纳米线性位移台

仪器信息网纳米线性位移台专题为您提供2024年最新纳米线性位移台价格报价、厂家品牌的相关信息, 包括纳米线性位移台参数、型号等,不管是国产,还是进口品牌的纳米线性位移台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合纳米线性位移台相关的耗材配件、试剂标物,还有纳米线性位移台相关的最新资讯、资料,以及纳米线性位移台相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

纳米线性位移台相关的厂商

  • 普爱纳米位移技术(上海)有限公司是德国跨国公司Physik Instrumente(PI)GmbH & Co.KG在中国设立的独资子公司。 PI-纳米位移和定位领域的市场领导者。哪里需要挑战极限位移,哪里就会有PI! 40多年来,PI的产品一直以高品质和创新技术而著称。在提供最佳产品质量的同时,PI更为用户提供创新的技术服务和最佳的解决方案。从精密加工到数字与模拟控制电路,从亚纳米级的电容位置传感器到独创的PICMA 压电陶瓷促动器,PI已掌握全套关键技术,强大的技术实力推动着微米纳米定位技术不断地向前沿发展,也使得PI成为全球众多高科技企业、著名实验室的合作伙伴。 PI为用户提供各种不同类型的压电纳米定位系统和电机微米定位系统的解决方案,并可根据用户需求,提供各种OEM产品和定制产品。PI的产品包括,六自由度并联机器人,压电纳米定位台,压电偏转镜,PIFOC 显微物镜定位器,以及直线与旋转定位台等。今天,无论是在计量、显微,生命科技,还是激光技术,精密加工技术;无论是半导体科技,数据存储技术,还是光电子/光纤,天文等领域,PI的产品和技术正得到越来越广泛的应用,也赢得了越来越广泛的赞誉。 具体产品信息请参见PI公司官方网站:www.pi-china.cn www.pi.ws
    留言咨询
  • 上海纳动纳米位移技术有限公司是专业从事纳米定位、测控技术、运动控制产品的研发制造与产业化的高新技术企业。公司坐落于我国社会经济和科学技术发展最具活力的地区之一 ——上海市国家级漕河泾高科技园区。我们的开发人员拥有数字和模拟电子技术,空间研究,机械工程和纳米技术等相关专业知识的工程师。产品应用包括硬盘驱动器的磁头测试,半导体制造的光刻和计量仪器,扫描电子显微镜(SEM)和原子力显微镜(AFM),以及大量的航空航天等空间应用,半导体制造与检测、生物显微成像、精密光学系统、光电子对准与封装、光学跟踪与扫描、超精密加工、先进自动化、MEMS等领域。广泛应用和服务于国内各高校、科研院所以及各类生产光学显微镜、激光设备、半导体IC装备、检测仪器、光电设备、光学仪器、医疗设备、特种精密加工机床等的装备制造商。公司一直坚定地参与前沿技术的研究和发展。这些年来我们一直提供领先的、具有成本效益的纳米定位和运动控制的位置传感技术。我们专注于关键的OEM应用的定制解决方案开发。我公司以最低的成本在最短的时间,提供最佳的解决方案,我们提供快速、全面的服务和支持,并始终如一地达到最佳的性价比。我们的方案已完美解决各合作公司的挑战性任务及科研难题,我们期待与您共同合作与进步,遨游科技的海洋。我们的目标:用我们高质量和高性能的技术,提供超性价比的产品和服务,实现价格最优惠。公司本着“正直,进取,合作,创新”的精神,努力把公司打造成为我国重要的纳米定位与运动控制的研发和产业化基地。
    留言咨询
  • 南京牧科纳米科技有限公司目前主要由10位具有海外留学经历和国内顶尖研究课题组多年研究经验的博士团队组成。牧科是国内唯一一家专门从事二维材料单晶CVD合成和二维半导体纳米片溶液及冷干粉末合成的(类石墨烯类材料)合成与研发的专业技术咨询和服务的纳米科技公司。公司现有产品主要包括:(1)各类人工合成二元、三元和四元二维单晶材料;单层机械剥离二元、三元和四元二维单晶材料,及定制类相关拓扑绝缘二维材料;(2)CVD法生长各类单层类石墨烯二维半导体材料MoS2,WS2,MoSe2,WSe2以合金CVD定制, CVD-BN薄膜定制,定做横向,纵向结构二维异质节(3) CVD生长二六族(Zn,Cd)+(S,Se,Te), 三五族(Ga,In)+(Sb,As,P) 纳米线以及异质节结构;(4)石墨烯单晶系列100um-2mm,5mm,1cm 大六边形单晶 (5)氧化石墨烯溶液、氧化石墨烯干粉,石墨烯干粉,石墨烯溶液,热还原石墨烯干粉,碳纳米管阵列衬底。(6)CdSe, CdSe/ZnS, CdSe/Cds,ZnSe-ZnS量子点/近红外PbS量子点/InP-ZnS量子点/水溶性发光量子点/上转换发光纳米粒子/LED用量子点 全光谱量子点溶液,(7)有机无机杂化钙钛矿单晶。尺寸可根据需要定制。(8)基团修饰氧化铁、四氧化三铁、三氧化二铁、聚苯乙烯磁性粒子、金纳米棒、三角纳米笼、银纳米颗粒生物制剂(8)实验用SIO2/SI,掺杂硅,本征硅衬底,镀金衬底,M面,C面,R面蓝宝石衬底,MgO、Zno、GGG晶体,TiO2等单晶衬底,激光切割等服务等亦可提供最先进相关测试服务(AFM,SEM,TEM ,XPS,Raman,BET,XRD,常温及变温PL,紫外-可见-近红外吸收/反射/透射光谱等常规测试服务)。如需获得更多的了解,欢迎您咨询QQ:2984216964 025-66171690 18052095282,或者A直接访问我们的公司网址是:http:www.mukenano.com
    留言咨询

纳米线性位移台相关的仪器

  • “55mm 系列”— Linear55-x-Slim (闭环控制)低温 压电运动- 线性位移系列纳米级压电位移台Linear55-x-Slim主要特征&bull 紧凑设计, 尺⼨ : 55*55*10.5 mm&bull 超⾼ 真空 & 超低温兼容: 2 E- 11 mbar & 30 mK&bull ⽆ 磁材料(纯 Ti & BeCu),最⾼ 兼容 18 Tesla 磁场&bull 超⾼ 负载 & 超⾼ 推⼒ : 2500 g & 3 N&bull ⼤ ⾏ 程 : 30 mm&bull 闭环控制,内置位置传感器, 最⼩ 位置分辨率 0.1 um纳米级压电位移台Linear55-x-Slim⼆ 维尺⼨ Linear55-x-Slim, SpeciÞ cation*所有数据均通过50欧姆线缆测量. 虽然对导线的电导率没有要求,但我们建议电阻低于50欧姆。 可选版本 ⇨ .HV (默认).ULT.UHV.ULT.UHV.HV ⾼ 真空版本,默认产品 .ULT 超低温版本, 兼容氦-3制冷系统 & 稀释制冷机.UHV 超⾼ 真空版本, 最⾼ 兼容 2E-11 mbar1 三维尺⼨ 55.× 55 mm × 10.5 mm2 质量130 g适⽤ 环境范围 3 基础温度范围: 1.4 ~ 400 K 最低真空度: 2e-7 mbar 最⼤ 磁场: 18 Tesla4 可选1 - 30 mK&check &check 5 可选2 - 2e-11 mbar&check &check 材质6 主体Pure TiBeCuPure TiBeCu7 线缆磷⻘ 铜双绞线,20cm8 针脚材质聚酯材料(玻璃纤维填充), BeCuPeek, BeCu9 针脚数量驱动 -2 pins,传感 - 3 pins运动参数10 ⾏ 程30 mm11 最⼤ 运动速度 @300 K~ 2 mm/s12 驱动电压Max. 200 V13 最⼤ 负载2500 g14 最⼤ 推⼒ 3 N传感器(闭环)15 位置传感器电阻传感16 传感器⾏ 程30 mm17 传感器分辨率~ 150 nm18 重复定位精度1 - 2 um
    留言咨询
  • Hysitron Pl 89 SEM Picolndenter 利用扫描电子显微镜 (SEM、FIB/SEM)的卓越成像能力,可以在成像的同时进行定量纳米力学测试。这套全新系统搭载Bruker的电容传感技术,继承了早期商业化原位SEM纳米力学平台的优良功能。多年来,Hysitron系列产品稳步拓展PicoIndenter的应用范围,并利用专利xR传感技术和其他先进技术扩展了力和位移量程。PI89拥有多项创新功能,包括电特性模块(ECM)、薄膜和纳米线压转拉模块(PTP)、直接拉伸测试、疲劳测试、旋转和倾斜台(已获专利)、高温测试及纳米划痕等。PI89是现有的用于SEM和 FIB/SEM 的多功能原位纳米力学测试仪。
    留言咨询
  • 纳米位移台系统 400-860-5168转1446
    仪器简介:If smallest parts or samples have to be moved or positioned with nanometer precision in the millimetre range, nanopositioning systems with piezo inertial drive are used. Very compact actors with appropriate control units are available for rotational and linear movements. The compatibility to each other allows the assembly of multi-axes combinations for complex movements. All the nanopositioning system have a piezo inertialdrive. With a travel in the millimetre range and steos in the nano meter range or with large adjustment range and steps in the &mu rad range, they are suitable for manifold applications. The basic components of the gonimeter are made of high strength aluminium. Due to a black anodized coating, the surface is protected and reflexion-poor. For the mounting of the nanopositioners, the mounting plate NMP 50is recommend. It is available as a ccessory. In order to operate the nanopositioners,the manual control unit NHS06 has to be used. The complete system is pluggable and ready for connection.技术参数:仪器名称,型号/参数行程最小步长最大步长负载 (N)重复定位精度(双向)倾斜力矩(Mx,My,Mz)(Nm)速度 纳米旋转位移台 NDT 24-30无限旋转角度40 &mu rad100&mu radmax.2 max.0.1max.100mrad/s 纳米旋转位移台 NDT 24-30-MSI无限旋转角度40 &mu rad100&mu radmax.240&mu radmax.0.1max.300mrad/s 纳米角度位移台 NAGO P 24-8± 3.3 度2 &mu rad6 &mu radmax.2 max.0.1 纳米角度位移台 NAGO T 24-8± 4度2 &mu rad6 &mu radmax.2 max.0.1 纳米升降位移台 NHV 24-66mm100nm300nmmax.3 max.0.1 纳米升降位移台 NHV 24-6-MSI6mm50nm700nmmax.3400 nmmax.0.1 纳米线性位移台 NLV 24-77mm200nm300nmmax.2 max.0.1max.0.3mm/s 纳米线性位移台 NLV 24-7-MSI7mm50nm700nmmax.2400nmmax.0.1max.0.7mm/s 纳米线性位移台 PT 30-54.8mm300nm800nmmax.30 max.0.5max.0.8mm/s 纳米线性位移台 PT 30-5-MSI4.8mm100nm2000nmmax.30400nmmax.0.5max.2mm/s 主要特点:&bull high power density on little space &bull 纳米量级或&mu rad量级可调 &bull 停止是无摆动或振荡 &bull 由高强度的铝制成,黑色阳极氧化 &bull with ceramic guide for high life time Option &bull version for use in cacuum
    留言咨询

纳米线性位移台相关的资讯

  • 导热性能提升150%的硅同位素纳米线
    有电的地方就会产生热量,而这正是缩小电子设备的一个主要障碍。一个改变游戏规则的发现,可以通过传导更多的热量来加速计算机处理器的发展进程。TEM图像显示涂有二氧化硅(SiO2)的 28Si 纳米线。来源:Matthew R. Jones 和 Muhua Sun/莱斯大学科学家们已经验证了一种硅同位素(28Si)纳米线新材料,其热导率比先进芯片技术中使用的传统硅材料高出150%。这种超薄硅纳米线器件可以使更小、更快的微电子技术成为可能,其热传导效率超过了现有技术。由有效散热的微芯片驱动的电子器件反过来会消耗更少的能源——这一改进可以减轻燃烧富含碳的化石燃料产生的能源消耗,这种能源消耗导致了全球变暖。“通过克服硅导热能力的天然局限性,我们的发现解决了微芯片工程中的一个障碍,”报道此新研究成果的科学家 Junqiao Wu 说(课题组主页,https://wu.mse.berkeley.edu)。Wu 是加州大学伯克利分校材料科学系的一名教师科学家和材料科学与工程教授。01热量在硅中缓缓流动我们使用的电子产品相对便宜,因为硅 - 计算机芯片的首选材料 - 既便宜又丰富。可是,尽管硅是电的良导体,当它被缩小到非常小的尺寸时,它就不是热的良导体——而当涉及到快速计算时,这对微小的微芯片来说却是一个巨大问题。艺术家对微芯片的渲染。来源:dmitriy-orlovskiy/Shutterstock每个微芯片中都有数百亿个硅晶体管,它们引导电子进出存储单元,将数据比特编码为1和0,即计算机的二进制语言。电流在这些辛勤工作的晶体管之间流动,而这些电流不可避免地会产生热量。热量会自然地从热的物体流向冷的物体。但是热流在硅中变得很棘手。在自然形式中,硅由三种不同的同位素组成 - 化学元素的形式,其原子核中含有相同数量的质子,但中子数量不同(因此质量不同)。大约 92% 的硅由同位素 28Si 组成,它有14个质子和14个中子;大约 5% 是 29Si,有14个质子和15个中子;只有 3% 是 30Si,相对重量级为14个质子和16个中子,合作者 Joel Ager 解释道,他拥有 Berkelry Lab(伯克利实验室)材料科学部门的高级科学家头衔,也是 UC Berkeley(加州大学伯克利分校)材料科学与工程的兼职教授。左起:Wu Junqiao 和 Joel Ager。来源:Thor Swift/伯克利实验室 Joel Ager 的照片由加州大学伯克利分校提供作为声子,携带热量的原子振动波,在蜿蜒穿过硅的晶体结构时,当它们撞击 29Si 或 30Si 时方向会发生改变,它们不同的原子质量“混淆”声子,减慢它们的速度。“声子最终看到了这个表象,并找到了通往冷端以冷却硅材料的方法,”但这种间接的路径允许废热积聚,这反过来又会减慢您的计算机速度,Ager 说。02迈向更快、更密集的微电子学的一大步几十年来,研究人员推测,由纯 28Si 制成的芯片将克服硅的导热极限,从而提高更小、更密集的微电子器件的处理速度。但是,将硅提纯成单一同位素需要付出高昂的代价和能量水平,很少有设施可以满足 - 更没有哪家工厂能专门制造市场上可用的同位素材料,Ager 说。幸运的是,2000年代初的一个国际项目使 Ager 和杰出的半导体材料专家 Eugene Haller 能够从前苏联时代的同位素制造厂采购四氟化硅气体 - 同位素纯化硅的原料。(Haller 于1984年创立了伯克利实验室的美国能源部资助的电子材料项目,并曾是伯克利实验室材料科学部门的高级科学家和加州大学伯克利分校材料科学和矿物工程教授。)这直接导致了一系列开创性的实验研究,包括 2006 年发表在《自然》杂志上的一项成果,其中 Ager 和 Haller 将 28Si 塑造成单晶,他们用它来证明量子存储器将信息存储为量子比特或量子位,单位存储的数据同时作为 1 和 0 的电子自旋。99.92% 28Si 晶体的光学图像,伯克利实验室科学家 Junqiao Wu 和他的团队使用这种材料制备纳米线。来源:Junqiao Wu/伯克利实验室随后,用 Ager 和 Haller 提纯的硅同位素材料制成的半导体薄膜和单晶显示出比天然硅高 10%的热导率——这是一个进步,但从计算机工业的角度来看,可能不足以证明花一千多倍的钱用同位素纯硅制造一台计算机是合理的,Ager 说。但 Ager 知道,硅同位素材料在量子计算之外具有的科学重要性。因此,他把剩下的东西存放在伯克利实验室一个安全的地方,以备其他科学家可能的不时之需,因为他推断,很少有人有资源制造甚至购买到同位素纯硅。03用 28Si 实现更酷的技术之路大约三年前,Wu 和他的研究生 Ci Penghong 试图找到提高硅芯片传热速率的新方法。制造更高效晶体管的其中一项策略,涉及使用一种称为环栅场效应晶体管(Gate-All-Around Field Effect Transistor,GAAFET)的技术。在这些器件中,硅纳米线堆叠以导电,并同时产生热量,Wu 解释到。“如果产生的热量不能迅速排出,该器件将停止工作,这就像在没有疏散地图的高楼中发出火灾警报一样,”他说。FinFET(鳍式场效应晶体管)和环栅场效应晶体管(GAAFET)结构示意图。来源:Applied Materials但硅纳米线的热传递甚至更糟,因为它们粗糙的表面 - 化学处理的疤痕 - 更容易分散或“混淆”声子,他解释说。由硅纳米线桥接的两个悬浮垫组成的微器件的光学图像。来源:Junqiao Wu/伯克利实验室“然后有一天我们想知道,如果我们用同位素纯 28Si 制造纳米线会发生什么?”Wu 说。硅同位素不是人们可以在公开市场上能够轻松购买到的东西,有消息称,Ager 仍然在伯克利实验室储存了一些少量的硅同位素晶体,且仍然足以分享。“希望有人对如何使用它有一个很好的想法,” Ager 说,“如 Junqiao 的新研究就是一个很好的例证。”04纳米测试后的惊人大揭秘“我们真的很幸运,Joel 碰巧已经准备好了同位素富集的硅材料,正好可用于这项研究,”Wu 说。利用 Ager 提供的硅同位素材料,Wu 研究团队测试了 1 mm 尺寸的 28Si 晶体与天然硅的导热性 - 他们的实验再次证实了 Ager 和他的合作者几年前的发现 - 块状 28Si 的导热性仅比天然硅好 10%。尽管块状晶体硅具有相对较高的热导率(室温下 κ∼144 W/mK),但当其尺寸减小到亚微米范围时,由于声子显著的边界散射,κ 会受到强烈抑制。60 K 条件下,115 nm 尺寸的硅纳米线,κ~16 W/mK, DOI: 10.1063/1.1616981;300 K 条件下,31-50 nm 尺寸的硅纳米线,κ~8 W/mK,DOI: 10.1103/PhysRevLett.101.105501。现在进行纳米级别测试。Ci 使用一种化学蚀刻技术制造了直径仅为 90 nm(十亿分之一米)的天然硅和 28Si 纳米线 - 大约比一根人类头发细1000倍。为了测量热导率,Ci 将单根纳米线悬浮于两个装有铂电极和温度计的微加热器垫之间,然后向电极施加电流以在一个垫上产生热量,然后通过纳米线流向另一个垫。“我们预计,使用同位素纯材料进行纳米线的热传导研究结果只会有 20% 的增量效益,” Wu 说。但 Ci 的测量结果让他们都感到惊讶。28Si 纳米线的热导率提高不是 10% 甚至 20%,而是比具有相同直径和表面粗糙度的天然硅纳米线好 150%。这大大的超出了他们的预期,Wu 说。纳米线粗糙的表面通常会减慢声子的速度,那这是怎么回事呢?莱斯大学(Rice University)的 Matthew R. Jones 和 Muhua Sun 捕获的材料高分辨率 TEM(透射电子显微镜)图像发现了第一条线索:28Si 纳米线表面上的玻璃状二氧化硅层(SiO2)。而纳米线导热性研究的知名专家 Zlatan Aksamija 领导的马萨诸塞大学阿默斯特分校(University of Massachusetts Amherst)研究团队计算模拟实验表明,同位素“缺陷”(29Si 和 30Si 的不存在)阻止了声子逃逸到表面,其中 SiO2 层会大大减慢声子的速度。这反过来又使声子沿着热流方向保持在轨道上 - 因此在 28Si 纳米线的“核心”内不那么“混淆”。(Aksamija 目前是犹他大学(theUniversity of Utah)材料科学与工程副教授。)“这真的出乎意料。发现了两个独立的声子阻断机制 - 表面和同位素,以前被认为彼此独立的 - 现在协同作用,这使我们在热传导研究中获得了非常令人惊讶的结果,却也非常令人满意,“Wu 说。“Junqiao 和团队发现了一种新的物理现象,”Ager 说,“对于好奇心驱动的科学研究来说,这是一个真正的胜利。这真的是太令人兴奋了。”研究小组接下来计划将他们的发现推进到下一个阶段:研究如何“控制,而不仅仅是测量这些材料的热传导性能”,Wu Junqiao 说。莱斯大学、马萨诸塞大学阿默斯特分校、深圳大学和清华大学的研究人员参与了研究工作。这项工作得到了美国能源部科学办公室的支持。原文信息Giant Isotope Effect of Thermal Conductivity in Silicon Nanowires,Penghong Ci, Muhua Sun, Meenakshi Upadhyaya, Houfu Song, Lei Jin, Bo Sun, Matthew R. Jones, Joel W. Ager, Zlatan Aksamija, and Junqiao Wu,Phys. Rev. Lett. 128, 085901 (2022)https://doi.org/10.1103/PhysRevLett.128.085901
  • 研究人员利用原位TEM技术揭示ZnO微/纳米线疲劳行为
    近日,北京科技大学材料科学与工程学院张跃教授研究团队指导的博士生李培峰在一维纳米材料在各种场下的服役方面的研究取得新进展,并以第一作者身份在《Nano Letters》(影响因子12.94)和《ACS Applied Materials and Interfaces》(影响因子5.90)分别发表论文一篇。   在张跃教授的指导下,李培峰与中科院物理所的合作者利用原位TEM机械共振,研究了ZnO微/纳米线在高周应变下的疲劳行为。系统研了ZnO微/纳米线的弹性模量随直径的变化以及ZnO微/纳米线共振振幅在阻尼效应作用下随共振时间及周次衰减的区别。ZnO微/纳米线经过108&minus 109周次共振都显示了良好的疲劳性能,而遭受电子束辐照10 min后的ZnO纳米线共振几秒后即发生断裂,这在国际上尚属首次发现。   研究结果为我们设计、构建、优化及应用基于ZnO纳米材料的力电纳米器件提供了有益的指导,也为工作在紫外光、X射线下的纳米材料及器件的安全服役提供了参考。   另外,李培峰还利用自己实验室搭建的纳米操控系统研究了ZnO纳米线在电场中的服役行为。研究发现ZnO纳米线电致损伤的阈值电压随直径的增大呈线性增大,而电流密度随直径的增大呈指数减小。并提出了热核-壳模型对ZnO纳米线的电致损伤机制进行解释。纳米材料电致损伤研究对指导光电、力电和压电纳米器件的实际应用是非常有必要的。   此外一系列利用AFM研究ZnO纳米线在力场及力电耦合场中的服役行为的研究结果尚未公开发表。
  • 扭曲纳米线:光电性能新突破!
    【研究背景】三维(3D)晶体半导体纳米线(如硅、锗或砷化镓)因其能通过蒸汽-液体-固体(VLS)生长法合成出极高的晶体质量而备受关注。这种方法中,纳米级液态“催化剂”将源材料从气相运输到固体晶体线的生长前沿。相较于传统的半导体材料,这些纳米线具有优异的光电性能和更高的热稳定性,广泛应用于光电子、能源转换等领域。然而,纳米线的生长过程中仍存在许多挑战,例如晶体缺陷和异质结界面问题,这些问题严重影响了器件的性能。为了解决这一问题,内布拉斯加大学林肯分校Peter Sutter, Shawn Wimer & Eli Sutter三个人在层状锗硫(GeS)纳米线的研究中取得了新进展。该团队通过金催化的低温VLS生长法成功合成了具有不同直径和均匀结构的GeS纳米线。这些纳米线的生长具有各向异性,且其c轴沿着纳米线的对称轴排列,而a和b方向的单位矢量则在垂直于纳米线的平面内。研究人员利用高分辨率透射电子显微镜(TEM)和高角度环形暗场扫描透射电子显微镜(HAADF-STEM)对GeS纳米线的晶体结构进行了表征,结果显示其晶格间距为1.06纳米。在对GeS纳米线的成像和进一步的衍射分析中,研究人员发现了无处不在的轴向螺位错,导致晶格的单向旋转现象。纳米线的直径与旋转角度之间的关系显示出直线依赖性,且细径纳米线的旋转角度相对更大。这种现象与Eshelby扭转理论相一致,研究表明,纳米线的螺位错和相应的扭转特性是其具有手性结构的重要原因。【表征解读】在本文中,作者采用了多种表征手段,重点通过扫描透射电子显微镜(STEM)及其电子衍射(ED)技术来研究纳米线的形态及其微观特征。具体而言,作者利用FEI Talos F200X型电子显微镜,通过小束电子衍射模式获取了纳米线的系列衍射图样,揭示了其近似的区轴特征。通过分析衍射图样,结合JEMS软件对数据进行处理,作者确定了样品的实际区轴,并计算了扭转角度。这一过程使作者深入理解了纳米线在微观尺度下的晶体结构变化。针对观察到的纳米线光致发光(PL)特性,本文进一步采用了阴极发光(CL)光谱技术,尤其是在STEM模式下的Gatan Vulcan CL装置。作者在110 K至300 K的温度范围内,以200 keV的电子能量对纳米线进行电子束激发,获得了纳米线的光谱特征。通过在纳米线上进行逐步的光谱线扫描,作者揭示了不同位置光谱特征的变化,发现在信号噪声比的变化下,光谱特征并未显著改变。这为后续对光谱特性的深入分析奠定了基础。为探讨在STEM-CL线扫描中观察到的宽光致发光峰的起源,本文进行了控制实验,分析了一根约5 μm长的GeS纳米线。通过分段扫描,作者观察到在不同的扫描位置上,谱线特征的重复出现。这种重复现象表明,局部产生的载流子(电子)在纳米线内发生了扩散,并且呈现出不对称的扩散特征。这表明载流子的扩散可能受到纳米线内部电场的影响,或者是由于局部扩散系数D的变化所致。这种现象可能与纳米线中的缺陷态填充以及电束激发载流子的再组合过程有关。在此基础上,作者将电子显微镜及阴极发光技术的结合,深入探讨了扭转莫尔(twist moiré)结构对光电性质的影响。通过对长GeS纳米线的光谱分析,作者观察到随着纳米线的扭转角度变化,电子结构的特征显著变化。结合Burgers矢量分析,作者确认了纳米线的螺旋结构,并观察到光谱特征在不同扭转区域的显著对应关系。总之,经过扫描透射电子显微镜(STEM)和阴极发光(CL)等多种表征手段的综合应用,本文深入分析了GeS纳米线的微观结构与光电性质之间的关系。这一研究不仅揭示了纳米线内部的载流子行为及其与缺陷态的相互作用,还为新型光电材料的设计提供了理论基础,推动了基于扭转莫尔结构的新材料的进步与应用。【图文速递】图1:扭曲的范德瓦尔斯纳米线。图2:分层GeS纳米线的Eshelby扭曲。图3:扭曲GeS纳米线的光电特性。【科学启迪】本文的研究揭示了扭曲GeS纳米线的光电特性与其扭转莫尔结构之间的密切关联。通过电子显微镜和衍射技术,科学家们探讨了纳米线的形态以及局部载流子分布的非对称性,进而分析了局部激发下载流子的漂移和扩散行为。这一发现强调了在纳米材料研究中,结构缺陷和界面效应对电荷载体行为的重要影响。此外,研究表明,扭曲莫尔结构在手性纳米线中呈现出独特的螺旋形态,这种结构的变化会对光发射特性产生显著影响,进而影响光电性能。进一步的研究可能会揭示更多关于电荷载流子动态及其与材料内部结构相互作用的机制,为新型光电器件的设计提供理论依据和技术指导。参考文献:Sutter, P., Wimer, S. & Sutter, E. Chiral twisted van der Waals nanowires. Nature 570, 354–357 (2019). https://doi.org/10.1038/s41586-019-1147-x

纳米线性位移台相关的方案

纳米线性位移台相关的资料

纳米线性位移台相关的试剂

纳米线性位移台相关的论坛

  • 【转帖】研究提出金属纳米线制备新方法

    金属纳米线具有优异的电、光、磁与热学性能,在微电子、光电子、催化与传感器等领域具有诱人的应用前景。目前,基于多孔模板合成金属纳米线的实验室方法主要有电沉积法与无电沉积法。然而,这两种方法都有其不可克服的缺点。前者在制备过程中需要消耗电能 后者在合成过程中必须添加有机表面活性剂或需要对模板的孔壁进行敏化与活化处理,不仅实验过程复杂繁琐,而且会造成一定的环境污染。  最近,中国科学院固体物理研究所许巧玲博士发明了一种简单、经济、绿色、普适的金属纳米线制备方法,实现了单一金属纳米线的成分、异质纳米线的段数与成分以及纳米线形貌的可控生长。该方法既不需要使用电源,又不需要添加任何有机表面活性剂,也不需要对模板孔壁进行复杂的敏化与活化处理,而只需将一面蒸金、周围带铝的阳极氧化铝模板浸泡在金属氯化物的水溶液中,借助原电池原理,便可在氧化铝模板的纳米孔道里形成相应金属的纳米线。  采用该方法,获得了多种具有不同成分或结构的金属纳米线,包括金属单质纳米线(如Au、Pt、Pd、Cu、Ni与Co纳米线)、金属合金纳米线(如AuPt合金纳米线)、由具有不同性能的金属或合金组成的纳米线异质结(如两段的Au-Ni与三段的Au-Ni-Au纳米线异质结等)以及分支形貌的金属型纳米线(如Y分支形)。这些成分与形貌可控的金属纳米线在纳米科技的许多方面具有广泛的应用前景。这种方法可以进一步开发与拓宽,用于大批量合成人们所需要的各种金属型纳米线。相关研究结果申请了中国发明专利,撰写的论文发表在材料化学领域重要期刊《材料化学》(Chem.Mater)(21,2397–2402,2009)上。  该工作得到国家科技部“纳米研究”重大科学研究计划(No.2007CB936601)、国家自然科学基金杰出青年基金(No.50525207)和中科院百人计划资助。(来源:中国科学院固体物理研究所)

  • 神奇的微生物纳米线

    神奇的微生物纳米线

    http://ng1.17img.cn/bbsfiles/images/2015/01/201501091400_531781_2972800_3.jpg 益择网讯(慕雪/编译)科学界关于“微生物纳米线”的争论已经存在了十年,近日,美国麻州大学阿默斯特分校的德里克•洛弗利研究小组利用新的成像技术——静电力显微镜(EFM)从物理学上证明了地杆菌微生物体内“微生物纳米线”的存在,这是一项极具环境和现实意义的发现,微生物纳米线是潜在的“绿色”的电子元件,可再生、无毒、可基因操控,未来将广泛用于工程微生物传感器和生物计算设备等领域。 “微生物纳米线”是一种线状纤维蛋白,它们就像安在微生物身体上的微小电线一样,可以传输电荷。“图像显示电流沿着微生物纳米线流动,眼见为实,能在分子水平上将纳米线传输电荷的机制可视化是非常令人振奋的。”洛弗利激动地说。纳米线证明了地杆菌以土壤中的铁和其他金属为生,这将使其在改变土壤化学状况以及环境净化中发挥重要作用。 这一发现不仅在生物学上,也在材料学上提出了一项重要的新原理:当设置正确时,天然氨基酸可像碳纳米管等分子导体一样传输电荷。它为蛋白质纳米电子学开辟了前所未有的前景。目前正在开发应用程序有两个:一是把地杆菌集成到电子传感器中来监测环境污染物,二是基于地杆菌的微生物计算机。“我期望这项技术未来可以应用于更多物理学和生物学交叉的领域。”洛弗利说。

  • 神奇的微生物纳米线

    神奇的微生物纳米线

    http://ng1.17img.cn/bbsfiles/images/2015/01/201501091358_531780_2972800_3.jpg 科学界关于“微生物纳米线”的争论已经存在了十年,近日,美国麻州大学阿默斯特分校的德里克•洛弗利研究小组利用新的成像技术——静电力显微镜(EFM)从物理学上证明了地杆菌微生物体内“微生物纳米线”的存在,这是一项极具环境和现实意义的发现,微生物纳米线是潜在的“绿色”的电子元件,可再生、无毒、可基因操控,未来将广泛用于工程微生物传感器和生物计算设备等领域。 “微生物纳米线”是一种线状纤维蛋白,它们就像安在微生物身体上的微小电线一样,可以传输电荷。“图像显示电流沿着微生物纳米线流动,眼见为实,能在分子水平上将纳米线传输电荷的机制可视化是非常令人振奋的。”洛弗利激动地说。纳米线证明了地杆菌以土壤中的铁和其他金属为生,这将使其在改变土壤化学状况以及环境净化中发挥重要作用。 这一发现不仅在生物学上,也在材料学上提出了一项重要的新原理:当设置正确时,天然氨基酸可像碳纳米管等分子导体一样传输电荷。它为蛋白质纳米电子学开辟了前所未有的前景。目前正在开发应用程序有两个:一是把地杆菌集成到电子传感器中来监测环境污染物,二是基于地杆菌的微生物计算机。“我期望这项技术未来可以应用于更多物理学和生物学交叉的领域。”洛弗利说。

纳米线性位移台相关的耗材

  • 纳米位移平台
    纳米位移平台,真空纳米位移台由中国领先的进口光学精密仪器旗舰型服务商-孚光精仪进口销售,先后为北京大学,中科院上海光机所,中国工程物理研究院,航天3院,哈工大,南开,山东大学等单位提供优质进口的纳米位移平台,真空纳米位移台,纳米位移台.这款纳米位移平台是美国进口的高速高精度真空纳米位移台,它采用先进技术设计, 具有单轴或精密的双轴配置两种选择, 适合高真空环境和非磁性定位应用.美国进口高精度低价格系列纳米定位台,采用了陶瓷伺服电机驱动,非常适合要求精度达到纳米或压纳米的高精度和高重复精度的应用,例如:精密生命科学仪器、显微成像、纳米准直、微纳加工、光学精确定位等。X-TRIM 系列纳米位移台特色 10nm分辨率非接触线性编码系统双驱动任选:线性伺服或压电驱动高密度滚珠传导增加稳定性超紧凑的单轴或双轴纳米位移台紧凑型封装可真空使用超强工作能力,大吞吐量采用无铁芯直接驱动直线电机,驱动轴位于纳米位移台的中心线, 这种设计消除了非中心驱动导致的偏航,空回等问题.纳米位移台集成了一个高分辨率(12.5nm)非接触式线性编码器,它为闭环的伺服系统工作操作提供了精密反馈, 它的标准配置就可以提供纳米精度的定位.纳米位移平台使用能够了精密的滚珠导向系统确保了位移平台高精度性能和严格的轨迹控制。纳米位移平台也适合OEM使用,它具有较低抛面和较小尺寸,采用模块化设计,用户可堆叠使用创建多轴多部件系统。这款纳米位移平台使用了非接触式直接驱动技术,提供坚固,精确,高速的定位,满足高频率大工作量的需要。纳米定位平台使用了先进的无铁直线电机直接确定技术,确保最优异的纳米级定位性能。这款纳米定位台提供了高速度,高精度,高分辨率,高性能的卓越表现。它与传统的丝杠驱动或压电驱动相比,具有更大的工作效率和吞吐量。参数行程(mm): 25和50mm(单轴或双轴)驱动系统: 无铁芯直线电机或陶瓷伺服电机最大加速度: 由负载决定最大速度: 200mm/s (无负载时)最大推力: 24N最大负载: 2Kg精度: +/-1um/25mmTTL分辨率: 1-100nm/脉冲构造材料: 铝合金主体, 灰色氧化镀膜重复精度: 5倍精度 XT 25 XT 50 XT 2525 XT 5050 Travel Length (mm) 25 mm 50 mm 25 x 25 mm 50x 50 mm Trajectory Control Accuracy Linear Encoder ± 1.0 &mu m ± 2.0 &mu m ± 2.0 &mu m ± 4.0 &mu m Straightness/Flatness ± 1.0 &mu m ± 1.0 &mu m ± 2.0 &mu m ± 2.0 &mu m Yaw/Pitch/Roll 5 arc-sec 5 arc-sec 10 arc-sec 10 arc-sec 2 axis system Orthogonality Standard Grade NA NA 5 arc-sec 5 arc-sec High Precision NA NA 2 arc-sec 2 arc-sec Extra High Precision NA NA 1 arc-sec 1 arc-sec
  • 银纳米线-银纳米线
    参数:Agnws-40平均直径/纳米:40平均长度/微米:30银纯度(%):99.5浓度(毫克/毫升):20Agnws-L50平均直径/纳米:50平均长度/微米:200银纯度(%):99.5浓度(毫克/毫升):20Agnws-60平均直径/纳米:60平均长度/微米:20银纯度(%):99.5浓度(毫克/毫升):20Agnws-90平均直径/纳米:90平均长度/微米:60银纯度(%):99.5浓度(毫克/毫升):20Parameter:Agnws-40Average Diameter/nm:40Average Length/um:30Silver Purity (%):~99.5Concentration (mg/ml):20Agnws-L50Average Diameter/nm:50Average Length/um:200Silver Purity (%):~99.5Concentration (mg/ml):20Agnws-60Average Diameter/nm:60Average Length/um:20Silver Purity (%):99.5Concentration (mg/ml):20Agnws-90Average Diameter/nm:90Average Length/um:60Silver Purity (%):~99.5Concentration (mg/ml):20
  • 银纳米线-银纳米线 联系我们
    参数:Agnws-120平均直径/纳米:120平均长度/微米:20银纯度(%):99.5浓度(毫克/毫升):20Agnws-200平均直径/纳米:200平均长度/微米:25银纯度(%):99.5浓度(毫克/毫升):20Agnws-300平均直径/纳米:300平均长度/微米:30银纯度(%):99.5浓度(毫克/毫升):20Agnws-400平均直径/纳米:400平均长度/微米:30银纯度(%):99.5浓度(毫克/毫升):20Parameter:Agnws-120Average Diameter/nm:120Average Length/um:20Silver Purity (%):99.5Concentration (mg/ml):20Agnws-200Average Diameter/nm:200Average Length/um:25Silver Purity (%):~99.5Concentration (mg/ml):20Agnws-300Average Diameter/nm:300Average Length/um:30Silver Purity (%):~99.5Concentration (mg/ml):20Agnws-400Average Diameter/nm:400Average Length/um:30Silver Purity (%):~99.5Concentration (mg/ml):20
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制