与鞘磷脂

仪器信息网与鞘磷脂专题为您整合与鞘磷脂相关的最新文章,在与鞘磷脂专题,您不仅可以免费浏览与鞘磷脂的资讯, 同时您还可以浏览与鞘磷脂的相关资料、解决方案,参与社区与鞘磷脂话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

与鞘磷脂相关的耗材

  • Ostro 96孔磷脂去除板
    产品特点: *OstroTM 96孔磷脂去除板 &mdash 简单、迅速、洁净的去除血浆与血中的磷脂使用通用方法流程,无需或仅需最小调整,即可快速高效的去除血浆或血样本中的磷脂,同时确保对性质不同的分析物都能获得高回收、高重现的处理结果,从而改善您的实验室的工作流程与数据结果。Ostro 96孔提取板为您提供更灵敏的分析、更高的通量、以及更少的死机时间。 ■ 显著去除更多磷脂,提取更干净 ■ 改善重现性,使方法更稳定耐用 ■ 流程简便易行,提高通量 SiroccoTM 96孔蛋白沉淀板 Sirocco是业界技术最先进的蛋白沉淀板,有效加快生物样品前处理过程,同时得到澄清滤液,不必担心上样后堵塞仪器等现象的发生,满足高通量实验室的要求。该沉淀板由独特的过滤系统,密封盖及单向阀三部分组成,其中专利的单向阀允许蛋白沉淀过程在孔内进行,同时阻止孔堵塞,交叉污染以及漏液等情况的发生。其特点是: ■ 样品回收率最高 ■ 简化样品提取的步骤 ■ 降低交叉污染的可能性,结果更加可靠 ■ 独特单向阀设计能够有效控制流速 ■ 减少滤液中不明物的出现的可能,延长仪器正常运行时间 ■ 适合于自动化,高通量的样品前处理过程 订货信息: OstroTM 96孔磷脂去除板     产品描述 数量 部件号 Ostro 96孔磷脂去除板(25mg) 1/pk 186005518 Sirocco 96孔蛋白沉淀板 5/pk 186002448 Sirocco 96孔蛋白沉淀板1/pk 186003873 沃特世96位正压提取装置 1/pk 186005521 96孔2mL收集板 50/pk 186002482 用于96孔2mL收集板的盖板 50/pk 186002484 96孔1mL收集板 50/pk 186002481 用于96孔1mL收集板的盖板 50/pk 186002483
  • Phree™ 磷脂去除解决方案
    利用 Phree 消除离子抑制? 自始至终去除 99 % 以上的磷脂以提高 LC/MS 灵敏度? 同时去除干扰蛋白? 无需额外时间,磷脂去除和蛋白沉淀同时进行? 无需方法开发;一种适合酸、碱和中性物质的方法工作原理:去除蛋白Solvent Shielding Technology™ 可防止有机溶剂渗漏,从而可在 Phree 磷脂去除产品的孔内进行蛋白沉淀。去除磷脂Phree 吸附剂会有针对性地去除血浆样品中的磷脂。总磷脂图谱蛋白沉淀与 Phree 磷脂去除产品减少离子抑制采用质谱仪 (MS) 分析时,血浆样品中存在的磷脂随着连续的洗脱会产生离子抑制区。最大程度提高灵敏度和延长色谱柱使用寿命磷脂随着时间的聚积可降低 MS 信号的灵敏度,并缩短色谱柱寿命。进样 250 次后的色谱柱灵敏度
  • Waters Ostro磷脂去除板
    Ostro磷脂去除板为净化血浆样品提供了一种更为简单的样品制备方案,此方案无需进行具体的方法开发,可以迅速融入到您目前的工作流程中。Ostro磷脂去除板可快速高效地净化样品从而提高分析物的灵敏度、增加样品分析通量、减少仪器的维修频率及提高实验室的工作效率。产品特点:更简单使用Ostro样品制备板,您只需要采用单一溶剂、按照通用的方法进行简单操作,就可以获得高回收率。并可去除血浆中的主要基质干扰物 - 蛋白和磷脂。更快速使用Ostro板,可使样品处理过程更简单。您不需要进行方法开发,这样就最大幅度地减少了样品制备时间,同时也便于实现自动化,能够更快地得到结果。更清洁磷脂是基质效应的主要来源,它会增加样品的可变性、降低灵敏度、并改变质谱分析的结果。Ostro板是解决这一难题的最好选择。相较于其他技术,Ostro板技术能够更加彻底地清除样品中的磷脂(即使是分析大量种类血浆样本时也表现出色),因此也就避免了样品的可变性。使用Ostro板,您可获得更一致、更全面、更出色的实验结果。热点应用:药物筛选及代谢物鉴定Ostro板可用于快速去除蛋白及绝大部分磷脂。Ostro样品制备技术可与eXtended Performance[XP] 2.5 μm色谱柱联合使用,从而可以快速地获得更洁净的样品和高质量的分析结果。脂质组学研究通过对通用方法的简单修改,可利用Ostro板分离及洗脱磷脂。它既可用于特定磷脂的选择性富集,也可用于对总磷脂的萃取和定量分析。干血斑分析Ostro板可用于去除95%以上的残留磷脂,且可简化DBS萃取流程。采用Ostro板您可同时实现对分析物的萃取,减小基质效应,以及过滤血点。每个孔经萃取后稀释、并随后注射到LC/MS/MS系统中。点击此处下载产品手册 注意:本页面内容仅供参考,所有资料请以沃特世官方网站为准。

与鞘磷脂相关的仪器

  • 新型 6545 Q-TOF 将软件与硬件的创新进行了有机结合,使仪器质量、仪器稳定性及其整体性能均得到了显著提高。无论从事药物研究、食品安全分析、法医/毒理学研究、环境分析,还是代谢组学或脂质组学研究,全新 6545 Q-TOF 的独特设计都可以让您的 MS 分析更快速、更简单及更高效。主要特点:- 除高能光学系统外,6545 还在两个关键领域中进行了进一步改进,- 以显著提高耐用性和可靠性:- 新一代检测器大大延长了使用寿命,同时还保持着高灵敏度和宽动态范围- 新一代电子辅助系统大幅度提高了高速 TOF 电子元件的稳定性- 链接到 PCDL 中的知识库(在一次筛查中提取所有化合物的 MS/MS 碎片属性)食品安全及环境:全离子 MS/MS 技术对于检测食品、血浆、尿液等复杂基质中的数百种分析物,靶向 MS/MS 或自动MS/MS 对这些基质的分析存在局限性,直观得分系统可以轻松地在 MassHunter 定性分析软件中查看每个化合物的碎片离子谱库匹配和母离子与子离子的色谱共流出情况。MassHunter 定量分析软件中简化 MassHunter定性/定量分析方法用于批量分析,用户只需输入校准浓度,即可在一个批次中分析数百种农药。此外,实验结果证明,系统能够对复杂基质中浓度低于或等于法规规定最大残留限量 (MRL) 的多数农药和农药代谢物进行检测。脂质组学: 1500 多种脂质得以鉴定,包括鞘脂类、磷脂类、甘油酯类、固醇和固醇酯类、多聚异戊二烯醇和多聚异戊二烯醇酯类,以及脂肪酸类。还揭示了一些烟草特异性脂质的性质。代谢流分析:采用 Agilent MassHunter VistaFlux 工作流程,在肿瘤细胞中以 U-13C-Gln作为代谢示踪物进行定性代谢流分析,展示示踪物进入经典三羧酸循环通路中的结果。与手动数据挖掘相比,为稳定同位素示踪数据处理提供了全面、自动化且快捷的框架,其中包括同位素体提取和定性代谢流文件数据的通路可视化。常规肽谱分析:NIST mAb 中多肽的提取化合物色谱图(ECC)。在较短的梯度时间 (15 min) 下获得了出色的色谱分离度。NIST mAb轻链和重链上每个已识别的多肽用其相应的序列编号进行标记。例如下图中,天然多肽(母离子位于m/z = 631.6385 处,+3)和 Met 氧化多肽(母离子位于 m/z = 636.9698 处,+3)的 MS/MS 谱图对比结果。b4–b7 碎片离子(绿框)的主要差异 (+15.99 Da)明确区分了天然形式和修饰形式,并指出了轻链中 Met-4 是氧化的位。单克隆抗体分析:完整 NIST mAb 分析(进样量 0.5 _g)完整 NIST mAb 的质谱解卷积结果(进样量 0.5 _g)完整单抗分析(创新药与生物仿制药)(进样量 0.5 _g)
    留言咨询
  • 新型 6545 Q-TOF 将软件与硬件的创新进行了有机结合,使仪器质量、仪器稳定性及其整体性能均得到了显著提高。无论从事药物研究、食品安全分析、法医/毒理学研究、环境分析,还是代谢组学或脂质组学研究,全新 6545 Q-TOF 的独特设计都可以让您的 MS 分析更快速、更简单及更高效。主要特点:- 使用快速启动方法快速启动和运行,该方法包括用于完整蛋白质和多肽分析工作流程的 Agilent AdvanceBio LC 色谱柱。- 通过采用 MassHunter BioConfirm 软件的自动化数据工作流程表征主要和次要完整蛋白变异。- 利用 SWARM 自动调谐功能,根据需要调整仪器,确保在无需手动调整的情况下获得高性能。全新大分子设置可为完整糖基化单克隆抗体提供低至亚纳克级的检测限。- 针对糖基化完整蛋白,确保您的结果质量数准确度不超出 10 ppm 范围。- 使用强大的新型迭代 MS / MS 功能深入分析您的消化样品。- 采用经过测试的系统,即使执行数千次蛋白质进样也不会引起性能降低,大大延长正常运行时间。- 无需放空即可清洁入口光学组件,大大缩短维护延迟时间。食品安全及环境:全离子 MS/MS 技术对于检测食品、血浆、尿液等复杂基质中的数百种分析物,靶向 MS/MS 或自动MS/MS 对这些基质的分析存在局限性,直观得分系统可以轻松地在 MassHunter 定性分析软件中查看每个化合物的碎片离子谱库匹配和母离子与子离子的色谱共流出情况。MassHunter 定量分析软件中简化 MassHunter定性/定量分析方法用于批量分析,用户只需输入校准浓度,即可在一个批次中分析数百种农药。此外,实验结果证明,系统能够对复杂基质中浓度低于或等于法规规定最大残留限量 (MRL) 的多数农药和农药代谢物进行检测。脂质组学:1500 多种脂质得以鉴定,包括鞘脂类、磷脂类、甘油酯类、固醇和固醇酯类、多聚异戊二烯醇和多聚异戊二烯醇酯类,以及脂肪酸类。还揭示了一些烟草特异性脂质的性质。代谢流分析:采用 Agilent MassHunter VistaFlux 工作流程,在肿瘤细胞中以 U-13C-Gln作为代谢示踪物进行定性代谢流分析,展示示踪物进入经典三羧酸循环通路中的结果。与手动数据挖掘相比,为稳定同位素示踪数据处理提供了全面、自动化且快捷的框架,其中包括同位素体提取和定性代谢流文件数据的通路可视化。常规肽谱分析:NIST mAb 中多肽的提取化合物色谱图(ECC)。在较短的梯度时间 (15 min) 下获得了出色的色谱分离度。NIST mAb轻链和重链上每个已识别的多肽用其相应的序列编号进行标记。例如下图中,天然多肽(母离子位于m/z = 631.6385 处,+3)和 Met 氧化多肽(母离子位于 m/z = 636.9698 处,+3)的 MS/MS 谱图对比结果。b4–b7 碎片离子(绿框)的主要差异 (+15.99 Da)明确区分了天然形式和修饰形式,并指出了轻链中 Met-4 是氧化的位。单克隆抗体分析:完整 NIST mAb 分析(进样量 0.5 _g)完整 NIST mAb 的质谱解卷积结果(进样量 0.5 _g)完整单抗分析(创新药与生物仿制药)(进样量 0.5 _g)
    留言咨询
  • Description50 microliter pre-assembled nanodisc, 0.5 mM concentrated, containing MSP1D1deltaH5-His protein and DMPC + 10% biotinylated PE lipids. For use in cell-free reactions.Product is shipped on dry ice - additional freight charges apply.产品简介:Nanodisc可使膜蛋白处于一个类似磷脂双分子层的环境中,从而保证膜蛋白能够像在天然的细胞膜中维持其构象和生物学功能。Nanodisc这种全新的膜蛋白提取工具打破了原有提取方法的瓶颈,能够很好地维持膜蛋白的稳定,如此可以推动膜蛋白领域的研究工作。Nanodisc是由膜支架蛋白(membrane scaffold proteins,MSPs)和磷脂分子构成的磷脂双分子层类膜结构。整合到Naonodisc中的膜蛋白可以保持其生物学活性,为膜蛋白的研究提供了便利。 根据不同的实验情况,科研人员可以使用两种不同的策略来包裹其想要获得的膜蛋白。对于已经分离并溶解在去污剂中的膜蛋白,我们推荐使用膜支架蛋白(MSPS)并配合磷脂分子使用。针对不同的需求我们提供多种膜支架蛋白和多种磷脂分子以及不同配合的试剂盒供选择。而用于无细胞表达系统所生产的膜蛋白,我们推荐使用已经组装好的空载纳米磷脂盘来包裹/插入其目标膜蛋白。您可以直接购买组装好的纳米磷脂盘或相应的试剂盒自行组装。 产品优势:1)德国制造, 欧美蛋白纯化产品供应商;2)专用于膜蛋白的研究,提供带有His-tag和不带标签的MSPs膜支架蛋白(人源和鼠源);3)提供四种不同尺寸的MSPs膜支架蛋白 (MSP1D1/MSP1D1-dH5/MSP1E3D1/MSP2N2);4)分别提供配备DMPC、POPC和DMPG磷脂的试剂盒(根据研究发现,不同膜蛋白在不同磷脂双分子环境下其活性有所不同,例如:真核磷脂环境和原核磷脂等环境,可按照实际需求订购,见图1);5)详尽的操作指南和专业技术支持;6)配合PureCube Rho1D4 Agarose使用,是有效的膜蛋白提取解决方案;7)Nanodisc系列产品MSP1D1-His和MSP1D1dH5-His的应用已刊登在《美国化学会-应用材料与界面》(ACS Applied Materials & Interfaces): Zeno, W.F. et al. Spectroscopic Characterization of Structural Changes in Membrane Scaffold Proteins Entrapped wit hin Mesoporous Silica Gel Monoliths. Applied Materials & Interfaces 2015, 7, 8640-8649. 图. 1: E. coli MraY转位酶在不同磷脂环境中的稳定性和活性。 数据来源于法兰克福大学Frank BernhardWhat our customers say:订购信息:26112MSP1D1-His, lyophilized protein (2 mg)26116MSP1D1-His, lyophilized protein (10 mg)26122MSP1D1 dH5-His, lyophilized protein (2 mg)26126MSP1D1 dH5-His, lyophilized protein (10 mg)26152MSP1E3D1-His, lyophilized protein (2 mg)26156MSP1E3D1-His, lyophilized protein (10 mg)26172MSP2N2-His, lyophilized protein (2 mg)26176MSP2N2-His, lyophilized protein (10 mg)26512mouse MSP1D1-His, lyophilized protein (2 mg)26516mouse MSP1D1-His, lyophilized protein (10 mg)26552mouse MSP1E3D1-His, lyophilized protein (2 mg)26556mouse MSP1E3D1-His, lyophilized protein (10 mg)26211Nanodisc Assembly Kit MSP1D1-His_DMPC26213Nanodisc Assembly Kit MSP1D1-His_POPC26221Nanodisc Assembly Kit MSP1D1 dH5-His_DMPC26223Nanodisc Assembly Kit MSP1D1 dH5-His_POPC26251Nanodisc Assembly Kit MSP1E3D1-His _DMPC26253Nanodisc Assembly Kit MSP1E3D1-His _POPC26311Nanodisc MSP1D1-His_DMPC (50 uL)26313Nanodisc MSP1D1-His_POPC (50 uL)26315Nanodisc MSP1D1-His_DMPG (50 uL)26321Nanodisc MSP1D1 dH5-His_DMPC (50 uL)26323Nanodisc MSP1D1 dH5-His_POPC (50 uL)26351Nanodisc MSP1E3D1-His_DMPC (50 uL)26353Nanodisc MSP1E3D1-His_POPC (50 uL)26355Nanodisc MSP1E3D1-His_DMPG (50 uL)26371Nanodisc MSP2N2-His_DMPC (50 uL)26373Nanodisc MSP2N2-His_POPC (50 uL)26421Nanodisc MSP1D1 dH5-His_DMPC_Biotinyl_PE (50 ul)26711Nanodisc mouse MSP1D1-His_DMPC (50 uL)26713Nanodisc mouse MSP1D1-His_POPC (50 uL)26751Nanodisc mouse MSP1E3D1-His_DMPC (50 uL)26753Nanodisc mouse MSP1E3D1-His_POPC (50 uL)
    留言咨询

与鞘磷脂相关的试剂

与鞘磷脂相关的方案

与鞘磷脂相关的论坛

  • 谁有蛋黄卵磷脂含量的图谱

    各位好:请问谁做过蛋黄卵磷脂含量测定?我需要含量图谱,(磷脂酰乙醇胺,磷脂酰肌醇,溶血磷脂酰乙醇胺,磷脂酰胆碱,鞘磷脂,溶血磷脂酰胆碱)共六种物质。谢谢!

  • CNS_04.010_磷脂

    食品中磷脂的检测和分析马心茹一、磷脂的结构和功能磷脂(phospholipids)是一类含有磷酸基团的脂质,其广泛存在于植物油、大豆、蛋黄、乳制品、肉类和鱼类中。磷脂也是一类被熟知的极性脂类(polarlipids),根据其主体碳链结构的不同,可主要分为甘油磷脂(glycerophospholipids)和鞘磷脂(sphingolipids)两大类。甘油磷脂主要包含了磷脂酰胆碱(phosphatidylcholine,PC)、磷脂酰乙醇胺(phosphatidylethanolamine,PE)、磷脂酰肌醇(phosphatidylinositol,PI)和磷脂酰丝氨酸(phosphatidylserine,PS),鞘磷脂则主要为神经鞘磷脂(sphingomyelin,SM)。除了以上常见的五种磷脂外,学者们还发现了一些微量磷脂成分,如磷脂酸(phosphatidicacid,PA)、磷脂酰甘油(phosphatidylglycerol,PG)、溶血磷脂酰胆碱(lysophosphatidylcholine,LPC)、溶血磷脂酰乙醇胺(lysophosphatidylethanolamine,LPE)、缩醛磷脂(plasmalogens)、葡糖神经酰胺(glucoceramide,GluCer)和乳糖神经酰胺(lactoseceramide,LacCer),其中GluCer和LacCer都属于鞘磷脂,LPC和LPE分别为PC和PE的代谢产物。磷脂在乳中的存在形式为乳脂肪球滴(milkfatglobule),是乳脂肪球膜(milkfatglobulemembrane,MFGM)的主要组成物质,由于其两亲性(amphiphilic)特征,磷脂在乳中起到了维持乳脂物理稳定性的作用,也通常被用作乳化剂添加到食品中。磷脂种类繁多,因拥有多种同分异构体和异形物,使得其检测方法异常复杂。磷脂是细胞和某些活性酶的重要组成成分,能调节机体膜功能,促进和改善胃肠功能,保护和增强肝脏功能,调整血脂、防止动脉粥样硬化,消除大脑疲劳、改善记忆力等。磷脂具有良好的乳化、润湿、分散等作用,在食品、医药、化妆品等行业具有广泛的应用,磷脂作为食品添加剂,能够提高加工过程中食品的稳定性 精制磷脂添加在化妆品中,可以改善皮肤状态、润滑受损毛发 牲畜或水产饲料中加入磷脂,可以改善它们的生长状况 磷脂也是注射液乳剂中常用的材料,可以制备药物复合物,提高药物的利用度。二、磷脂的提取磷脂的提取方法包括有机溶剂提取法、超临界CO2萃取法、柱层析法、酶解法、复合盐沉淀法等方法。(1)有机溶剂萃取法有机溶剂萃取法是根据各磷脂组分和杂质在有机溶剂中的溶解度不同,来实现磷脂与杂质的分离,常用的有机溶剂有乙醇、丙酮、甲醇、氯仿等,提取时常常是几种溶剂联合使用以提高磷脂的提取率和纯度。有机溶剂提取法常与超声波萃取、超高压萃取、微波萃取等方法联用以提高萃取效率(2)超临界萃取法超临界萃取(supercriticalfluidextraction,SCF)技术是利用超临界状态下的CO2具有气体和液体的双重特性,通过改变温度和压力来调整流体的性质,从而对样品中的目标物质进行萃取的方法。为了获得更好的提取效果,使用超临界CO2提取磷脂时通常会加入夹带剂,最常用的夹带剂是乙醇,也有研究者使用丙烷等作为夹带剂。超临界CO2具有高扩散性、可重复利用、无污染以及选择性好等特点,但该方法所用设备价格昂贵,且样品处理量少,不适合商业化生产。(3)柱层析法柱层析法是根据样品混合物中各组分在吸附剂和洗脱剂中分配系数的不同,通过多次反复洗脱将磷脂与其它组分分离。柱层析法常用硅胶、氧化铝、硅藻土等作为吸附剂,氯仿、甲醇、乙醚、丙酮等作为洗脱剂。柱层析法分离效果好,操作简单,是目前高纯度磷脂制备的重要方法,但是处理量有限,而且要使用一些具有毒性的有机溶剂,从而限制了该方法在工业上的推广应用。(4)无机盐复合沉淀法无机盐复合沉淀法主要用来萃取卵磷脂,利用某些无机盐与卵磷脂结合可形成络合物沉淀,使卵磷脂与其他物质分离开,从而除去蛋白质和脂肪等杂质,再利用适当的溶剂把无机盐从磷脂复合物中萃取出来,从而获得较高纯度的磷脂。该方法提取率较高,但是最后需要将金属沉淀剂从磷脂中分离出来,操作较复杂。三、磷脂的定性和定量分析(1)钼蓝法钼蓝比色法分析原理是将植物油中的磷脂经灼烧成为五氧化二磷,被热盐酸变成磷酸,遇钼酸钠生成磷钼酸钠用硫酸联氨还原成钼蓝。然后按照国标方法绘制磷标准曲线用分光光度计在波长650nm对标准溶液进行吸光度的测定,并以此绘制标准曲线,计算样品中磷含量。具体操作:取六支比色管,编成0、1、2、4、6、8六个号码。按号码顺序分别注人标准溶液0mL、1mL、2mL、4mL、6mL、8mL,再按顺序分别加水10mL、9mL、8mL、6mL、4mL、2mL。接着向六支比色管中分别加人硫酸联氨溶液(6.9)8mL,钼酸钠溶液2mL。加塞,振摇3次~4次,去塞,将比色管放人沸水浴中加热10min,取出,冷却至室温。用水稀释至刻度,充分摇匀,静置10min。移取该溶液至干燥、洁净的比色皿中,用分光光度计在650nm处,用试剂空白调整零点,分别测定吸光度。以吸光度为纵坐标,含磷量(0.01mg、0.02mg、0。04mg、0.06mg、0.08mg)为横坐标绘制标准曲线。根据试样的磷脂含量,用坩埚称取制各好的试样,成品油试样称量10g,原油及脱胶油称量3.0g~3.2g(精确至0.001g)。加氧化锌0.5g,先在电炉上缓慢加热至样品变稠,逐渐加热至全部炭化,将坩埚送至550℃~600℃的马弗炉中灼烧至完全灰化(白色),时间约2h。取出坩埚冷却至室温,用10mL盐酸溶液溶解灰分并加热至微沸,5min后停止加热,待溶解液温度降至室温,将溶解液过滤注人100mL容量瓶中,每次用大约5mL热水冲洗坩埚和滤纸共3次~4次,待滤液冷却到室温后。用氢氧化钾溶液中和至出现混浊,缓慢滴加盐酸溶液使氧化锌沉淀全部溶解,再加2滴。最后用水稀释定容至刻度,摇匀。制备被测液时同时制备一份样品空白。用移液管吸取被测液10mL,注人50mL比色管中。加入硫酸联氨溶液8mL,钼酸钠溶液2mL。加塞,振摇3次~4次,去塞,将比色管放人沸水浴中加热10min,取出,冷却至室温。用水稀释至刻度,充分摇匀,静置10min。移取该溶液至干燥、洁净的比色皿中,用分光光度计在650nm下,用试样空白调整零点,测定其吸光度。(2)重量法植物油中的磷脂吸水膨胀,密度增大,使其由絮状悬浮物转变为沉淀物。将试样水化后,用丙酮反复洗涤过滤,由于磷脂不溶于丙酮,油溶于丙酮,从而可使得磷脂与油分离。称量磷脂的质量,计算其含量。该方法所得到的沉淀过滤物不完全是磷脂,还有其他不溶于丙酮的类脂物质。(3)薄层色谱法(thinlayerchromatography,TLC)TLC是根据展开剂中磷脂各组分与薄层板上吸附剂之间作用力不同、比移值(Rf)不同而达到分离磷脂组分目的的一种检测手段,TLC通常用于磷脂的定性和半定量测定,是最早应用于磷脂检测的方法之一。TLC的优点是操作简单、快速、直观、专业要求低、前期设备资金投入少,但其自动化程度低,多数情况下适用于实验室规模的检测,难以应用到工业界大规模样品的批检中。Morrison等、Christie等和Weihrauch等在上世纪60-80年 开始研究TLC及2D-TLC对乳及乳制品中磷脂含量的检测方法,检测基质包括母乳、牛乳、水牛乳、羊乳、山羊乳、骆驼乳、驴乳和奶酪等,报道列出了5大类磷脂分量(PE、PI、PS、PC、SM)在各动物基乳中的组分,其含量和其他检测手段得出的结果基本属于同一范围。Sanchez-Juanes等在2009年报道使用一种更先进的高效薄层色谱(high-performancethinlayerchromatography,HPTLC)技术对生牛乳进行磷脂组分分析。近年来,随着仪器的革新和技术的发展,TLC在国内外磷脂类化合物的检测中已较少使用,取而代之的是更少受人为因素影响的色谱、质谱和核磁共振等精密仪器(4)液相色谱-蒸发光散射法(high-performanceliquidchromatography-evaporativelightscatteringdetector,HPLC-ELSD)HPLC用于磷脂检测的技术在近些年得到飞速进步,并获得了广泛的认可和应用。HPLC法的突出优点在于其能使非挥发性的、热敏感的磷脂在常温得到分离,且其封闭系统能最大限度地减少磷脂在分析过程中被氧化的程度,确保实现磷脂快速、灵敏、准确、可重复的定量分析。HPLC可配置多种检测器,包括紫外检测器(ultraviolet,UV)、蒸发光散射器(ELSD)、电荷气溶胶探测器(chargedaerosoldetector,CAD)和质谱仪(massspectrometer,MS)等,其中,ELSD和MS应用最为广泛。ELSD的检测原理是把挥发性高的流动相喷入带热气流的检测器中,待其蒸发后,不挥发的磷脂形成微小液滴,这些液滴散射的光进入光电倍增器后产生电流,依据不同质量的磷脂引起电流大小的差异来达到检测的目的。ELSD是一种相对新型的检测器,它与UV、CAD和MS相比拥有诸多优点,如适用范围宽、检测时不存在基线漂移、对溶剂流速不敏感、能消除流动相梯度洗脱对结果带来的不良影响等,其在乳制品等复杂基质领域有很强的应用,正在逐渐成为磷脂分析检测的主流方法[5,34]。国际卵磷脂和磷脂协会(ILPS)于2003年推荐HPLC-ELSD法用于测量卵磷脂中的磷脂组分[51],美国分析化学家学会(AOAC)也在2007年将HPLC-ELSD法收录为分析卵磷脂的标准检测方法。(5)核磁共振磷谱(31phosphorus-nuclearmagneticresonance,31P-NMR)31P-NMR用于磷脂检测是二十世纪七十至九十年代发展成熟的技术,其在分析生理组织(大脑、肝脏、细胞膜等)和食品(植物油、肉类等)中磷脂含量的领域展现出了很强的应用。31P-NMR拥有很高的灵敏度,能检出样品中低浓度含量的磷脂,近年来,该方法也被开发应用于乳制品等复杂基质。31P-NMR的优势在于不需要对样品进行大量的化学处理,且定量分析时不需要标准品,只需在总脂肪中加入内标。然而,31P-NMR仪器普及度不高,仪器运营费用昂贵,对实验员操作的熟练程度也要求较高,所以在资金、人员、设备上投入相对较大。31P-NMR的基本原理是检测磷脂分子中的每个磷原子,基于各组分在不同的化学环境中会呈现出不同的31P化学位移,利用其31P核磁共振效应来确定不同组分。Andreotti等使用31P-NMR对牛乳和水牛乳中的磷脂进行了定量分析,结论表示两种乳中磷脂种类的分布大体一致。Carcia等采集了不同种类哺乳动物(牛、骆驼、马)乳中磷脂的指纹图谱,并与人乳比对。结果显示,人乳和骆驼乳中富含对婴幼儿发育起到重要作用的神经鞘磷脂(分别为7.83mg/100mL和11.8mg/100mL)和缩醛磷脂(分别为2.7mg/100mL和2.4mg/100mL);磷脂总量在四类乳中的排序为骆驼乳(0.503mmol/L)母乳(0.324mmol/L)牛乳(0.265mmol/L)马乳(0.101mmol/L)。Murgia等鉴别和定量分析了羊乳乳脂和牛乳乳脂中的磷脂组分,文中引进了单相二甲基甲酰胺/三乙基胺/盐酸胍作为溶剂体系,相比于传统的氯仿/甲醇/EDTA-水溶剂体系,新法能显著提高谱图峰的分辨率并降低化合物信号位移。MacKenzie等[51]对奶油和磷脂原料(PC700,BPC60)中的PC、PE、PS、PI、SM含量进行了检测,并与2D-TLC法做出对比,两种方法得出的磷脂组分基本属于同一范围。其中,奶油中磷脂总量分别为0.14%w/w(TLC法)和0.16%w/w(31P-NMR法);PC700分别为53.2%w/w(TLC法)和60.6%w/w(31P-NMR法);BPC60分别为72.9%w/w(2D-TLC法)和75.8%w/w(31P-NMR法)。MacKenzie的结果显示2D-TLC法灵敏性更高,能检出31P-NMR无法检出的低含量组分,但31P-NMR更适合高效率地规模化运作,因其自动化程度更高且耗时更短。(6)液相色谱-质谱检测器(high-performanceliquidchromatography-massspectrometer,HP[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url])MS最大的优势在于其拥有更好的精密度、灵敏性、特异性和更强的定性能力,它不仅可以检测磷脂总量和分量,更可以精确到各分子种类进行定性和结构分析。目前,MS被认为是测定磷脂分量及分子种类最精确的手段,其结合三重四极杆或飞行时间质谱仪将成为此领域新的发展方向。然而,MS的购买、运行和维修费用非常昂贵,且存在同位素峰间干扰和结果再现性不稳定等问题,故而其全面推广受到限制。即便如此,磷脂检测技术结合MS仍具有广阔的前景,近些年涌现出大量针对乳制品应用的报道。与液相、核磁共振方法不同的是,质谱仪通常串联离子源(ESI、EI、ICP等)、质量分析器(四极杆、四极杆离子阱、飞行时间等)和检测器(电子倍增器、感应电荷检测器等)共同使用,多种仪器组件的叠加增加了其检测方法的复杂性。通常,质谱类检测器使用的色谱柱多为反向柱(如C8、C18柱)或亲水作用色谱柱(hydrophilicinteractionliquidchromatography/HILIC柱),使用的流动相体系通常为氯仿:甲醇:缓冲液/水或乙腈:甲醇:缓冲液/水。此处值得一提的是HILIC柱的应用,HILIC柱是一类既非正向柱也非反向柱的特殊色谱柱,其采用了类似正向柱的固定相,但具备反向柱的部分特征。HILIC柱是一类高效的极性物质保留柱,通过亲水性作用力(hydrophilicinteraction)实现对极性物质的分离和洗脱,它能有效地改善反向色谱柱极性物质保留性差的缺点,并能有效提高电喷雾离子源的灵敏度,近些年受到了越来越广泛的关注。除此之外,质谱类检测器因能精确定量到磷脂分子种类,其在数据分析时结合主成分分析(PCA)能对磷脂进行指纹图谱的绘制,这一技术近年来发展快速。四、结语磷脂在食品、医药等行业中有广泛应用,优化和改进磷脂的提取和检测方法具有重要意义。目前在磷脂的提取和检测方面还存在许多挑战,在提取方面,多采用有机溶剂提取法,但存在溶剂残留等问题,超临界萃取法具有环保节能的优势,该方法主要用于实验室,在工业方面的应用有待增加 在检测方面,主要是HPLC-UV、HPLC-ELSD方法,由于磷脂的种类较多,脂肪酸组成差异较大,对于来源不同的磷脂,UV检测器不能准确定量,ELSD检测器是质量通用型检测器,可以比较准确地对磷脂进行定量分析,[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]LC-MS[/color][/url]和NMR法对人员和设备要求比较高,目前还无法实现广泛应用。随着磷脂提取和检测技术的成熟,关于磷脂结构的分析会越来越多,可以更加全面的了解磷脂,使其更好地应用于生产和生活中。就磷脂提取而言,如何有效地去除杂质、提高萃取效率、确保检测结果的稳定性和重复性仍是目前存在的技术难点。SPE固相萃取小柱的应用,能有效且定向地对检测基质进行除杂,因其填料的多样性和创新性,SPE小柱在未来的应用或将逐步增加,但检测人员仍需考虑过柱带来的回收率上的损失。就定量方法而言,其未来发展趋势应根据需求进行划分:如针对企业进行相关产品检测,液相色谱-蒸发光散射器足以满足批检和抽检的需求;但从科研角度考虑,质谱类仪器无疑拥有更大的优势,这一点从近5年磷脂检测技术的发文趋势上可以看出。质谱类仪器因其精密性和高通量,现有技术已能对磷脂上百种分子种类进行定量分析,未来还能对更多未知的种类进行筛查及鉴别。除此之外,配合主成分分析手段,科研人员能对磷脂进行指纹图谱的绘制,这项技术在食品的真实性和溯源性鉴定上拥有巨大潜力。从表1汇总的数据来看,各文献报道的磷脂含量差异性较大,实验数据间难以互相做比,检测人员在参考数据时需对照所使用的检测方法和仪器条件。一点重要的启示是,新方法在开发时需经过缜密的方法学验证,需从精密度、检出限、定量限、回收率和线性关系等几个维度对方法进行综合评估,以得到最接近真值、有对比意义且重复性好的结果。参考文献[1]胡雪,段国霞,刘丽君,李翠枝,吕志勇,唐烁.乳及乳制品中磷脂的含量、功能、分离及检测技术研究进展[J/OL].食品科学:1-24[2021-07-06].[2]罗鑫,孙万成,罗毅皓.食品中鞘磷脂的检测及功能研究进展[J].食品研究与开发,2020,41(15):211-218.[3]刘黔霞,吴雪君,杨坤,张红,刘美霞,王凤霞.植物油中磷脂含量的测定[J].云南化工,2020,47(04):134-135.[4]文艺晓,彭吉星,郭莹莹,王婧媛,左红和,王联珠.HPLC-ELSD检测南极磷虾油中磷脂含量[J].南方农业学报,2019,50(10):2293-2299.[5]文艺晓,王联珠,彭吉星,郭莹莹,朱文嘉,王婧媛.食品中磷脂提取及分析方法的研究进展[J].食品安全质量检测学报,2019,10(07):1877-1883.[6]韩智,龚蕾,王会霞,江丰,朱晓玲,黄宗骞,曹琦.定量核磁共振磷谱在食品分析检测中的研究进展[J].食品与机械,2021,37(03):207-212.[7]工标网(www.csres.com)

  • 大豆卵磷脂对巧克力的粘度有什么影响?

    巧克力可以认为是一种油包水型乳液,亲水性的糖分子和可可豆颗粒分散在脂肪连续相里。标准精炼级的大豆卵磷脂可以通过降低熔融的巧克力块的粘度来影响乳化的效果。大豆卵磷脂是按植物的种类来分级,以确定能用好的磷脂混合物来改变粘度,粘度的改变可以通过几种不同的方法进行。用Brookfield粘度计和物理流变仪通过巧克力佳信(Casson)方程式可以测量出添加了0.1-0.7%已筛选分级和改性的大豆卵磷脂的黑巧克力、奶油巧克力以及白巧克力的塑性粘度(Plasticviscosity)和屈服应力值(Yield stress value)。相比标准精炼级的卵磷脂,级别较高的卵磷脂具有较低的塑性粘度,但其屈服值比前者高。而级别较好的磷脂酰乙醇胺则表现出较低的屈服值,这一点很有意思。黑巧克力的结果要比奶油巧克力和白巧克力的明显,而3种巧克力的(添加剂的)配方是一样的。无油的卵磷脂可以用作白巧克力粘度降低助剂,它的味道温和、适中。用于涂覆在冰淇淋上的含有42-60%脂肪的巧克力的流动性和稳定性会受到冰淇淋表面的湿气的负面影响。添加经过精选的卵磷脂,对于隔离过多的湿气、巧克力涂层的稳定性以及冰棒具有光滑的表面和良好的口感有益处。brookfield粘度计性能特点与实验的关系:http://www.instrument.com.cn/netshow/C60497.htm

与鞘磷脂相关的资料

与鞘磷脂相关的资讯

  • 中科院化学所成功研制高分辨宽带和频振动光谱仪
    p   高分辨宽带和频振动光谱(high-resolution broadband sum frequency generation vibrational spectroscopy, HR-BB-SFG-VS)是研究界面分子间相互作用的前沿光谱技术。最近,中科院化学所分子反应动力学国家重点实验室在国家自然科学基金委重大仪器研制项目的支持下,成功研制了具有亚波数分辨(& lt 1cm-1)的界面和频振动光谱系统。 /p p   本仪器最终测试指标达到或优于最初的设计参数。其飞秒红外脉冲的半高宽大于250波数,可一次性覆盖400波数以上的红外区间,光谱分辨率达到0.4个波数,优于国际上已报道的同类型设备参数,比传统飞秒宽带和频光谱10-20波数的光谱分辨率有极大的提高。本仪器可用于测量气液界面、气固界面、超分子手性界面、生物膜界面的分子振动光谱、分子取向结构和动力学。 /p p   鞘脂类分子是细胞质膜的重要组成部分。Ca2+与鞘磷脂的相互作用一直是生命科学中备受关注的研究课题。研究人员使用研制成功的高分辨宽带和频振动光谱研究了气/液界面Ca2+对鞘磷脂(egg sphingomyelin, ESM)单分子膜的结构和取向的影响,提出了Ca2+与ESM相互作用的分子机理(图1),为深入理解神经细胞信号传导的分子机理及生物体内电解质对神经传导影响的机制提供了实验依据。本工作是世界上首次用高分辨宽带和频振动光谱研究磷脂体系,展示了该技术研究复杂体系的能力。相关研究成果近期发表在Biophysical Journal, Volume 112, Issue 10,2017, p2173–2183上,被编辑推荐为Featured Article。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201706/insimg/0429659b-5694-4f57-ad4a-87772b8249f3.jpg" title=" W020170619545828640231.jpg" / /p p   图1 高分辨和频光谱实物图(a),高分辨和频振动光谱研究钙离子与鞘磷脂相互作用(b),钙离子与鞘磷脂之间相互作用机理图(c)。 /p
  • 中科院化学所成功研制高分辨宽带和频振动光谱仪
    p   高分辨宽带和频振动光谱(high-resolution broadband sum frequency generation vibrational spectroscopy, HR-BB-SFG-VS)是研究界面分子间相互作用的前沿光谱技术。最近,中国科学院化学研究所分子反应动力学国家重点实验室在国家自然科学基金委重大仪器研制项目的支持下,成功研制了具有亚波数分辨(& lt 1cm-1)的界面和频振动光谱系统。 br/ /p p   该仪器最终测试指标达到或优于最初的设计参数。其飞秒红外脉冲的半高宽大于250波数,可一次性覆盖400波数以上的红外区间,光谱分辨率达到0.4个波数,优于国际上已报道的同类型设备参数,比传统飞秒宽带和频光谱10-20波数的光谱分辨率有极大的提高。该仪器可用于测量气液界面、气固界面、超分子手性界面、生物膜界面的分子振动光谱、分子取向结构和动力学。 /p p   鞘脂类分子是细胞质膜的重要组成部分。Ca2+与鞘磷脂的相互作用一直是生命科学中备受关注的研究课题。研究人员使用研制成功的高分辨宽带和频振动光谱研究了气/液界面Ca2+对鞘磷脂(egg sphingomyelin, ESM)单分子膜的结构和取向的影响,提出了Ca2+与ESM相互作用的分子机理(如图),为深入理解神经细胞信号传导的分子机理及生物体内电解质对神经传导影响的机制提供了实验依据。该工作是世界上首次用高分辨宽带和频振动光谱研究磷脂体系,展示了该技术研究复杂体系的能力。相关研究成果近期发表在Biophysical Journal, Volume 112, Issue 10,2017, p2173–2183上,被编辑推荐为Featured Article。 /p p    a href=" http://www.sciencedirect.com/science/article/pii/S0006349517304423" target=" _self" title=" " 文章链接 /a /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/noimg/c1e862e8-8e40-49ba-92ca-cdac16d2566b.jpg" title=" 1.jpg" / /p p   图:高分辨和频光谱实物图(a),高分辨和频振动光谱研究钙离子与鞘磷脂相互作用(b),钙离子与鞘磷脂之间相互作用机理图(c)。 /p p br/ /p
  • 中科院遗传发育所税光厚团队发表单细胞脂质组学综述文章
    2023年2月,中科院遗传发育所、中科脂典的相关研究人员在《Trends in Analytical Chemistry》(IF: 14.9)上发表了题为“Embracing Lipidomics at Single-cell Resolution: Promises and Pitfalls”的综述文章,总结了单细胞脂质组学当前的技术进展和瓶颈,讨论了在单细胞水平分析脂质的独特技术挑战(特别是准确的脂质鉴定和定量的重要性),并例举了单细胞脂质组学在生物学和临床医学中的潜在应用。(中科院遗传发育所王泽华博士和曹明君博士为本文的第一作者,中科院遗传发育所税光厚研究员和中科脂典技术总监Sin Man Lam博士为本文的共同通讯作者。)  1、引言  脂质作为细胞膜和细胞内细胞器(如脂滴)的主要组成部分,发挥着一系列复杂的生物物理、能量储存和信号传导功能,这些功能是细胞机制正常运转的基础。脂质代谢失调涉及多种主要疾病,包括糖尿病、心血管疾病、代谢相关性脂肪肝(MAFLD)、癌症、神经退行性疾病、传染病等。近几十年来,随着脂质组学的蓬勃发展以及分析工具/技术的改进,脂质的结构和生物学复杂性才开始被解开。  质谱(MS)是广泛用于脂质组学领域的主要分析技术,相对于其它方法,它具有更高的灵敏度、更大的选择性、更强的稳定性和更高的特异性。质谱仪的快速发展,伴随着软件和数据库的进步,使得来自不同生物样本的各种生物液体(血浆、血清、尿液、唾液、泪液、痰等)、组织和亚细胞器中的脂质能够以前所未有的分辨率进行表征。脂质组覆盖范围的扩大极大地促进了疾病生物标志物的识别、表型验证以及假设的产生,并在脂质数据分析中提出了可能的系统方法,包括功能脂质模块的构建和脂质通路分析。  脂质组学的典型工作流程和应用  经典的脂质组学给出了构成生物样本的不同细胞群的“平均”图谱,这通常需要一个器官的代表性组织样本,使得最终构建的图谱能够反映一般的生物状态。然而,取一个有代表性的组织切片,忽略了脂质的空间分布,而脂质的空间分布往往具有重要的生物学意义。例如,该研究团队先前对金线鲃属洞穴鱼和地表鱼全脑切片的定量脂质组学研究发现,洞穴鱼中的硫苷脂(髓鞘的主要脂质成分)普遍减少。基质辅助激光解吸电离(MALDI)质谱成像(MSI)进一步揭示了洞穴鱼硫苷脂缺失的区域与中缝5-羟色胺能神经元的位置相对应。因此,金线鲃个体大脑脂质的空间分布图谱有助于证明5-羟色胺能神经元的脱髓鞘是洞穴鱼攻击性行为丧失的基础。  随着光学成像和细胞内电生理学的技术创新,人们得以在单细胞分辨率下深入研究组织的生物结构,细胞异质性的普遍性变得明显起来。单个细胞与邻近细胞以及它们的原生微环境动态地相互作用和交流,最终影响由不同的单细胞脂质组(和代谢组)所反映的细胞内生物化学状态。事实上,早期组学的单细胞革命揭示了细胞异质性在无数生物环境中的普遍性。例如,单细胞蛋白质组学揭示了循环系统中肿瘤细胞表面蛋白在单细胞水平的异质表达,这些蛋白预测了对药物治疗的不同细胞反应,而随着疾病的进展,患者体内这些相同蛋白的平均表达并不能确定真正的治疗效果。在这篇综述中,作者讨论了单细胞水平的脂质组学革命如何从早期的组学开始,揭示细胞内以脂质为中心的见解,以及其潜在的应用和独特的技术挑战。  2、单细胞脂质组学的新兴技术  与单细胞基因组学和单细胞转录组学相比,单细胞脂质组学(和代谢组学)提供了最接近实际表型的数据信息。脂质组学与代谢组学的区别主要在于其关注非极性疏水代谢物,这些代谢物需要不同的提取和分析方案(例如需要不同的溶剂系统)。与信号可以扩增数百万倍的单细胞转录组学不同,高灵敏度对于单细胞脂质组学至关重要。此外,脂质在细胞内和细胞外的不同作用使细胞脂质组具有动态性和多功能性,这需要在采样时极度谨慎和快速,以便收集的细胞能够反映其原始状态。  2.1 单细胞的取样  经典脂质组学侧重于批量分析,以最小化组内的异质性,而单细胞脂质组学则侧重细胞间的差异。因此,收集技术应努力保持细胞异质性,并尽量减少来自邻近细胞和细胞外基质的污染。许多现有的样品处理或细胞分离策略可以扩展到单细胞脂质组学的采样中,包括膜片钳、微量移液、流式细胞荧光分选(FACS)和微流控单细胞阵列等。这些采样技术有其独特的优势和技术瓶颈,应根据组织或细胞类型的性质以及要解决的生物学问题逐案考虑选择。例如,倾向于成团粘附和/或对操纵敏感的细胞在采样过程中可能表现出较高的细胞死亡率,这会混淆数据并导致生物学错误解读。通常,非粘附细胞,如循环中的各种类型的血细胞,更易于进行高通量单细胞处理。组织的细胞外基质(ECM)的组成以及细胞分布各不相同,因此需要获得单分散细胞的优化方案,例如机械切割、酶解或这些方法的组合。特别是,与正常组织相比,病变组织(例如纤维化组织)可能具有明显不同的解离动力学,因此,优化分离方法以确保收集单分散、完整和有活力的细胞用于单细胞脂质组分析是非常重要的。  膜片钳通常用于研究神经元、肌肉纤维和心肌细胞等易兴奋细胞,其优势是在相对原生状态下对细胞进行采样,通常来自新鲜的组织切片。然而,在膜片钳辅助的单细胞脂质组学分析中,在不破坏细胞膜的情况下分离完整的细胞是特别具有挑战性的。例如,使用膜片钳从灌注的小鼠大脑切片中捕获单个神经元细胞体不能完全保存轴突和相关终端的完整性,这可能会影响所得到的单个神经元脂质组数据。考虑到质膜是单细胞脂质组的重要组成部分,在单细胞分离过程中对质膜的损伤对单细胞脂质组分析尤为不利。此外,细胞损伤可能触发膜修复过程,这改变了原生细胞脂质组的特征,并混淆了下游分析。  如果谨慎操作,精密微量移液管可以获得完整的细胞,但它的低通量低且相对耗时,因此更适合于感兴趣的稀有细胞类型的取样。  FACS可将具有不同表型的单个细胞(由特定蛋白质(抗体)的荧光强度定义)排序到用户预定义的特定血管和缓冲液中,以实现相对高通量的单细胞分离,该方法错误率较低(低于1/100),且细胞质膜通常保持完整。FACS的一个主要缺点是需要大量的细胞(超过10,000个),因此不适合分离数量少的稀有细胞类型。悬浮细胞的要求也意味着细胞在采集样品之前不处于其原始状态,单个细胞的空间位置丢失。如果使用非质膜荧光标记物来标记细胞,则需要验证瞬时孔形成对特定质膜脂质和细胞内代谢产物的影响。  微流控装置包括使用阀门、油滴或纳米管对单个细胞进行微型分隔。基于液滴的策略可能不适合单细胞脂质组学,如果单个细胞的包封是在油滴中完成的,这干扰了下游的脂质分析。油包裹的水滴为下游单细胞脂质组学提供了更好的选择,但是在去除油相期间需要谨慎,以获得相对清洁的液滴内细胞提取物用于下游分析。虽然微流控芯片的处理量高,对原料数量的要求较低,但其后的样本处理通常是在现场进行,这限制了 MS 在选择脂质提取方案进行下游分析时的灵活性。此外,有效的脂质提取需要使用有机溶剂,例如氯仿和甲基叔丁基醚(MTBE) ,这些溶剂与大部分用于制造纳米芯片的塑料材料不太相容。  基于探针的电喷雾电离(ESI)也经常用于单细胞采样,这涉及使用直径足够小的探针尖端以插入单细胞(~3-9μm)。提取溶剂连续输送以进行原位代谢物提取,随后将提取物引导到质谱仪中进行直接分析。然而,这种取样策略不能确保每个细胞的完整质膜被输送到下游分析。质膜包括全细胞中一半的磷脂和90%的总胆固醇和鞘磷脂含量,基于探针的采样可能会导致单细胞脂质组学的大量信号损失。  与限制脂质提取程序选择的微流控芯片和基于探针的取样相比,激光捕获显微切割在为下游分析选择样品处理方案方面有更高的灵活性。微解剖的单细胞的空间信息被保留。然而,该方法事先必需用福尔马林或乙醇固定细胞,以确保在显微切割过程中划定单细胞边界时的形态清晰度,而在此过程中脂质和小分子代谢物会大量丢失。此外,即使事先固定,整个细胞的完整性也往往得不到保留,这也使得这种技术不太适合收集单细胞用于下游的脂质组学研究。  无论采用何种细胞采集策略,采集后都应立即对分离的单个细胞进行淬灭和灭活,以停止酶活性并尽量减少细胞脂质的人为改变。    单细胞脂质组学技术  2.2 单细胞脂质的获取  拉曼光谱具有非破坏性和非侵入性的优点,允许进行原位分析,在捕获单个细胞在其自然状态下的脂质方面具有优势,但其无法在分子水平上破译精确的脂质结构,这大大限制了其脂质覆盖范围。而MS由于在区分脂质异构体方面的卓越灵敏度和特异性,已成为单细胞脂质组学中的主要分析技术。除了结构解析,基于MS的方法还允许检查单个细胞内的空间和亚细胞脂质定位,如通过C60二次离子质谱(SIMS)分析海蜗牛Aplysia单个神经元上脂质的异质性分布。尽管与 MALDI-MS 相比,SIMS 的灵敏度较低,但其能够获得亚微米的横向分辨率,由于探针尺寸的限制,其横向分辨率限制在10μm。利用簇离子源的SIMS技术还具有更柔和的电离动力学,有助于检测完整形态的脂质,空间分辨率通常在100nm至1µm之间。  在各种基于MS的技术中,MSI方法在取样细胞的原生微环境方面具有选择性优势,并能保留对生物推断有用的空间信息。目前已经开发了图像引导的单细胞器MALDI-MSI,用以比较来自Aplysia的致密核心囊泡和透明囊泡中脂质含量差异。尽管 MALDI-MSI 具有诸多优点,但是它存在共采样的缺点,即从相邻的细胞产生混淆信号。一些脂质对 MS 扫描过程中可能出现的环境干扰很敏感,通常需要至少一个小时或更长时间才能完成组织切片的检查。此外,MALDI-MSI 单细胞分析也容易因离子抑制而降低灵敏度。最后,精确的脂质定量仍然是 MSI 方法中的一个主要技术挑战,因为同位素内标与内源性脂质均匀混合以进行标准化在技术上是具有挑战性的。  荧光成像在灵敏度以及空间/时间分辨率方面优于基于MS的方法,使其在单细胞成像中具有潜在的用途。然而,基于荧光的技术在单细胞脂质组学中的应用受到其脂质组覆盖范围的限制。在自然界中很少有脂质和小分子代谢物表现出自身荧光,这就需要使用荧光探针。与基于MS的方法不同,亲脂性染料通常可以标记特定的某一类脂质,但无法区分同一类脂质中具有不同酰基链组成的单个脂质种类,或不同的脂质异构体。另一方面,脂质的荧光标记极大地改变了脂质的生化性质,如有些脂质被优先分配到不同的膜微区中,而与荧光基团是在头基还是酰基链上引入无关。因此,目前的脂质荧光染料缺乏特异性,这限制了荧光光学成像在单细胞脂质组学中的更广泛应用。  虽然单细胞取样和基于质谱的技术革新已经实现了单细胞脂质组学分析的可能性,但仍存在一些技术瓶颈,包括:脂质覆盖面相对较窄(通常只有不到一百个具有高置信度的脂质) 缺乏准确的结构鉴定 缺乏可靠的定量数据 以及对单细胞水平的分析可重复性验证不足。为了解决这些技术瓶颈并推动该领域的发展,必须采用新技术来更好地描述细胞的异质性,并以更高的精度和更大的定量准确性来阐明其生物学意义。  3、单细胞脂质组学的技术瓶颈  3.1 迫切需要高覆盖率、准确的识别和定量测量  单细胞脂质组学的一个最终目标是构建单个细胞的精确脂质组图谱,以揭示细胞间的差异。即使在对大量的生物样本进行研究的经典的脂质组学中,与转录组水平的变化相比,具有生物学意义的脂质水平的定量变化通常较小。这使得准确的定量对于解读单细胞水平上微妙但有意义的脂质变化尤为重要。单细胞脂质组学的定量也具有相当大的挑战性,因为脂质的内源丰度会有很大的变化。一个细胞中内源性脂质的高动态范围意味着,在一个特定的样品浓度下,不是所有的脂质都能落入质谱检测器的线性范围。虽然这在大部分脂质组学中通常通过在另一个样品浓度下的额外进样检测来解决,但这又为单细胞脂质组学增加了另一个难度,因为来自单细胞的样品材料数量往往是有限的。内源性脂质丰度的巨大差异也需要色谱系统从其内源性丰富的对应物中有效分离微量脂质,以尽量减少离子抑制,提高次要脂质物种的敏感性,并扩大分析物的覆盖范围。重要的是,为了在单细胞脂质组学中进行准确的脂质定量,应加入稳定的同位素内标。如果没有适当的内标来归一化内源性信号,校正来自不同类别的脂质或携带不同酰基链的同一类别脂质的离子响应变化,产生的单细胞脂质组数据很容易出现错误。  基因组几乎整个区域都可以测序和注释,而仅基于MS/MS数据却很难最大限度地确定高置信度的脂质结构。这一瓶颈部分是由于自然界中脂质结构异构体的广泛存在,其中一些异构体在缺乏专门的预处理(如化学衍生)的情况下很难分离。例如,单个TAG的甘油主链被酯化为三个脂肪酰基链,从而为每个分子式产生无数脂肪酰基链组合。此外,不同脂质类别的结构异构物可能会使脂质鉴定过程更加复杂,例如双(单酰基甘油)磷酸酯(BMP)和磷脂酰甘油(PG),以及半乳糖神经酰胺(GalCer)和葡萄糖神经酰胺(GluCer)等。幸运的是,这些结构异构体中的一些物质在色谱上是可区分的。因此,适当的前期色谱分离的应用极大地促进了某些脂质结构异构体的准确识别和定量,从而实现了更大的脂质覆盖。  虽然脂质组学是组学家族中一个较年轻的分支,但在过去二十年中,它的发展速度很快。基于常规高效或超高效液相色谱(流速为100-1000μL/min)并结合质谱(HPLC/UPLC-MS)的各种经典脂质组学方法已被开发用于多种生物样品。近年来,基于微流量(流速为10-100μL/min)的LC-MS方法获得了更高的灵敏度,并能够以更少的起始材料(例如≈20-1000个细胞)实现全面的脂质代谢。可以想象,通过减小柱直径和流速进一步缩小色谱分离的规模可以提高分析物浓度,从而提高检测灵敏度。因此,基于纳米流(即流速1μL/min)的超灵敏脂质组学方法有望在单个细胞内实现亚微米级的脂质检测和定量。然而,迄今为止报道的纳米流方法的脂质覆盖率仍然相对较低,通常只覆盖一到两个主要类别的脂质,如PCs、PEs和/或TAGs,或者没有适当的结构标识。仅基于一级质谱分析的分子式水平的结构鉴定会导致不准确和低灵敏度,这极大地影响了单细胞脂质组学的分析范围和质量。因此,在单细胞脂质组学能够在基础生物学和转化医学中发挥更大作用之前,通过精确的结构鉴定和精确的定量分析来扩大脂质的有效分析范围是必不可少的。离子迁移率-质谱仪在脂质鉴定中的应用将碰撞截面(CCS)引入到脂类鉴定中,增加了m/z、保留时间和MS/MS谱图上的另一个维度的信息,有望增强单细胞脂质结构鉴定的可信度。  目前,单细胞脂质组学方法大多是低通量的,因此,与早期的单细胞组学研究相比,通常分析的细胞种类要少得多。鉴于与基因组/转录组相比,细胞脂质组的生物学动态范围要大得多,因此,在单细胞脂质组学实现更大速度和更高容量分析之前,建立健全可重复的方法、设定正确的技术基准和构建可靠的单细胞参考脂质组数据库至关重要。    基于LC-MS的单细胞脂质组学的不同模式  3.2 数据分析  正确分析大型数据集是从各种组学技术中收集有用的生物学见解的先决条件。由于单细胞脂质组学仅处于发展的早期阶段,尚未建立系统的数据分析体系。针对海量数据定制的方法通常不直接适用于单细胞数据。这是因为大量数据分析中的分布假设经常不成立,原因是单细胞数据集拥有更高的噪声和稀疏度,存在固有的额外异质性。目前,单细胞脂质组学的出现在某种程度上加剧了在分析和解释脂质组学数据方面的瓶颈。鉴于目前在单细胞脂质组学中脂质覆盖方面的局限性,在单细胞脂组学分析中收集生物学相关的途径改变之前,需要在单细胞脂肪组学的采集和数据分析方面进行长期努力。  4、单细胞脂质组学的生物学和转化前景  在过去的十年里,由于分析化学的技术创新和各种组学技术的出现,生物化学从传统的系综测量转向单分子测量。传统的集合分析可能导致静态异质性,当分子集合包含在观察期内保持稳定或变化不够快的亚群体时,就会出现这种异质性,从而导致“没有明显变化”的误导性结论。生物事件的平均分析数据不会捕捉到与整体行为不同的分子。同样,在任何细胞群体中,细胞间的差异总是不同程度的存在,基于整个群体的批量测量不能完全描述单个细胞的完整表型。通过在种群和单细胞水平上同时进行表型分析,可以破译潜在的有意义的生物学偏差,从而为很多生物学问题提供新的研究方向。  4.1 发育与细胞谱系追踪  多细胞生物体从一个受精卵发育成一个由不同细胞类型和器官系统组成的复杂组织,整个过程被记录在细胞谱系树中,它概述了在发展成多细胞生物体的过程中,从单个母细胞到其不同分支后代的细胞转换。目前已经开发了各种工具来构建单个生物体的细胞谱系树,但大多局限于绘制有限数量的克隆种群。细胞谱系树对于科学家解开生命的错综复杂的工程,以及加深我们对生物体发育、器官生成以及疾病进展和发病的理解非常重要。通过拼凑生物体内单个细胞的发育轨迹,单细胞谱系追踪以前所未有的细节捕捉到整个发育过程中不同的细胞命运,这扩展了我们对细胞分化机制、细胞异质性以及细胞间发育潜力差异的理解。  考虑到生物体的单个细胞携带着由DNA编码的相同的遗传物质,人们通常认为不同的细胞命运是由单个细胞中基因在空间和时间上的差异表达决定的。虽然乍一看,与单细胞转录组学相比,单细胞脂质组学与单细胞谱系追踪的相关性可能不那么直观,但许多科学证据阐明了脂质代谢在决定细胞命运中的作用。例如,脂肪酸氧化产生的乙酰COA是组蛋白乙酰化的前体,组蛋白乙酰化改变染色质结构,从而调节DNA对转录机制的可及性。在不对称细胞分裂过程中,脂筏(富含胆固醇的膜微域)的不对称遗传也被认为是胶质母细胞瘤子细胞不同治疗耐药的基础。真皮成纤维细胞中存在由不同种类的鞘磷脂组成的不同的脂类构型,这触发了不同的转录程序,进而驱动细胞间异质性的不同细胞状态的建立(例如,纤维形成或增殖)。因此,单细胞脂质组学可以增加另一个维度的有用信息,以识别不同细胞命运的分子控制。  4.2 了解肿瘤异质性  构成肿瘤块的细胞是异质性的,在基因表达、细胞代谢、运动性、增殖率以及转移潜能方面具有不同的形态和表型特征。这种现象被称为肿瘤内异质性,它延伸到不同的肿瘤(即肿瘤间异质性),可由遗传和非遗传因素共同引起。肿瘤的异质性可能在一定程度上解释了为什么癌症在临床上仍然难以攻克。研究肿瘤的异质性,特别是增殖能力和转移的来源,将有助于确定新的治疗靶点,以及指导免疫治疗和药物筛选。细胞间脂质代谢的差异对各种癌症的生长和预后有重要影响,如单个胰腺导管肾上腺癌细胞的脂质组学分析观察到胰腺癌特异性脂质代谢失调,这可能是由于介导脂质合成的关键酶ATP柠檬酸裂解酶表达减少所致。单细胞脂组学在加深我们对肿瘤异质性的理解方面有很大的希望。  4.3 剖析对疾病的免疫反应  除癌症外,传染病和新陈代谢疾病也是对公众健康的主要威胁。哺乳动物的免疫系统保护宿主免受各种病原体的入侵。构成宿主免疫系统的免疫细胞表现出巨大的细胞多样性,可以根据各种刺激进行动态调整。例如,对不同严重程度的新冠肺炎患者的单个外周血单核细胞进行scRNA-seq检测,发现存在一种具有增殖和代谢活性的自然杀伤细胞亚群,其代谢活动与疾病的严重程度呈正相关。有趣的是,这一亚群的自然杀伤细胞显示出神经鞘脂代谢的增强,这突显了单细胞脂质组学从以脂质为中心的角度阐明单个免疫细胞对新冠肺炎感染的差异反应的潜力。除感染性疾病外,对从人胰岛分离的单个细胞的scRNA-seq分析表明,在1型糖尿病患者中存在免疫耐受的胰腺导管细胞亚群。这一导管细胞亚群的转录特征类似于耐受性树突状细胞(即缺乏CD80和CD86),导致免疫耐受和抗原呈递时的T细胞抑制。值得注意的是,单细胞分析显示胰腺β-细胞的基因特征与抗谷氨酸脱羧酶(GAD)滴度相关。与GAD水平相关的基因通路富集丰富分析包括许多脂代谢途径,如鞘磷脂代谢和磷脂酰肌醇信号系统。虽然在这些研究中没有进行单细胞脂质组学,但上述结果强调了单细胞中的脂代谢对于破译不同疾病背景下宿主免疫反应的代谢基础的重要性。    单细胞脂质组学的应用  结束语  单细胞脂质组学的发展仍处于起步阶段,我们相信随着该领域的发展,将会有更多的生物学和临床应用。技术突破彻底改变了我们研究生物学的方式,其标志是从整体分析过渡到专注于单分子和单细胞。随着我们以更高的分辨率检查生物结构,细微的差异被揭示出来,这可能会为新的研究方向铺平道路,从而为生物学和临床医学中长期存在的问题提供独特的见解。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制