原位热聚合制备

仪器信息网原位热聚合制备专题为您整合原位热聚合制备相关的最新文章,在原位热聚合制备专题,您不仅可以免费浏览原位热聚合制备的资讯, 同时您还可以浏览原位热聚合制备的相关资料、解决方案,参与社区原位热聚合制备话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

原位热聚合制备相关的耗材

  • 反相聚合物色谱制备柱
    采用品质卓越的UniPS单分散均一填料,确保了半制备与制备规模的良好重现性。线性放大更容易,更灵活,精湛的装柱技术和优质填料的完美组合,确保柱床稳定性,全范围耐碱性(pH1-14),表面疏水,耐压性更佳,允许更高的流速,具有更高的动态载量单分散填料,还带来洗脱集中和节约洗脱溶剂等好处。*特殊规格,提供客户定制订货信息 *更多规格型号或定制,请联系业务代表
  • 赛默飞 样品制备 HyperSep Retain 小柱(聚合物骨架)
    产品特点:Thermo Scientific HyperSep SPE 产品Thermo Scientic HyperSep 提供全面的SPE 产品线,使用这些产品可实现快速、高效和经济的样品制备。HyperSep SPE 产品具有多种类型,包括固相萃取柱、96- 孔版、QuEChERS 产品和微型产品。HyperSep SPE 固相萃取柱低通量大体积样品的理想选择● 萃取柱体积从1 mL 至75 mL● 柱床重量从25 mg 至10g● 兼容各种装置系统订货信息:HyperSep Retain 小柱(聚合物骨架)描述柱床重量体积部件号数量PEP30mg1mL60107-201100/ 包60mg3mL60107-20350/ 包150mg6mL60107-21130/ 包200mg6mL60107-212500mg6mL60107-206CX30mg1mL60107-301100/ 包60mg3mL60107-30350/ 包150mg6mL60107-31130/ 包200mg6mL60107-314500mg6mL60107-306AX30mg1mL60107-401100/ 包60mg3mL60107-40350/ 包150mg6mL60107-41130/ 包200mg6mL60107-412500mg6mL60107-406
  • Plgel 制备柱
    Plgel 制备柱 卓越的柱效提供优化的分离度 高载样量允许进行mg 级样品的分离,用于后续研究 可进行10 倍以上的比例放大,可进行有效的大量制备 制备型GPC 一般用于分流聚合物、分离聚合物中的组分或复杂基质中相应的小分子混合物。材料混合物基于分子大小可以很容易地得到分离,最好使用低沸点有机溶剂。然后将一系列分开的流分分别进行收集,通过简单的溶剂蒸发进行分离。 PLgel 制备柱填充与分析柱相同的高效刚性填料。10 μm 填料能够提供高柱效( 25000 p/m),用于优化分离和上样参数。PLgel 25 mm 内径制备柱提供了比7.5 mm 分析柱高10 倍的比例放大制备量。增加的内径和柱体积可以提高载样量。对于低分子量物质,样品浓度还可以显著提高,可用于极纯原料的毫克级生产。实际上样量受样品及其分子量的控制。订货信息:

原位热聚合制备相关的仪器

  • 产品简介通过MEMS芯片对样品施加力学、电场、热场控制,在原位样品台内构建力、电、热复合多场自动控制及反馈测量系统,结合EDS、EELS、SAED、HRTEM、STEM等多种不同模式,实现从纳米层面实时、动态监测样品在真空环境下随温度、电场、施加力变化产生的微观结构、相变、元素价态、微观应力以及表/界面处的结构和成分演化等关键信息。我们的优势力学性能1.高精度压电陶瓷驱动,纳米级别精度数字化精确定位。2.实现1000℃加热条件下压缩、拉伸、弯曲等微观力学性能测试。3.nN级力学测量噪音。4.具备连续的载荷-位移-时间数据实时自动收集功能。5.具备恒定载荷、恒定位移、循环加载控制功能,适用于材料的蠕变特性、应力松弛、疲劳性能研究。优异的热学性能1.高精密红外测温校正,微米级高分辨热场测量及校准,确保温度的准确性。2.超高频控温方式,排除导线和接触电阻的影响,测量温度和电学参数更精确。3.采用高稳定性贵金属加热丝(非陶瓷材料),既是热导材料又是热敏材料,其电阻与温度有良好的线性关系,加热区覆盖整个观测区域,升温降温速度快,热场稳定且均匀,稳定状态下温度波动≤±0.1℃。4.采用闭合回路高频动态控制和反馈环境温度的控温方式,高频反馈控制消除误差,控温精度±0.01 ℃。5.多级复合加热MEMS芯片设计,控制加热过程热扩散,极大抑制升温过程的热漂移,确保实验的高效观察。优异的电学性能1.芯片表面的保护性涂层保证电学测量的低噪音和精确性,电流测量精度可达皮安级。2.MEMS微加工特殊设计,同时加载电场、热场、力学,相互独立控制。智能化软件1.人机分离,软件远程控制纳米探针运动,自动测量载荷-位移数据。2.自定义程序升温曲线。可定义10步以上升温程序、恒温时间等,同时可手动控制目标温度及时间,在程序升温过程中发现需要变温及恒温,可即时调整实验方案,提升实验效率。3.内置绝对温标校准程序,每块芯片每次控温都能根据电阻值变化,重新进行曲线拟合和校正,确保测量温度精确性,保证高温实验的重现性及可靠性。技术参数类别项目参数基本参数杆体材质高强度钛合金控制方式高精度压电陶瓷倾转角α≥±20°,倾转分辨率<0.1°(实际范围取决于透射电镜和极靴型号)适用电镜Thermo Fisher/FEI, JEOL, Hitachi适用极靴ST, XT, T, BioT, HRP, HTP, CRP(HR)TEM/STEM支持(HR)EDS/EELS/SAED支持应用案例600°C高温下铜纳米柱力学压缩实验以形状尺寸微小或操作尺度极小为特征的微机电系统 (MEMS)越来越受到人们的高度重视 , 对于尺度在 100μm 量级以下的样品 , 会给常规的拉伸和压缩试验带来一系列的困难。纳米压缩实验 , 由于在材料表面局部体积内只产生很小的压力 , 正逐渐成为微 / 纳米尺度力学特性测量的主要工作方式。因此 , 开展微纳米尺度下材料变形行为的实验研究十分必要。为了研究单晶面心立方材料的微纳米尺度下变形行为 , 以纳米压缩实验为主要手段 , 分析了铜纳米柱初始塑性变形行为和晶体缺陷对单晶铜初始塑性变形的影响。结果表明铜柱在纳米压缩过程中表现出更大程度的弹性变形。同时对压缩周围材料发生凸起的原因和产生的影响进行了分析 , 认为铜纳米柱压缩时周围材料的凸起将导致纳米硬度和测量的弹性模量值偏大。为了研究表面形貌的不均匀性对铜纳米柱初始塑性变形行为的影响 , 通过加热的方法 , 在铜纳米柱表面制备得到纳米级的表面缺陷 , 并对表面缺陷的纳米压缩实验数据进行对比分析 , 结果表明表面缺陷的存在会极大影响铜纳米柱初始塑性变形。通过透射电子显微镜 ,铜纳米柱压缩点周围的位错形态进行了观察 , 除了观察到纳米压缩周围生成的位错 , 还发现有层错、不全位错及位错环的共存。表明铜纳米柱的初始塑性变形与位错的发生有密切的联系。
    留言咨询
  • PrepChromaster-8000型高压制备色谱系统-----专为高通量纯化打造 为了满足中药与天然产物分离纯化领域的需求,推出了PrepChromaster品牌,为该领域提供制备色谱解决方案级产品,是中药与天然产物分离纯化实验室的理想选择。PrepChromaster-8000型是一款连接快速色谱和传统高压制备高效液相色谱的二元制备色谱设备,主要应用于药物活性成分、天然产物研究,合成化学分离纯化,在节省制备成本的同时极大地提高了分离效率。仪器特点1、本系统最大制备量可达克级,可适配10-100mm直径的各类色谱柱;2、本系统检测器使用全波长紫外-可见检测器,可同时选用4个不同检测波长3、本系统可使用Flash柱,支持各种级别的Flash低压分离纯化;4、本系统可以使用高压不锈钢柱,支持300bar以内高压级别的分离;5、本系统支持液体或固体样品上样,可以避免贮备过多的定量环;6、具有压力显示、报警、过压保护功能,实时监控泵的压力波动;7、本系统具有全波长光谱扫描功能,可检测190nm-850nm范围任意四个波长信号;8、带有光源自检功能,管理光源寿命,提醒及时更换;9、带有单色仪自校正功能,波长准确性高;10、进样方式独特设计,防止样品与溶剂扩散;11、本系统采用先进的进样技术,两种进样模式可选,进样时间短,避免样品残留和堵塞;12、高速准确的阀切换,避免样品的损失,提高回收率。13、本系统可以使用小粒度填料的不锈钢柱和商品化的Flash柱;14、独立的进样和馏分收集流路,避免交叉污染;15、智能馏分收集器可按体积、阈值、时间和色谱峰收集馏分;16、本系统提供多种标准试管架和试管,用户可自定义试管架,标配孔径18mm试管架;17、软件具有自动进样、梯度、色谱图、馏分收集图、设备状态同图显示的功能;18、软件具有自动进样状态显示与控制功能,可显示阀、注射泵、进样臂的状态;19、软件支持梯度,程序设定功能,具有阶梯、线性、点-拖式梯度曲线;20、软件支持智能馏分收集,具有时间、阈值、峰值、手动等多种收集方式;21、软件支持馏分索引功能,实时显示馏分收集位置与对应的色谱峰位置;22、软件支持色谱分峰与定量功能、审计追踪、数据管理、用户管理、个人管理等功能;23、仪器操作有软件控制,分离纯化参数都可以在线更改;24、软件中文界面,模块化设计,便于学习和操作,符合中国用户使用习惯。 仪器组成1、高压二元梯度泵系统;2、混合器;3、四波长UV-VIS检测器;4、自动进样器馏分收集一体机;5、溶剂槽;6、模块化液相工作站;7、电脑 ; 技术指标泵1、流量范围:0~200mL/min单泵,0~400mL/min双泵;2、压力范围:标准300bar;紫外检测器1、检测器范围:190~850nm;2、检测器光源:氘灯-钨灯组合光源;3、波长精度:±1nm;重复性0.2nm;4、检测方式:UV-VIS检测器,4波长实时显示;自动进样模块1、定量环:10mL;2、进样位数:108位;3、试管规格:13*100mm;馏分收集模块1、馏分收集容器:400位(标配);2、试管规格:18*180mm,(其它规格可定制); 可选配件1、 蒸发光散射检测器;2、二极管阵列检测器; 由于技术不断进步,本公司保留设计更改之权利,更改恕不通知,敬请谅解。
    留言咨询
  • ChemTron 样品制备系统聚合物样品制备系统 ISP-1 * 该系统包含天平、注射泵和操作软件。 * 样品可以在 75 秒内完成制备* 样品信息会自动传输到 RPV-1 粘度量软件 * 使用重量 / 重量数据计算浓度优于重量 / 体积 -- 避免由于温度和密度造成的误差 * 内置安全自检程序 * 自动修正灰分和水分纸浆样品制备系统 ISP-2 * 该系统包含天平、注射泵和语音提示软件 * 样品可以在 75 秒内完成制备 * 样品信息会自动传输到 RPV-1 粘度量软件 * 使用重量 / 重量数据计算浓度优于重量 / 体积 -- 避免由于温度和密度造成的误差 * 内置安全自检程序 * 自动修正灰分和水分 * 声音信号提示操作员按步骤操作PP/PE 高密度样品制备系统 ISP-1HD* 样品信息会自动传输到 RPV-1 粘度量软件 * 使用重量 / 重量数据计算浓度优于重量 / 体积 -- 避免由于温度和密度造成的误差 * 内置安全自检程序 * 自动修正灰分和水分 * 声音信号提示操作员按步骤操作
    留言咨询

原位热聚合制备相关的试剂

原位热聚合制备相关的方案

原位热聚合制备相关的论坛

  • 【原创大赛】聚合物整体柱的制备及其在蛋白质分离中的应用

    [align=center]聚合物整体柱的制备及其在蛋白质分离中的应用[/align][align=center]摘 要[/align][align=center][color=black] [/color][/align][align=left][color=black]整体柱作为第四代分离介质,具有制备简单、通透性好、传质快等优点,在生物分离分析中发挥的作用日益增加。多孔聚合物整体柱具有高通透性和高柱空间利用率,与填充柱相比优势明显。至今已成功地用于分离科学,特别是用于分离型生物分子。本文简要综述了聚合物整体柱的制备及其在蛋白质分离中的应用,并对其应用做了展望。[/color]关键词:[color=black]聚合物整体柱;蛋白质分离;综述[/color][b]1 引言[/b]蛋白质在人体生命过程中发挥着极其重要的作用,某些蛋白质在体内的含量水平严重影响着生命的质量,这就要求对其进行定量研究,而对其实现分离分析成为首要任务。对蛋白质进行分离鉴定通常使用电泳[color=black]—[/color][color=black]质谱、液相色谱[/color][color=black]—[/color][color=black]质谱联用技术,但这些方法并不能完全满足蛋白质分子对操作环境和分析方法要求较高的要求,并且费用较高。而聚合物单体种类繁多,且其上面的官能团可以有多种修饰方法从而对不同的生物分子具有不同的作用,从而对其实现快速分离。[/color]色谱柱是色谱分离的核心,整体柱代表了色谱柱技术发展的方向[sup][color=black][/color][/sup][color=black]。整体柱[/color][color=black]( Monolithiccolumn) [/color]又称连续床层( Continuous bed) [color=black],是一种用有机或无机聚合方法在色谱柱内进行原位聚合的连续床固定相[/color][sup][color=black][/color][/sup][color=black]。[/color][color=black]整体柱具有独特的双孔结构,具有灌注色谱的特点,比填充柱的通透性更好,可实现快速分离[/color][sup][color=black][/color][/sup][color=black]。根据整体材料基质的不同,整体柱分为硅胶整体柱、有机聚合物整体柱、有机[/color][color=black]-[/color][color=black]硅胶杂化整体柱。硅胶整体柱具有良好的稳定性和机械强度,通透性好,但制备周期长,需要柱后衍生[/color][sup][color=black][/color][/sup][color=black]。有机聚合物整体柱则制备简单、[/color][color=black]pH [/color][color=black]值适用范围广,具有良好的通透性、独特的比表面积和较好的化学稳定性,并且能在玻璃毛细管、不锈钢柱管、[/color][color=black]tip [/color][color=black]头甚至是微流控芯片的通道等多种模具中制备[/color][sup][color=black][/color][/sup][color=black]。[/color][b]2 聚合物整体柱的制备[/b]多孔聚合物整体柱出现在上世纪90年代初,继而在制备和应用中得到发展[sup][/sup]。与采用溶胶凝胶技术制备的无机硅胶整体柱相比,通过自由基聚合方式制备的聚合物整体柱更容易制备。除了传统的自由基聚合,其他方法预期制备一种具有均匀结构的新型聚合物整体柱。2006年,Hosoya等人报道了一种将环氧单体与二胺类开环聚合的高性能有机聚合物整体柱,在毛细管液相色谱上,其对苯的分离塔板高度(H)可以达到小于5μm[sup][/sup]。值得注意的是,相比链生长聚合(比如自由基聚合反应)产生的球状结构,逐步聚合方式导致整体柱有完全不同的形态。[b]3 聚合物整体柱的分类[/b]多种多样的功能单体使整体柱设计变得更容易,按单体不同,聚合物整体柱可分为聚丙烯酰胺类,聚甲基丙烯酸酯类和聚苯乙烯类[sup][/sup]。单体决定其适用范围,整体柱已被广泛用于不同的色谱模式,包括反相液相色谱(RPLC)、亲水相互作用色谱(HILIC)、离子交换色谱(IEC)等[sup][/sup]。而[color=black]从制备工艺上,聚合物整体柱可分为三类:后修饰整体柱、原位合成整体柱和结合微加工技术的整体柱。[/color]原位合成整体柱是一定温度或紫外光条件下,将交联剂、单体、引发剂、致孔剂,在不锈钢色谱柱管中充分反应,再冲洗除去致孔剂和残余未反应物得到。除研究可用单体外,新的制备方法和制备工艺和的研究也取得了很好发展。通过调节交联剂、单体、致孔剂之间的比例,可以较好地控制制备的整体柱的柱效和通透性[sup][color=black][/color][/sup][color=black]。原位聚合制备的整体柱并不能满足某些特定的分离需求。原位聚合时,很多功能团被包埋在颗粒内部,暴露在表面上的并不多,这导致聚合物整体柱的性能明显下降。后修饰整体柱则会改善这一问题。聚合物整体柱的后修饰方法使用最多的是在聚合物表面接枝[/color][sup][color=black][/color][/sup][color=black]。近年来,利用甲基丙烯酸缩水甘油酯[/color][color=black]( GMA) [/color][color=black]的环氧基团的接枝方法较为流行,并成功运用到离子交换色谱、亲和色谱等色谱柱的制备中[/color][sup][color=black][/color][/sup][color=black]。相对于接枝的方法,将功能化的纳米颗粒包被在聚合物的表面的方法较为简单,也常用于制备功能化的聚合物柱。作为固定相载体,微加工整体柱是芯片色谱柱所独有的。[/color]原位合成聚合物整体柱最为便捷,根据分离要求的不同,已经开发了各种各样的单体材料和制备工艺。对于一般分离需求,是很好的选择。采用后修饰的方法在固定相表面连接功能基团可以提高柱效,而微加工整体柱仅适用于芯片色谱。[b]4 聚合物整体柱的应用[/b]一般来说,多孔聚合物整体柱具有典型球状结构,其通孔之间的聚合微球显著有利于提高聚合物整体柱的通透性,并且使其在高流速下能够有效地分离蛋白质分子。然而,聚合物整体柱对小分子的分离通常表现为低的柱效,据研究是由于表面积较硅胶整体柱小造成的。为了解决这个问题,研究者提出了几种试图增加表面积的方法,如将纳米粒子引入聚合物整体柱和制备超交联整体柱[sup][/sup],分离能力在一定程度上得到了提高。此外,斯韦克系统地阐述了各种多孔聚合物整体柱的制备技术[sup][/sup]。例如,2,2,6,6-四甲基-1-哌啶(TEMPO)介导的活性自由基聚合。Kanamori等合成的聚合物(二乙烯基苯)单体具有明确的连续形态,高的比表面积[sup][/sup]。[b]5 展望[/b][color=black]实际有机分子样品结构复杂、种类众多,而且对操作环境和分析方法要求较高。不同色谱模式的液相色谱方法不仅对特定的生物分子具有较好的选择性,且制备方法简单易得,结构可控。此外,聚合物单体的种类繁多,且其上面的官能团可以有多种修饰方法从而对不同的生物分子具有不同的作用。因此,随着液相色谱固定相的发展,聚合物整体柱以其独有的优势也会在生物分子的分离与分析中得到越来越广泛的应用。[/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][color=black] [/color][b]参考文献[/b] 杨帆, 毛劼, 何锡文. 基于巯基-烯点击反应制备有机-无机杂化硼酸亲和整体柱用于糖蛋白的选择性富集. 色谱, 2013, 31(6): 531-536. 平贵臣, 袁湘林, 张维冰等. 整体柱的制备方法及其应用.分析化学,2001,29(12):464-469. Jing Liu, Fangjun Wang, Zhenbin Zhang. Reversed phasemonolithic column based enzymereactor for proteinanalysis. Chinese Journal of Analytical Chemistry,2013, 41(1):10-14. Motokawa M, Ohira M, Minakuchi H [i]et al[/i]. Performance ofoctadecylsilylated monolithic silica capillary columns of 530μm innerdiameterin HPLC. J.Sep Sci,2006, 29(9): 2471-2477. 王超然, 王彦, 高也等. 聚(4-乙烯基苯硼酸-季戊四醇三丙烯酸酯)亲和整体柱的制备与应用. 分析化学研究报告,2012, 40(8):1207-1212. 李晶, 周琰春, 张嘉捷等. 阴离子交换聚合物整体柱的制备及其在[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]中的应用.分析测试学报,2012, 31(9):1089-1094. 张振宾, 欧俊杰, 林辉等. 有机-硅胶杂化整体柱的制备及应用研究进展.高等学校化学学报,2013,34(9):2011-2019. 刘婵, 江茜, 陈蕾等. 金纳米粒子修饰的氨基硅胶整体柱的制备及超灵敏表面增强拉曼散射检测.高等学院化学学报,2013,34(11):2488-2492. Yongqin Lv, Zhixing Lin, Frantisek Svec. Thiol-ene clickchemistry: a facile and versatile route for the functionalization of porouspolymer monoliths.Analyst,2012,137(9):4114-4118. 吕仁江, 丁会敏, 李英杰. 丙烯酰胺-β-环糊精毛细管电色谱手性整体柱的制备及应.应用化学,2012,29,(5):604-607. Frantisek Svec, Yongqin Lv. Advances and recent trends in thefield of monolithic columns for chromatography. Analytical Chemistry,2014,87(9):250-273. Zhongshan Liu, Junjie Ou, Hui Lin. Preparation of monolithic polymercolumnswithhomogeneousstructure viaphotoinitiated thiol-yne click polymerization and their application inseparation of small molecules.Analytical Chemistry,2014,86,(105):12334-12340. Trojer L, Lubbad S H, Bisjak C [i]et al[/i]. Monolithicpoly( p-methylstyrene-co-1,2-bis(p-vinylphenyl) ethane) capillary columns as novel styrene stationary phases forbiopolymer separation.J. Chromatogr. A, 2006, 1117(1): 56-66. Luo Q Z, Zou H F, Xiao X Z [i]et al[/i]. Chromatographic separation of proteins on metal immobilizediminodiacetic acid-bound molded monolithic rods of macroporous poly( glycidylmethacrylate-co-ethylene dimethacrylate) . J. Chromatogr. A,2001,926(2):255-264. 郑晖, 李秋顺, 马耀宏等. 微流控芯片上电色谱聚合物整体柱研究进展.山东科学,2013,26(1):16-21. J. Zhang, HL. Zou, Q. Qing [i]et al[/i]. Effect of chemical oxidation on the structure of singlewalled carbon nanotubes. J. Phy. Chem. B, 2003, 107(16):3712-3718. Junjie Ou, Zhongshan Liu, Hongwei Wang. Recent development ofhybrid organic-silica monolithic columns in CEC and capillary LC.Electrophoresis ,2015, 36(9):62-75. 王玺, 何健, 季一兵. 聚甲基丙烯酸酯毛细管整体柱的制备及其性能考察.中国药科学学报,2012, 67(7):78-85.[/align]

  • 【分享】重要违禁兽药红霉素和氯丙嗪的分子印迹聚合物的制备、表征及在食品安全检测中的应用

    如何开发高效的前处理的材料和方法,提高样品前处理水平,已经成为目前食品分析化学的研究热点之一,由于分子印迹聚合物具有功能预定性、选择特异性、适用范围广等特点,基于分子印迹聚合物(Molecularly imprinted polymers, MIPs)的分子印迹固相萃取技术(Molecularly imprinted solid phase extraction, MISPE)已经成为食品安全检测技术发展的新趋势。本论文针对肉用家畜和水产品中应用广泛且危害严重的红霉素和氯丙嗪兽药制备了特异的分子印迹聚合物,对制备的聚合物的结合机理和识别特性进行了深入分析,并最终制备了这两类兽药的分子印迹固相萃取小柱,应用于实际样品中红霉素和氯丙嗪的残留分析。研究获得的主要结果如下:本课题采用本体聚合的分子印迹方法从制备的 6 组红霉素分子印迹聚合物中选取一组特异性较强的聚合物用于后续研究。该组合模板红霉素和单体 MAA(methacrylic acid)的比例为(1:2),交联剂为 EGDMA(ethylene glycol dimethacrylate),采用甲醇/乙腈(2:3, v/v)作为致孔剂,热聚合温度为 60℃。利用扫描电镜观察、孔径分析、热重分析、紫外光谱和红外光谱分析等方法对聚合物的物理特征进行了评价。同时通过对聚合物吸附能力的热力学和动力学特性以及高效液相色谱分析,对聚合物与红霉素之间可能的印迹机理和识别能力进行了研究,证明了制备的聚合物对模板的吸附能力主要来自于低亲和力和高亲和力两类结合位点,并计算出两个结合位点的最大结合量分别为 12.30 mg g1-和 72.09 mg g1-。课题以分子印迹聚合物为固相萃取的填料,制备了红霉素分子印迹固相萃取小柱并对小柱的萃取条件进行了优化。当红霉素分子印迹聚合物固相萃取条件采用的上样缓冲液为 40%甲醇,淋洗液为 2.5 mL80%甲醇,洗脱液为 3mL 的甲醇/PBS (0.5 M) (80:20, v/v)时,固相萃取柱对红霉素的回收率超过 80%,非印迹聚合物固相萃取小柱的回收率则小于 30%。采用优化后的固相萃取的方法,研究了聚合物的选择性,结果显示红霉素分子印迹聚合物对大环内酯类药物具有一定的交叉反应性。说明在印迹反应过程中模板的立体构型对特异性识别的建立起主要作用。试验中将制备的红霉素分子印迹固相萃取小柱用于猪肉样品中红霉素残留的前处理,结果显示经过 MIPs 净化的样品,基质对检测的干扰大大降低,同时极大提高了检测器的灵敏度。在选用的三个加标浓度下,红霉素的回收率都大于 79%。采用红霉素分子印迹固相萃取小柱从水中富集红霉素的实验,同时证明制备的聚合物在自来水中可以高效的富集红霉素。另外,我们制备了氯丙嗪的 MIPs,摸索了不同的合成方法和不同组成成分对产物的选择能力的影响。结果证明,通过本体法制备的聚合物,当使用 MAA 做为单体,模板单体的比例为 1:4,选用 TRIM(Trimethylolpropane trimethacrylate)作为交联剂时,得到的聚合物的选择性最高。试验通过色谱分析试验、红外光谱试验等研究了氯丙嗪与功能单体之间的自组装过程。选择性分析和容量分析的结果表明制备的氯丙嗪分子印迹聚合物相对于非印迹聚合物具有明显的选择性和吸附容量。当使用水溶液作为溶剂时,氯丙嗪分子印迹聚合物的最大特异吸附容量为 10mg mL1-。使用氯丙嗪分子印迹聚合物固相萃取柱对猪尿样品中该药残留的富集和净化相对于商业化的 C18 小柱的效果更明显。

  • 如何手工制备聚合物AFM观察样品,急!!!!

    如何手工制备聚合物AFM观察样品,急!!!!本实验室刚买一台AFM,可是如何应用它来观察注射成型的聚合物样品?有人说在低温切成平面,可是实在找不到地方去切,没有办法实现。也有人说用打磨和抛光的方法,可是具体操作大家都不清楚,各位大虾如果谁知道的话,请执教,谢谢!

原位热聚合制备相关的资料

原位热聚合制备相关的资讯

  • P-SCX小柱的使用开发背景以及其主原料PSD微球的悬浮聚合制备方法
    P-SCX小柱的使用开发背景随着经济社会不断进步,经济全球化不断深入发展,人们饮食文化日益多样化,食品卫生与安全成为备受关注的热门话题。“苏丹红事件”,”禽流感”还有“三鹿奶粉事件”,无一不牵动着广大民众的心。接连不断发生的恶性食品安全事故引发了人们对食品安全的高度关注,要重新审视这一已上升到国家公共安全高度的问题,更要加大对食品安全的监管力度。近年来接二连三爆出社会食品安全问题。2003年,含敌敌畏的金华火腿,对肠食道胃粘膜有影响,可能致死;2004年,阜阳劣质奶粉:“大头娃娃”,营养不良导致免疫力低下,严重可致死;2005年,碘超标的雀巢奶粉,影响甲状腺功能;2006年,含瘦肉精的猪肉,人食用会出现头晕、恶心、手脚颤抖,甚至心脏骤停致昏迷死亡;2008年,含三聚氰胺的婴幼儿奶粉,可能导致肾结石,肾衰竭等泌尿系统疾病,严重者可致死。这些频频曝光的食品加工中的黑幕对消费者来说已不再陌生。各级监管部门针对于此的执法检查,也始终没有停止过,而且还会在每年的元旦、春节等重大节日前加大执法检查的力度,在2007年还进行了全国食品安全隐患大排查。并相继制订了各种法和条例,如《中华人民共和国食品卫生法》、《中华人民共和国农产品质量安全法》等等,可见我国对食品安全的整治力度有着铁的手腕。但令人不解的是,这些年来,各级监管部门的工作不可谓不努力,但劣质食品依然层出不穷,正如紧接着上演的含有“三聚氰胺”成份的食品不断曝光,严重威胁着人们的生命健康,时时令我们提心吊胆。主原料PSD微球的悬浮聚合制备方法在食品行业对人们充满威胁的今天,对于食品安全的检测显得尤为的重要。三聚氰胺等食品中的有害添加剂的精密检测都需要用到高效液相色谱法,此方法是用的则是P-SCX固相萃取柱进行分析,柱子中使用的填料就是P-SCX,而PSD又是制造P-SCX填料的不二的主要原料。制备PSD的方法采用的是苯乙烯和二乙烯基苯的悬浮共聚的方法。悬浮聚合时制备高分子合成树脂的重要方法之一,在悬浮聚合中,单体受到强烈的搅拌分散作用以小液滴的形式悬浮在聚合介质中聚合。每一个悬浮的单体小液滴实际上相当于本体聚合的小单元。这个小液滴在聚合介质的直接包围之中,所以聚合热可以及时而有效的排出,同时聚合速率较快,分子量也较高。悬浮聚合的分散体系是一种不稳定体系,在液体界面张力作用下,单体液滴之间有相互凝聚的倾向,同时当转化率达20%~30%以后,在单体液滴内部已溶胀一部分高聚物,从而使液滴变粘,这是液滴之间的碰撞会造成粘结现象(粘块、粘条),使聚合失败。所以为了保证悬浮聚合的成功,必须向体系中加入明胶,聚乙烯醇、羟甲基纤维素等一些有机高分子作为分散剂。这时,分散剂可以降低液体的界面张力,使单体液滴的分散程度更高;也可以增加聚合介质的粘度,从而阻碍单体液滴之间的碰撞粘结;同时它们还可以在单体的液滴表面形成保护膜防止液滴的凝聚。有些悬浮聚合为了达到更好的防止粘结的效果,还要加入Ca、Mg的碳酸盐、磷酸盐,这些物质是不溶于水的极细小的无机粉末,它们可以吸附在单体液滴表面起机械阻隔作用,对防止粘结有特殊的结果。悬浮聚合法制取苯乙烯和二乙烯基苯的交联聚合物,该交联聚合物小球,经磺化或氯甲基化等高分子基因反应,可以制得离子交换树脂,共聚小球颗粒大小受各种反应条件的影响,尤以搅拌强度为分散剂种类、用量的影响zui大,分散剂用量大,搅拌强度高都会使颗粒变小。
  • 专家约稿|表界面科学设备在原位材料制备及结构表征中的应用:STM及XPS
    根据热力学分子自由程理论,即使是达到标准大气压亿分之一的真空环境 (10-3 Pa),也存在着在一秒钟内彻底污染清洁样品表面的可能。对性质活泼的纳米材料表面,易潮解的氧化物以及对碳氢化合物亲合性比较好的样品,无论预处理如何精细,在把样品暴露环境的那一刻,整个表面就已经彻底改变。想要认识在此之前发生的过程对表面的影响也就无从谈起。因此一套互联表征仪器需要真正的具备原位表征能力。比较形象的理解如下图1所示,原位、特别是使役条件下的表征仪器,可以在一定程度上实现对材料在工况下的结构、化学组分等的研究,有利于理解所观测到的现象是由于何种原因所引起。因此,发展使役条件、生长环境中样品表面结构、化学性质检测是非常重要和必要的。图1. 不同观测条件下所研究对象的状态。从左到右分别是离线观测、准原位观测和使役条件下的观测。对于高质量的材料制备,其在各类基底上的生长可以理解是一个“催化反应”过程,催化反应的机理研究最大的困难在于表征设备和真实情况之间的鸿沟,如时间鸿沟、材料鸿沟、压力鸿沟、温度鸿沟等。实现真实反应条件下与各类表征平台的对接,从而达到高效表征,协同工作,减少测试周期,提高测试精确度和信息完整程度。对于目前研究的材料生长机理,关注重点包括前驱体在衬底上的初始状态、中间态、成核、扩散、聚集、相变、长大到单晶,分子束外延与扫描隧道显微镜的真空互联系统满足了上述需求,每一个过程所需要的信息包含结构形貌和化学组分。结构形貌:扫描隧道显微镜(Scanning Tunneling Microscopy,STM);化学组分:包含两部分,一是反应过程中所产生的、脱附的组分;另一个是留在衬底表面上的组分。前者可以用质谱仪来实时检测,后者可以用X-射线光电子能谱仪(X-ray photoelectron spectroscopy, XPS)来观测。各类设备的特点:1、 高温近常压STM优点:(1)工作气氛可到100mbar;(2)工作温度可达1300 K(真空);10 mbar气氛下可达250 ºC;(3)快速扫描(大于10帧/秒);(4)原位质谱联用;缺点:因高温高压而丧失部分分辨率,难以获得原子分辨;图2. (A)高温近常压STM的实物照片(图片来自材料科学与纳米技术中心,University of OSLO);(B)SPECS的reactor STM的原位反应池和STM探头实物图;(C)石墨烯在金属表面的生长过程实时高压高温STM原位图片。图2(A)所示的反应STM(高温、近常压STM)位于挪威的奥斯陆大学(University of OSLO)材料科学与纳米技术中心,其制造商为Leiden Probe microscopy(The Reactor STM - Department of Chemistry (uio.no))。笔者博士后期间所在的布鲁克海文国家实验室的CFN(功能纳米材料研究中心)也有一台同样配置的Reactor STM。主要包含HP stage(高压STM扫描部件),其中的反应池由于较小的体积可以非常快速的实现气氛与真空之间的转换;独特的控制器可以实现20帧/秒的速度;最优条件下最高气压可达5bar,最高温度可达300 ℃。另一款经典的reactor STM是SPECS Aarhus 150系统(SPM Aarhus 150 NAP | SPECS (specs-group.com)),SPM的扫描头安装于原位的反应池中,高温加热是以卤素灯为热源,其工作范围是超高真空中850 K,10 mbar气氛为550 K。图2B是该经典系统的实物图。此外,扫描头中搭配有进光口,可以实现光催化反应的原位监测。如图2C所示,在室温下,干净的Cu(111)表面上,甲烷吸附后无团簇形成,加热后在金属表面上逐渐形成小的团簇,并均匀的铺展在表面上,终止气体的通入,继续加热金属,可以观测到不同尺寸的石墨烯岛,再进一步升高衬底温度,小的岛会在表面上移动聚集形成较大尺寸的石墨烯,再通入甲烷气体,在边界上继续反应,使石墨烯岛长大逐渐形成单层石墨烯。2021年,美国Lawrence Berkeley National Laboratory表面催化反应的领军人物Miquel Salmeron与以色列Weizmann Institute of Science的Baran Eren在国际最知名的Chemical Review上发表了题为“高压扫描隧道显微镜”的综述文章,概述了在过去20年内,随着扫描隧道显微镜在表面催化领域中的发展,以晶体表面在mTorr到近常压的气体存在的条件下表面结构的变化为主题,提出了高压STM这一新工具在未来表面科学研究中的重要性。目前,全球近常压扫描隧道显微镜的厂家主要有SPECS、Leiden Probe等。国产扫描隧道显微镜设备目前依然以极低温为主。2、XPS图3. 将制备腔体与XPS联用,外加质谱检测。(A)真空样品制备腔与XPS一体化系统;(B)联用质谱;(C)近常压XPS原位检测示意图。XPS的发明贡献了两个诺贝尔物理学奖,其中1905年爱因斯坦解释了光电现象,并因此获得了1921年的诺贝尔物理学奖。瑞典物理学家Kai Siegbahn将XPS发展为一个重要分析技术,并获得了1981年的诺贝尔物理学奖。值得一提的是,其父亲Karl Siegbahn在1924年也获得过诺贝尔物理学奖“鉴于其发现并研究X-射线光谱-for his discoveries and research in the field of X-ray spectroscopy”。美国惠普公司于1969年制造了世界上首台商业单色X射线光电子能谱仪。1962年,Imperial College London的David Turner等人又研制了紫外光电子能谱仪(Ultraviolet photoelectron spectroscopy, UPS),利用紫外光研究价带电子状态,与XPS互相补充。XPS目前已经成为了一种常规的材料化学组分分析手段,由于其表面灵敏性,特别适合于表面分析,已经成为几乎所有高校和研究院所分析测试中心的标配仪器。与近常压STM相对应的,在表面反应中也需要近常压的XPS来实时探测表面化学组分的变化。我国第一台近常压XPS系统是由原中国科学院上海微系统与信息技术研究所的刘志研究员课题组搭建,该设备是基于SPECS的近常压系统进行定制化升级,能够实现在样品环境气压最高20 mbar的条件下的光电子能谱原位测量。样品最高可以加热到800K,能够满足大部分催化反应、固-气界面等研究。随着我国科研投入的不断加大,国家对基础科研和大科学装置中心的投入,表面科学研究团队的不断发展也得益于这一类先进表征技术的发展,包括上海光源、苏州纳米所的真空互联Nano-X等都建有非常全面的表面科学研究平台。图3A所示是包含样品制备系统的XPS,含离子源(用于清洗单晶表面);加热台(除气、晶化表面);各类蒸发源(包括金属、非金属等,材料生长);LEED(低能电子衍射仪,表征样品晶化结构);原位氧化系统等;在生长腔内靠近样品处导入收集管与质谱系统连接,实时分析样品制备过程中所产生物质的化学成分(图3B)。图3C是近常压XPS系统的示意图,可以在近常压的反应氛围下监测在材料生长过程中样品表面上发生的化学变化,与质谱信息相对应,实现化学组分的分析。3、低温STM(含q-Plus AFM功能)超高真空低温STM的优点为超高分辨率,可达亚Å。超高稳定性,4K液氦温度下可以实现谱学测量,如拓扑态、能带、缺陷态、边界态、电荷分布等的实空间测量。对于STM而言,只有在低温环境中实现谱学测量的条件下才真正发挥了其独一无二的功能。仪器实物图如图4A所示,包含扫描腔、制样腔和进样腔,其中扫描腔外部较高的不锈钢杜瓦是为储存如液氮、液氦等制冷剂以实现扫描头和样品的极低温,从而实现高质量图、谱测试。样品托和扫描头的改进满足多尺度研究,如低温条件下的原位沉积。图4B所示,在腔体外部所放置的蒸发源可以聚焦到样品表面,实现原位生长和原位观测,对于分子或小尺寸纳米颗粒有独特优势;除此之外,样品托上可以改装成包含栅极、电压、电流接口的模型器件,可以在电场条件下原位监测样品表面电学信号的改变。组合q-plus AFM实现单原子键成像:2009年瑞士苏黎世IBM研究中心L. Gross等人首次报道了利用在AFM针尖上吸附单个CO分子获得了具有化学键分辨的分子结构图像,如图4C(右)所示,从上到下分别是并五苯的分子结构,STM图和AFM图像,针尖修饰的AFM图像可以清晰的分辨出分子中的五个苯环(Science, 2009, 325, 1110)。图4. (A)低温扫描隧道显微镜实物图(Omicron);(B) 上:可以进行原位沉积的扫描腔;下:可加电场的样品托设计图;(C)左:Q-plus AFM针尖托实物图(Omicron);右:并五苯分子的结构示意图、STM和AFM图像;(D)C26H14在Ag(100)表面上加热后发生脱氢反应的产物STM和AFM图像。自此之后,STM研究领域又开辟了一个崭新的方向,也赋予了STM更加突出的化学键分辨优势。因此,目前许多低温STM系统中都选配qPlus AFM配件用于化学键的成像。如图4D所示是C26H14前驱体分子在Ag(100)表面上脱氢聚合过程中化学键的变化(Science, 2013, 340, 1434)。从STM图上仅仅可以看出形貌的变化(第一排),AFM图像可以清晰的分辨出过程产物的不同键合情况(第二排)。最近越来越多的研究工作表明q-Plus AFM在研究反应过程中间产物中所发挥出的独特作用。笔者在准备草稿时,7月14日第377卷Science中有两篇文章均是利用q-Plus AFM实现了可控的表面化学反应操控和表征,以及超高分辨的水合质子的结构区分。在qPlus非接触原子力显微镜领域中,我国科学家江颖教授长期致力于超高分辨的SPM系统的研制和开发,近年来在表面二维冰的结构和动力学研究中取得了一系列突破性成果。4、展望以光源、“Nano-X” 真空互联实验站为代表的大科学装置中心及各研究院、大学科研平台中,根据其科研特色和研究方向,逐渐形成了材料生长、测试分析、器件加工、性能表征等大型设备互联的科学装置。主要解决了超高真空中样品易氧化、低温样品稳定性等难题,具有传统超净间无法比拟的优势。完全排除了外界环境因素的干扰,实现原子尺度下材料的本征性质及器件性能的表征。对新材料,特别是下一代先进半导体材料、量子信息材料的制备与表征具有重要意义。我们也需要认识到,从光源、互联站、到分析测试中心,再到每一个课题组的平台设施,国外进口的设备占比不低于50%,特别是高端的制造和表征设备。随着我国科研投入的增加,创新型企业如雨后春笋般不断涌现,在表界面科学相关领域,如费勉仪器的分子束外延系统、低温样品台;玻色子的低温扫描隧道显微镜、中科艾科米的无液氦系统等,也逐渐在国内甚至国际的表界面、凝聚态物理、在位化学等研究领域崭露头角。也希望国内各大研究院、所、高校等在购置相关设备时,可以考虑国产厂商,一起参与到我国重大仪器设备的自主研发中。作者简介牛天超,北航杭州创新研究院(余杭)研究员。2013年博士毕业于新加坡国立大学,之后分别在中科院上海微系统所、美国布鲁克海文国家实验室、南京理工大学和上海交通大学从事研究工作。主要研究方向是基于分子束外延生长制备和扫描隧道显微镜表征的二维材料生长机理及表面功能化研究。第一及通讯作者在包括Adv. Mater., J. Am. Chem. Soc., 和Prog. Surf. Sci.等期刊发表研究论文及综述30余篇。目前正在筹建中法航空大学(筹)理学院新型量子物态平台。参考资料:1、M. Salmeron, B. Eren, High-pressure scanning tunneling microscopy. Chem. Rev. 121, 962-1006 (2021).2、F. Albrecht,S. Fatayer, I. Pozo, I. Tavernelli, J. Repp, D. Peña, L. Gross, Selectivity in single-molecule reactions by tip-induced redox chemistry. Science 377, 298-301 (2022).3、Y. Tian, J. Hong, D. Cao, S. You, Y. Song, B. Cheng, Z. Wang, D. Guan, X. Liu, Z. Zhao, X.-Z. Li, L.-M. Xu, J. Guo, J. Chen, E.-G. Wang, Y. Jiang, Visualizing eigen/zundel cations and their interconversion in monolayer water on metal surfaces. Science 377, 315-319 (2022).4、苏州纳米真空互联实验站5、K. Bian, C. Gerber, A. J. Heinrich, D. J. Müller, S. Scheuring, Y. Jiang, “Scanning probe microscopy”, Nat Rev Methods Primers 1, 36 (2021).6、L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110-1114 (2009).
  • 科学家提出“固态溶剂法”制备混合基质膜
    南京工业大学教授金万勤团队在分离膜领域取得新进展,提出“固态溶剂法”制备出超薄超高掺杂量的混合基质膜。9月22日,相关研究成果在线发表在《科学》上。  据介绍,膜技术具有分离能耗低等优势,但其发展普遍受限于渗透性和选择性的制约关系,将高性能无机填料掺杂在聚合物中制备混合基质膜,有望突破这一瓶颈,成为近年来国际研究前沿。然而,面临填料团聚和界面缺陷的重大挑战,混合基质膜仍未大规模应用。金万勤团队是国际上较早开展混合基质膜研究的团队之一,长期以来一直致力于解决这两大难题。  “我们提出将聚合物作为固态溶剂,溶解填料的前驱体并将其涂覆在多孔载体表面形成超薄膜层,而后将聚合物中的前驱体原位转化成填料。”论文第一作者、南京工业大学博士陈桂宁介绍,区别于传统的“合成填料—分散填料—填料与聚合物混合”制备混合基质膜的复杂工艺,该方法仅需在聚合物中溶解高含量前驱体,即可实现高含量填料的均匀超薄化掺杂,同时以填料为主体相的新型混合基质膜结构有利于填料之间形成贯穿孔道,为分子提供超快传输通道。  实验表明,“固态溶剂法”制备的混合基质膜厚度仅为50纳米,填料掺杂量高达80%以上,实现了膜渗透性和选择性数量级的提升。基于超薄膜层和填充的贯穿筛分孔道,该混合基质膜表现出类无机膜(纯填充相)的优异分离性能,氢气/二氧化碳分离性能高出现有聚合物膜和混合基质膜1~2个数量级。  “‘固态溶剂法’主要依靠聚合物膜的加工制备技术,因此易于放大制备成超薄的平板型和中空纤维型混合基质膜。”论文的共同通讯作者、南京工业大学教授刘公平说,该方法适用于不同类型的填料和聚合物基质,表现出良好的规模化制备前景与膜材料普适性。  “研究首次从实验上证明了超薄超高掺杂混合基质膜的可行性,也为发展基于纳米材料的超薄分离膜及功能涂层提供了新思路和理论技术基础。”论文通讯作者金万勤介绍,该混合基质膜在碳捕集等过程极具应用潜力,有望助力我国双碳战略目标的实施。在国家重点研发项目的资助下,团队正在开展混合基质膜的放大制备与应用技术研究。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制