能,即:将样品比色皿放入仪器后,点击样品检测,仪器自动识别比色皿进行通道检测。  进口高精光源:  高精度进口四波长冷光源,通道配置 410、520、590、630nm 波长光源,一个光源芯片驱动一个光源,误差极小,每台设备单独精确校准光源,精确比对,同时参照四种不同波段光源覆盖市面上99%的农残食品项目检测。
    留言咨询

氟胺氰菊酯相关的耗材

  • 三聚氰胺专用SPE小柱
    ProElut Melamine 60 mg / 3 mL 50/pk,三聚氰胺专用SPE小柱 ProElut Melamine为混合型阳离子交换固相萃取柱,基质为苯磺酸化的聚苯乙烯-二乙烯基苯高聚物(符合GB/T 22388-2008原料乳与乳制品中三聚氰胺检测方法),专为三聚氰胺检测而定制。 经特殊优化,对于三聚氰胺检测,保证回收率,流速更均匀,稳定性更好。
  • 三聚氰胺速测卡
    三聚氰胺速测卡使用说明 方法编号:CDC-2179 1.适用范围:本方法适用于快速筛查液态奶、奶粉、饲料、鸡蛋中的三聚氰胺。 2.检测原理:基于竞争法胶体金免疫层析技术,样品中的三聚氰胺与金标垫上的抗体结合形成复合物,如果样本中的三聚氰胺含量大于 0.2ppm,检测线不显颜色,结果为阳性;反之,检测线显红色,结果为阴性。 3.方法灵敏度:0.2ppm 4.样品处理 4.1 鲜奶:取 0.2ml(约 6 滴)牛奶至小离心管中,加入 0.6ml(约 20 滴)稀释液,用吸管吹吸混匀后待测。 4.2 乳粉:称取 0.5g 样品于大离心管中,加入 5mL 热水使其溶解,或将离心管放入一杯开水中,摇动使样品溶解后待测。 4.3 饲料:取 5g 以上样品粉碎,过 20 目筛,称取 0.5g 样品于大离心管中,加入 5mL 热水后充分震荡,放置,取上清液待测。 4.4 鸡蛋:取一枚鸡蛋打碎,将蛋清与蛋黄搅拌均匀,取 0.2ml(约 6 滴)蛋液至小离心管中,加入0.6ml(约 20 滴)稀释液,用吸管吹吸混匀后待测。 5.样品测试:将速测卡于平台上,用吸管滴加 3 滴待测液于加样孔中,5 分钟判断结果,10 分钟后的结果仅作参考。 6.结果判定 6.1 阳性:C 线显色,T 线不显色。 6.2 阴性:C 线显色,T 线肉眼可见,无论颜色深浅均判为阴性。 6.3 无效:C 线不显色,无论 T 线是否显色,该试纸已失效。 7. 注意事项 7.1 速测卡启封后 1 小时内使用。检测时避免阳光直射和电风扇直吹。 7.2 速测卡为一次性产品,勿重复使用。 7.3 勿用自来水、纯净水或蒸馏水作为阴性对照,最好使用明确阴性的样本做对照。 7.4 如果加样后 30 秒内在测试窗口无液体移行,则补加 1 滴待测液。 7.5 检测卡是筛查方法,出现阳性结果,建议用仪器方法确证。 8.包装规格:速测卡 5 片(附一次性吸管),大离心管 1 支,小离心管 5 支。 9.保存和稳定性:4-30℃阴凉干燥处保存,不可冷冻,有效期见包装处。
  • 三聚氰胺检测条
    定量检测牛奶、奶粉、鸡蛋、饲料、动物组织中的三聚氰胺定量检测牛奶、奶粉、鸡蛋、饲料、动物组织中的三聚氰胺定量检测牛奶、奶粉、鸡蛋、饲料、动物组织中的三聚氰胺灵敏度可达0.2ppm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制