小鼠大脑

仪器信息网小鼠大脑专题为您整合小鼠大脑相关的最新文章,在小鼠大脑专题,您不仅可以免费浏览小鼠大脑的资讯, 同时您还可以浏览小鼠大脑的相关资料、解决方案,参与社区小鼠大脑话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

小鼠大脑相关的耗材

  • 微操作型小鼠脊髓夹立体定位器ST-7M
    微操作型小鼠脊髓夹立体定位仪ST-7M是多功能小动物立体定位仪器具有微操作器和小鼠脊髓夹的功能,可以同时进行大脑和脊髓的实验,是目前小鼠实验中最为精密齐全而紧凑的定位操作仪器。微操作型小鼠脊髓夹立体定位仪ST-7M特色具有稳定结构,用于小型动物,尤其是小鼠实验。有一根辅助耳固定杆用于小鼠耳朵的牢固固定。可以同时进行大脑和脊髓的实验。提供了可移动的中心板,用于如固定猫脊髓这样的工作。AP框架杆,是固定操作器的地方,是NARISHIGE标准18.7mm方形杆,可以连接包括SM-15等其他多种配件小鼠脊髓夹立体定位仪规格配件SM-15立体定位显微操作器 EB-3B 小鼠耳固定杆(一对)EB-5N 小鼠辅助耳固定杆连接环螺丝六角扳手基座尺寸宽400 x 深300 x 高180mm基座重量7.4kg不带显微操作器的版本请访问 ST-7M-HT.用于大鼠的版本请访问ST-7R.
  • 小鼠脊髓夹立体定位器ST-7M-HT
    小鼠脊髓夹立体定位仪ST-7M-HT是带有小鼠脊髓夹多功能小动物立体定位仪器。小鼠脊髓夹立体定位仪特色紧凑型且稳定的立体定位仪器研发用于小型动物,尤其是小鼠实验。有一根辅助耳固定杆用于小鼠耳朵的牢固固定。可以同时进行大脑和脊髓实验。提供了可移动的中心板,用于如固定猫脊髓这样的工作。设置示例AP框架杆,是固定操作器的地方,是NARISHIGE标准18.7mm方形杆,可以连接像立体定位显微操作器SM-15 和其他多种配件。需要有显微操作器的版本请访问 ST-7M.需要用于大鼠的版本请访问ST-7R-HT.小鼠脊髓夹立体定位仪规格配件EB-3B小鼠耳固定杆(一对)EB-5N小鼠辅助耳固定杆 连接环螺丝六角扳手底座尺寸宽400 x 深300 x 高180mm底座重量7.4kg
  • Alzet大脑灌注装置Brain Infusion Kit
    Alzet大脑灌注装置Brain Infusion Kit针对中枢神经系统的药物测试实验中,很多药物不能通过血脑屏障进入大脑作用区域发挥它的作用。也有用脑部注射的方法来将药物直接注射入大脑中来起作用,但是由于大脑的代谢,常会引起药物的有效剂量与生理容量不符。对于许多化合物来说,要获得需要的数据,直接注射到作用位点是唯一的方法。Alzet的Brain Infusion Kits通过与Alzet渗透压缓释泵联合使用,可专门用于神经中枢系统研究用药物的灌注输送。Alzet的所有脑部灌注装置与所有的渗透压泵均可搭配使用。其中Kit1和kit2能够达到颅骨下方5mm的深度,当固定到颅骨上的选定区域时,本产品能够将插管插入到250-300g左右体重大鼠的脑室里的准确位置;而Kit3能够深达颅骨下方3mm的区域,主要是用来进入成年小鼠的侧脑室。另外所有脑部灌注装置均能够根据动物体型和所要达到的区域进行精确的调整,不但能够调节插管尖端插入的深度,如果用到导管,还可以修剪导管的长度来调节进入的深度。Alzet Brain Infusion Kit 包含的材料可以做10次的脑部注射。每套Kit里包含的组分有:10个脑部灌注套管(10 Brain Infusion Cannulae) 10个乙烯导管(10 Vinyl Catheter Tubes)40个深度调节垫片(40 Depth-Adjustment Spacers)1个使用说明书(1 Instruction Sheet) 货号产品名称规格BT-320Kit 1,28Gauge,3-5mmL(from skull surface)KITBT-330Kit 2,28Gauge,3-5mmL,Low profile,wide pedestalKITBT-340Kit 3,30Gauge,1-3mmL, ,Low profile,wide pedestalKIT详情请电询

小鼠大脑相关的仪器

  • 睡眠是恢复脑力、体力所必须的行为,睡眠障碍会影响大脑思维,并导致疾病发生,从而使人体从健康状态转向亚健康,甚至是疾病状态,为了研究睡眠障碍及研制抗疲劳药物或保健品,需要前期动物模型实验,因此睡眠剥夺设备是必不可少的仪器。 性能特点 ※ 可以整合脑电、肌电、光遗传等设备同步使用;※ 旋转筒睡眠剥夺仪不需要对动物进行训练,以温和的方式对动物进行睡眠剥夺的仪器,剥夺杆360度无死角进行抗睡眠;※ 参数设定完成后,不需要人为的干预即可对大鼠或小鼠进行睡眠剥夺的实验;※ 控制器触摸屏进行参数设置;※ 剥夺杆以1-20RPM的速度在鼠笼内转动,并且可以通过程序编制改变方向,以及转动频率以减少睡眠剥夺的动物对环境的适应;※ 系统可提供食物、水和睡眠场所,适用于长时间实验;※ 采用圆形透明剥夺箱设计,方便观察;※ 动物笼分大鼠笼和小鼠笼。 订货信息 序号货号名称单位124-0081睡眠剥夺仪(小鼠)套224-0082睡眠剥夺仪(150-300G大鼠)套324-0083睡眠剥夺仪(300G以上大鼠)套
    留言咨询
  • 产品介绍 睡眠是恢复脑力、体力所必须的行为,睡眠障碍会影响大脑思维,并导致疾病发生,从而使人体从健康状态转向亚健康,甚至是疾病状态,为了研究睡眠障碍及研制抗疲劳药物或保健品,需要前期动物模型实验,因此睡眠剥夺设备是必不可少的仪器。性能特点 ※ 可以整合脑电、肌电、光遗传等设备同步使用;※ 旋转筒睡眠剥夺仪不需要对动物进行训练,以温和的方式对动物进行睡眠剥夺的仪器,剥夺杆360度无死角进行抗睡眠;※ 参数设定完成后,不需要人为的干预即可对大鼠或小鼠进行睡眠剥夺的实验;※ 控制器触摸屏进行参数设置;※ 剥夺杆以1-20RPM的速度在鼠笼内转动,并且可以通过程序编制改变方向,以及转动频率以减少睡眠剥夺的动物对环境的适应;※ 系统可提供食物、水和睡眠场所,适用于长时间实验;※ 采用圆形透明剥夺箱设计,方便观察;※ 动物笼分大鼠笼和小鼠笼。订货信息 序号货号名称单位124-0081睡眠剥夺仪(小鼠)套224-0082睡眠剥夺仪(150-300G大鼠)套324-0083睡眠剥夺仪(300G以上大鼠)套
    留言咨询
  • 自由落体脑损伤模型打击器是用于制作大鼠小鼠的脑损伤模型,对大鼠和小鼠的脑部进行定位后,定点定力地打击大小鼠的脑部,造成大小鼠脑损伤,仪器操作简单,原理经典,自由落体脑损伤模型打击器按自由落体原理制作的一打击器,主机用于动物脑损伤模型的制作。自由落体脑损伤模型打击器由撞针、砝码、金属管和脑定位仪四部分组成。撞针直径4.5mm(可定制合适的尺寸),高度20mm,打击棒重40克和20克两种,金属套管高度30cm。 配合脊髓夹持器进行脊髓打击配合脑定位仪底座进行颅脑打击自由落体打击器配合定位仪和脊髓固定器使用主要技术指标:1、X、Y、Z轴人工自由调节2、撞针直径4.5mm(可定制合适的尺寸)3、金属管高度30mm4、打击棒重40克和20克两种5、金属套管高度30cm6、适用动物:小鼠、大鼠、豚鼠、兔、猫、狗等 颅脑撞击器的主要应用:俯卧位固定大鼠头部及四肢,消毒后,于正中线由前向后切开头皮,切口后端再以45度角向左前下延伸,形成三角型皮瓣。向头侧翻开皮瓣,剥离骨膜,充分暴露左侧颅骨。以左侧颅骨眼眶凹陷为支撑点,用持针器咬开小块颅骨,暴露硬脑膜,并向后在左顶骨扩大成直径6mm的圆形骨窗,注意保护脑膜。将撞杆头端置于骨窗硬脑膜外,其外垂直金属套管,用40克打击棒沿外周金属套管从20cm高度自由落下冲击撞针,下落冲击力4×20cm.g,造成大鼠左侧大脑半球局部脑挫裂伤。 请关注玉研仪器的更多相关产品。如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询

小鼠大脑相关的方案

小鼠大脑相关的论坛

  • 【转帖】哈佛育出能“闻”出光线的小鼠

    哈佛育出能“闻”出光线的小鼠 为气味和感受间关系的研究开辟新途径 据美国物理学家组织网10月18日(北京时间)报道,哈佛大学神经生物学家培养出一种能“闻”出光线的小鼠,为研究人员更好地理解嗅觉功能的神经机制提供了一种新工具。本周的《自然·神经科学》杂志详述了这项研究,这为未来研究气味和感受之间的关系以及其他感知系统的神经机制开辟了新方向。 要分析大脑的嗅觉感知是如何辨别气味的,最好的方法是研究大脑的活动方式。但气味种类繁多,化学成分非常复杂,变化微细让人难以捉摸,因此追寻这些由嗅觉刺激形成的大脑模式非常困难。 如果让鼻子作为视网膜那会怎么样呢?哈佛大学分子与细胞生物学教授温卡泰斯·默西和冷泉港实验室的同事利用遗传光学技术,把一种光敏蛋白质跟小鼠的嗅觉输入系统结合,培育了一批转基因小鼠,它们的所有嗅觉感受神经元都能表达视网膜素转导通道2(channelrhodopsin-2)蛋白质,这些转基因小鼠的嗅觉路径因此变成由光来激活,代替气味来研究大脑神经细胞如何区别不同气味。 嗅觉信息会在大脑中形成不同的三维空间组织形态,由于光输入很容易被控制,研究人员因此能设计一系列试验,利用光选择性地刺激鼻子里的特定感觉神经,研究大脑中嗅球的激活模式。 默西说,因为用外来光照代替气味在大脑中形成的空间组织只是一种临时性结构,新研究也存在一定的局限,并不能完全解释气味感受能力。研究还显示,在气味被感受的过程中,“嗅闻”的时机起着很大作用。

  • 小鼠读脑仪在美研制成功

    中国科技网讯 (记者何屹)据每日科学网站2月20日(北京时间)报道,斯坦福大学的科学家开发出一种系统,可以实时观察活鼠大脑活动情况,对研究诸如阿尔茨海默氏症等神经退行性疾病的新治疗手段具有十分重要的作用。该研究发表在近期出版的《自然·神经科学》杂志上。 研究人员首先利用基因疗法令老鼠神经细胞表达绿色荧光蛋白,该蛋白对钙离子敏感。当神经元受到刺激时,细胞内充满钙离子,荧光蛋白被激活,整个细胞会发出明亮的绿色荧光,就像一朵灿烂的绿色小烟花在黑色背景下绽放。随后,研究人员在老鼠大脑负责空间和情景记忆的海马体上方植入一个微型显微镜,显微镜与相机芯片相连,并可将数字图片传送到电脑,在电脑屏幕上显示老鼠大脑活动的实时视频。 海马体对环境非常敏感,在不同的环境下会有不同的细胞响应。当老鼠在实验环境的某个特定区域挠墙时,刺激特定的神经元闪烁绿色荧光。当小鼠流窜到别的区域时,绿色荧光会从某个神经元褪色,转而刺激新的神经元细胞发光。科学家在掌握了小鼠行为和神经元之间的关联后,仅仅通过小鼠脑部荧光闪烁的混乱图景,就能够清楚地了解老鼠究竟位于何处。 该研究小组发现,小鼠神经元的刺激模式十分稳定,实验间隔时间长达一月之后,仍可保持不变。而观察相同的细胞对于了解脑部疾病非常重要。如果某一个特定的神经元在测试时发生功能障碍,表明正常神经元已经死亡或出现神经退化疾病。研究人员就可以利用某些实验性的治疗试剂进行治疗,然后在相同刺激条件下,确定神经元能否恢复功能。 目前这项技术尚不能应用于人类,但小鼠模型是研究人类神经退行性疾病新疗法的一个重要起点,该系统将成为临床前研究评估的一种非常有用的工具。目前研究人员已经成立了一个公司,生产和销售该设备。 总编辑圈点 一般所说的“读脑仪”,通常指对脑意识进行探测和显现的电子设备,譬如测谎仪就算一种读脑设备。但在本文的研究中,“读脑”是为了找出实验对象的行为和神经元之间的关联,再进行医学药理学的分析。与意识探测相同的是,关乎“脑”研究,人类都还只是接触到皮毛,不过,随着近几年新进展的不断出炉,无论是“倾听大脑的思想”,还是将小鼠模型应用于研究人类神经退行性疾病新疗法,相信只是时间问题。 《科技日报》(2013-02-21 一版)

  • 【转帖】科学家发现大脑中特殊分子 或有助提高记忆

    科学家发现大脑中特殊分子 或有助提高记忆 作者:常丽君 来源:科技日报据每日科学12月9日报道,一个美德联合科研小组发现,大脑中有一种分子不仅能连接脑细胞,还能改变人们的学习方式。该研究由美国国家卫生研究院和一家慈善组织资助,研究成果发表在12月9日出版的《神经元》杂志上,有助于研究人员找到提高记忆的方法,并用于治疗神经错乱。脑细胞之间的连接称为突触,可以让神经脉冲通过,突触在调节人的学习、记忆以及思考方式中至关重要。如果突触在结构和功能上出现偏差,可能会导致大脑延迟和孤独症等,而在老年痴呆症中,突触则随着年龄增长而变少。然而科学家对突触在活体大脑中如何形成并不太清楚。当人在学习时新的突触会形成,且突触连接的强度会在学习过程中随着接收不同的刺激导致数量发生变化,这就是科学家所称的“可塑性”特征。耶鲁大学与德国马克思·普朗克研究院神经生物学所共同合作,证实一种名为SynCAM1的分子,能穿过突触的连接点且控制着突触的可塑性。论文主要作者、耶鲁大学分子生物物理学与生物化学副教授托马斯·贝德勒说:“我们开始假设这种分子在大脑发育中能促进新突触的形成,但研究发现,它对保持突触的结构和功能也有影响。现在,我们已经确定了这些分子是怎样支持大脑的自我联系功能。”SynCAM1是一种粘合分子,好像胶水一样帮助突触连接在一起。研究人员在实验中发现,当小鼠中的SynCAM1基因被激活,更多的突触连接会形成,而没有SynCAM1产生的小鼠脑中形成的突触更少。大脑中SynCAM1含量过高,小鼠也无法学习。这表明,过多的SynCAM1会损害学习能力。这项发现也支持了最近的一种理论,该理论认为在人们学习和记忆过程中,太多的连接不总是更好,突触活动平衡才最好。德国小组领导瓦伦丁·斯登说:“人们可能认为,突触的数量越多,动物处理或存储信息的能力就越强。而事实正相反,这些动物学习能力很差。行为测试显示,没有SynCAM1的小鼠学得更快记得更好。”耶鲁小组的贝德勒解释说,突触是不断变化的结构。将突触连接在一起的SynCAM1分子,其功能就像是一位雕塑家,把突触塑成各种形状。它虽然能加强神经元之间的联系,但如果太多,就会减弱突触的连接,抑制其功能。在小鼠和人体中,这种分子几乎是一样的,因此很可能,它们在人脑中的作用也一样。每日科学网站相关报道(英文) http://i.0dxy.cn/upload/2010/12/13/17734157.jpg

小鼠大脑相关的资料

小鼠大脑相关的资讯

  • 岛津成像质谱显微镜应用专题丨小鼠大脑成像分析
    优势● iMScope QT可测量的最大范围超过100万像素,能够进行大面积样本分析,例如在一次检测中对小鼠大脑全切片进行分析。● iMScope QT的分析速度比前一代产品快8倍以上,能够进行快速分析。● iMScope QT具有高质量准确度、分辨率及高空间分辨率,能够进行精确质谱成像分析。 概述质谱成像技术可以通过质谱仪直接检测生物分子和代谢物,同时保留其在样本组织上的位置信息,因此,可以生成不同生物分子基于特定离子信号强度和位置信息的二维质谱图像。iMScope成像质谱显微镜是用于质谱成像分析的整合型仪器,结合了光学显微镜和质谱仪,能够分析物质的结构和分布特征,拓展了药物研发和代谢物研究等领域的范围。通过将MALDI转换成LC和ESI系统,iMScope还可用于LC-MS定性及定量分析。本文将介绍配备Q-TOF质谱仪的新型iMScope QT(图1),并与前一代iMScope TRIO设备进行比较。图1 iMScope QT 小鼠全脑切片分析前一代iMScope TRIO设备的最大可测量范围是250 × 250像素。在iMScope QT中,可测量范围已扩展至1024 × 1024像素,能够以15 μm的空间分辨率分析小鼠全脑切片(约17mm × 9.4 mm)。根据表1条件进行检测,可在m/z 885.557处获得磷脂酰肌醇PI (38:4),并在m/z 888.631处获得硫苷脂(C24:1)的清晰质谱图像(图2)。 此外,由于iMScope QT的最大激光频率为20 kHz,分析速度比iMScope TRIO快8倍以上。结果显示完成图2所示的小鼠全脑切片(702624 pix)质谱成像分析仅需6小时。 表1 分析条件图2 小鼠全脑切片的质谱成像结果(空间分辨率:15 μm) 小鼠小脑的高空间分辨率分析对小鼠小脑附近的区域进行高空间分辨率质谱成像分析,如图2(a)中红色部分所示。根据表1中的分析条件,空间分辨率为5 μm。如图所示,可在m/z 885.557处获得 PI (38:4)、在m/z 888.631处获得硫苷脂(C24:1),检测到更清晰更详细的质谱图像(图3(b)和(d))。 此外,由于iMScope QT的质量准确度和分辨率较高,能够分离和检测PI (38:4)的同位素(m/z 888.573)和硫苷脂(C24 :1)(m/z 888.631),并能提取每种同位素的质谱图像(图3(c)和3(d))。而iMScope TRIO则无法获得以上结果。 图3 小鼠小脑的光学图像和质谱图像(空间分辨率:5 μm) (a) 光学图像(b) PI (38:4)的质谱图像,m/z 885.557(c) PI (38:4)同位素的质谱图像,m/z 888.573(d) 硫苷脂(C24:1)的质谱图像,m/z 888.631 结论与iMScope TRIO相比,iMScope QT的分析范围更广,分析速度更快,可实现更广泛的快速成像分析。此外,随着检测准确度和分辨率的提高,能够对各种目标化合物进行高精确度、高特异性的质谱成像分析。 iMScope QT不仅整合了质谱和形态学分析,而且能够在更广泛的领域实现更快速、更灵敏以及更高的空间分辨率的检测。 本文内容非商业广告,仅供专业人士参考。
  • 王凯研究组:共聚焦光场显微镜对小鼠和斑马鱼大脑快速体成像
    p style=" text-align: justify text-indent: 2em " 8月10日23点, i Nature Biotechnology /i 在线发表了由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室研究员王凯研究组完成的题为《共聚焦光场显微镜对小鼠和斑马鱼大脑快速体成像》的研究论文。该研究发展了一种新型体成像技术:共聚焦光场显微镜(Confocal light field microscopy),可以对活体动物深部脑组织中神经和血管网络进行快速大范围体成像。 /p p style=" text-align: justify text-indent: 2em " 跨脑区大规模的神经元如何整合信息并影响行为是神经科学中的核心问题,解答这一问题需要在更高时空分辨率上捕捉大量神经元活动动态变化的工具。共聚焦显微镜和双光子显微镜等运用于活体脑成像的传统工具基于点扫描,时间分辨率较低,难以研究大范围脑区中神经元的快速变化。因此,近年来科研人员一直致力于开发更快的成像方法。在多种新技术中,光场显微镜具有潜力,得到广泛关注,其特点在于可以在相机的单次曝光瞬间,记录来自物体不同深度的信号,通过反卷积算法重构出整个三维体,实现快速体成像,在线虫、斑马鱼幼鱼等小型模式动物上已获得初步应用。 /p p style=" text-align: justify text-indent: 2em " 传统光场显微镜存在两个难以解决的问题,限制了其在生物成像上的应用。首先,重构的结果会出现失真。2017年,王凯研究组研发的新型扩增视场光场显微镜(eXtended field-of-view Light Field Microscopy, XLFM)解决了这一问题,并应用于自由行为斑马鱼幼鱼的全脑神经元功能成像上,首次三维记录了斑马鱼幼鱼在完整捕食行为中的全脑神经元活动的变化。其次,现有光场显微成像技术缺乏光学切片能力,无法对较厚组织,如小鼠的大脑进行成像。让光场显微镜具有共聚焦显微镜一样的光学切片能力,滤除大样品中焦层之外的背景信号来提高信噪比,是提高成像质量、可广泛应用的关键所在。 /p p style=" text-align: justify text-indent: 2em " 然而,传统共聚焦显微镜采用激光逐点扫描和共轭点针孔检测来降低焦面外噪声的策略不适用于三维光场显微镜。面对这一挑战,研究团队创新提出广义共聚焦检测的概念,使其可以与光场显微镜的三维成像策略结合,在不牺牲体成像速度的前提下有效滤除背景噪声,提高了灵敏度和分辨率。这种新型的光场显微成像技术称为共聚焦光场显微镜。 /p p style=" text-align: justify text-indent: 2em " 研究团队在不同动物样品上测试了共聚焦光场显微镜的成像能力。团队成员对包埋的活体斑马鱼幼鱼进行全脑钙成像,对比共聚焦和传统光场显微镜的成像结果,发现加入光学切片能力后,图像分辨率和信号噪声比提高,可以检测到更多较弱的钙活动。进一步的,将共聚焦光场显微镜和高速三维追踪系统结合,对自由行为的斑马鱼幼鱼进行全脑钙成像,在ø 800 μm x 200 μm的体积内达到2 x 2 x 2.5 μm sup 3 /sup 的空间分辨率和6Hz的时间分辨率。受益于更高的分辨率和灵敏度,可以识别出斑马鱼幼鱼在捕食草履虫过程中单个神经元的钙离子活动的变化。 /p p style=" text-align: justify text-indent: 2em " 团队成员验证了共聚焦光场显微镜对小鼠大脑的成像效果,对清醒小鼠的视皮层进行钙成像,可以同时记录ø 800 μm x 150 μm的体积内近千个神经元的活动,最深可达约400 μm,且连续5小时以上稳定记录超过10万帧,没有明显的光漂白。团队成员进一步尝试使用共聚焦光场显微镜对鼠脑中的血细胞进行成像,深度可达600 μm,拍摄速度70 Hz,同时记录上千根血管分支中群体血细胞的流动情况并计算血细胞的速度,相比之前的传统成像方法通量提高了百余倍。 /p p style=" text-align: justify text-indent: 2em " 研究团队在自由行为的斑马鱼幼鱼和小鼠大脑上证明了共聚焦光场显微镜有更高的分辨率和灵敏度,为研究大范围神经网络和血管网络的功能提供了新的工具。同时,该技术不仅适用脑组织的成像,还可以根据所需成像的样品种类灵活调整分辨率、成像范围和速度,应用在其他厚组织的快速动态成像中。 /p p style=" text-align: justify text-indent: 2em " 研究在王凯的指导下,主要由博士研究生张朕坤、白璐,以及助理研究员丛林共同完成。王凯研究组余鹏、张田蕾,中国科学技术大学本科生石万卓,杜久林研究组李福宁做出贡献,研究员杜久林参与合作并给予指导意见。研究得到中科院脑智卓越中心实验动物平台的支持。研究工作受到科技部、中科院、国家自然科学基金委员会和上海市的资助。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/9bfa0661-24ad-4d0d-9ccd-10db465617c7.jpg" title=" 图1.jpg" alt=" 图1.jpg" / /p p style=" text-align: justify text-indent: 2em " 图1.(上)共聚焦光场显微镜原理示意图。(下)不同于传统光场显微镜,共聚焦光场显微镜采用片状照明,选择性激发样本的一部分,在垂直照明的方向上扫描,采集到的信号被遮挡板过滤掉焦层范围之外的部分。对采集到的图像进行重构可以得到焦层内的三维信息。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/28e2bd6d-59f5-4ff1-8085-355f6d295cbf.jpg" title=" 图2.jpg" alt=" 图2.jpg" / /p p style=" text-align: justify text-indent: 2em " 图2.(左)斑马鱼幼鱼捕食行为的一个例子。0s 为斑马鱼吞食草履虫的时刻。(右)左图斑马鱼捕食行为中,共聚焦光场显微镜记录到的两个不同脑区的神经元活动。箭头所指为过程中激活的单个神经元。 /p p style=" text-align: center text-indent: 0em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202008/uepic/c26412e7-a408-4c67-8533-1c5a118fdb4b.jpg" title=" 图3.jpg" alt=" 图3.jpg" / /p p style=" text-align: justify text-indent: 2em " span style=" color: rgb(68, 68, 68) font-family: 微软雅黑 background-color: rgb(255, 255, 255) "   /span 图3.(左)共聚焦光场显微镜拍摄得到的小鼠视皮层中的复杂血管网络。6个在不同深度拍摄的体积连接为一个深度达600 μm的三维结构。(中)100 μm到250 μm深度血管网络的平面投影,颜色代表不同血管分支中血细胞的平均流速。(右)图中箭头所指的区域中五个血管分支在一段时间内流过血细胞数量的计数。 /p
  • Nature!庄小威团队利用MERFISH技术绘制小鼠全大脑分子可定义和高空间分辨的细胞图谱
    在哺乳动物的大脑中,许多不同类型细胞形成复杂的相互作用网络,从而实现广泛的功能。由于细胞的多样性和复杂的组织,人们对大脑功能的分子和细胞基础的理解受到了阻碍。单细胞RNA测序(scRNA-seq)和单细胞表观基因组分析的发展使发现大脑中许多分子上不同的细胞类型成为可能[1,2]。然而,这些研究中有限的样本量可能导致对大脑细胞多样性的低估。此外,了解大脑功能背后的分子和细胞机制不仅需要对细胞及其分子特征进行全面的分类,还需要详细描述分子定义的细胞类型的空间组织和相互作用。在更精细的尺度上,细胞之间的空间关系是通过相邻分泌和旁分泌信号传递的细胞间相互作用和通信的主要决定因素。虽然突触通信可以发生在细胞体相距较远的神经元之间,但神经元和非神经元细胞之间的相互作用以及非神经元细胞之间的相互作用通常借助直接的体细胞接触或旁分泌信号,因此需要细胞之间的空间接近。而且涉及局部中间神经元的相互作用也倾向于发生在空间近端神经元之间。因此,一个高空间分辨率的全脑细胞图谱对于理解大脑的功能极其重要。来自美国哈佛大学的庄小威教授课题组使用多重误差鲁棒荧光原位杂交(MERFISH)技术对整个成年小鼠大脑中大约1000万个细胞中的1100多个基因进行了成像,并通过整合MERFISH和scRNA-seq数据,在全转录组尺度上进行了空间分辨的单细胞表达谱分析。研究人员在整个小鼠大脑中生成了5000多个转录不同的细胞簇(属于300多种主要细胞类型)的综合细胞图谱,将该图谱与小鼠大脑共同坐标框架进行定位,可以系统量化单个大脑区域的细胞类型组成和组织,并进一步确定了具有不同细胞类型组成特征的空间模块和以细胞渐变为特征的空间梯度。这种高分辨率的细胞空间图—每个细胞都具有转录组表达谱,有助于推断数百种细胞类型对之间的细胞类型特异性相互作用和预测这些细胞-细胞相互作用的分子(配体-受体)基础和功能。总之,此研究不仅为大脑的分子和细胞结构提供了丰富的见解,而且为其在健康和疾病中的神经回路和功能障碍奠定了基础。该结果于近日发表在Nature上,题为“Molecularly defined and spatially resolved cell atlas of the whole mouse brain”。研究小组通过MERFISH技术对横跨4只成年小鼠(1雌3雄)大脑整个半球的245个冠状面和矢状面切片上进行成像,根据DAPI和总RNA信号,单个RNA分子被识别并被分配到细胞,进而得到单个细胞的表达谱。总之,该研究对成年小鼠大脑中大约1000万个细胞进行成像和分割,包括11个主要的大脑区域:嗅觉区、等皮层(CTX)、海马形成、皮质底板(CS)、纹状体(ST)、苍白球、丘脑、下丘脑(HT)、中脑、后脑和小脑。基于典型相关性分析整合MERFISH数据和scRNA-seq数据,采用K最近邻(k-NearestNeighbor,KNN)分类算法对MERFISH细胞进行分类。为了对不同大脑区域的细胞类型组成和组织进行系统定量,他们将MERFISH生成的细胞图谱注册到艾伦脑科学研究所发布的小鼠脑三维图谱第三版(Allen Mouse Brain Common Coordinate Framework,CCFv3)[3],可将每个单独的MERFISH成像细胞及其细胞类型身份标签放入3D CCF空间(图1)。图1 对整个小鼠大脑的分子定义和空间分辨的细胞图谱(图源:Zhang, M., et al.. Nature, 2023)据统计,整个小鼠大脑由46%的神经元和54%的非神经元细胞组成,神经元细胞与非神经元细胞的比例在后脑中最低、在小脑中最高。神经元细胞包括315个亚类和超过5000个集群,其类型也表现出很强的区域特异性,大多数神经元亚类仅在11个主要区域中的一个区域富集。这11个主要区域包含了不同数量的细胞类型,尤其是后脑、中脑和下丘脑所包含的神经元细胞类型的数量以及局部复杂性远远高于其它大脑区域。基于神经递质转运体和参与神经递质生物合成相关基因的表达,他们将成熟的神经元分为8个部分重叠的组别。其中,谷氨酸能神经元和γ-氨基丁酸(GABA)能神经元分别约占神经元总数的63%和36%,谷氨酸能与GABA能神经元的比例在不同的大脑区域中差异很大,而5-羟色胺(5-HT)能、多巴胺能、类胆碱能、甘氨酸能、去甲肾上腺素能和组胺能神经元仅占神经元总数的2%(图2c)。谷氨酸能神经元和GABA能神经元广泛分布于全脑,可分为具有不同空间分布的不同细胞类型;在谷氨酸能神经元中,Slc17a7(Vglut1)、Slc17a6(Vglut2)和Slc17a8(Vglut3)在不同的脑区分布存在差异,Slc17a7主要位于嗅觉区、CTX、海马形成、CS和小脑皮层,而Slc17a6主要位于HT、中脑和后脑(图2d,e)。他们还观察到两个未成熟神经元(IMNs)亚类:一种是抑制性的,一种是兴奋性。抑制性IMNs由30个簇组成,沿脑室下区(SVZ)分布,通过前连合处延伸至嗅球;兴奋性IMNs由七个簇组成:簇516主要位于嗅觉区域,而其它簇沿海马体形成的齿状回分布(图2f),这与之前关于海马形成中成人神经发生的发现一致[4]。图2 神经元细胞的类型和空间分布(图源:Zhang, M., et al.. Nature, 2023)非神经元细胞包括23个亚类和117个簇。通过量化,研究小组发现在整个大脑中,非神经元细胞由30%少突胶质细胞、6%少突胶质细胞前体细胞(OPCs)、28%血管细胞、23%星形胶质细胞、8%免疫细胞和5%其它类型细胞组成。一些非神经元细胞类型,特别是星形胶质细胞和心室系统中的细胞也表现出很强的区域特异性。星形胶质细胞包括36个细胞簇,最大的两个集群Astro 5225和Astro 5214,分别占星形胶质细胞总数的48%和33%。基本上每个Astro星团都显示出独特的空间分布,Astro 5225只位于端脑区,Astro 5214只位于非端脑区,Astro 5215位于丘脑,Astro 5216位于后脑,Astro5231-5236位于嗅球,Astro 5207位于小脑,Astro 5222位于齿状回,Astro 5208富集于靠近软脑膜表面的髓质,Astro 5228、5229和5230位于SVZ沿线,延伸至嗅球,并与抑制性IMNs广泛共定位(图3d)。少突胶质细胞在纤维束中富集,在整个脑干中十分丰富,而OPCs则均匀分布地整个大脑;在集群水平上,一些少突胶质细胞和OPCs也表现出区域特异性,如Oligo 5277在皮层中富集,而Oligo 5286在后脑中富集(图3e)。与心室系统相关的细胞也呈现区域特异性分布,在第三脑室,下丘脑室管膜—胶质细胞位于腹侧区域,而ependymal细胞占据背侧区域,Hypendymal细胞位于第三脑室背侧的下联合器,心室内的主要细胞是脉络膜丛细胞和血管软脑膜细胞(VLMCs)。除了VLMC 5301和VLMC 5302,大多数VLMC集群被限制在软脑膜(图3f)。图3 非神经元细胞的类型和空间分布(图源:Zhang, M., et al.. Nature, 2023)接下来,研究团队为每个细胞定义了一个局部细胞类型的组分矢量,并使用这些矢量聚类细胞,从而得到了包含相似邻域细胞类型组成的细胞的“空间模块”(图4a)。他们确定了16个一级空间模块和130个二级空间模块,一级空间模块将大脑分割成与CCF中定义的主要大脑区域基本相吻合的区域,一个显著的差异是中脑和后脑之间的边界(图4b,c)。许多2级空间的模块与CCF中定义的子区域一致,但观察到更多的差异(图4d)。此研究中的空间模块描述是基于单个细胞的转录组范围内的表达谱所定义的细胞类型,因此比CCF中脑区描述的信息具有更高的分子分辨率,空间梯度代表了对该区域的分子轮廓的更精确的描述。图4 空间模块:分子定义的大脑区域(图源:Zhang, M., et al.. Nature, 2023)考虑到在某些情况下,细胞的基因表达谱可能会表现出渐进或连续的变化,他们因此检查了所有的细胞亚类,结果发现细胞的空间梯度广泛分布在大脑的许多区域。例如,颅内(IT)神经元在整个CTX上形成了一个连续的梯度,在这个区域,基因表达沿皮层深度方向逐渐变化,但第2/3层IT神经元的分离更为明显(图5a)。在纹状体中,D1和D2中棘神经元均沿背外侧-腹内侧轴形成空间梯度(图5b,c)。在外侧间隔复合体(LSX)中,几个GABA能亚类沿着背腹轴形成了一个梯度(图5d)。在海马体的CA1、CA3和齿状回区域和中脑的下丘中也观察到空间梯度。他们也观察到了一些非神经元细胞之间的空间梯度,如下丘脑室管膜—胶质细胞,沿着第三脑室的背腹轴形成了一个连续的梯度(图5e)。通过基于UMAP(一致的多方面逼近和投影以进行降维)的基因表达可视化分析,他们发现一个大规模的跨越HT、中脑和后脑区域的空间梯度(图5f)。图5 分子定义的细胞类型的空间梯度(图源:Zhang, M., et al.. Nature, 2023)最后,他们分析了亚类水平上的细胞类型,并推断单个大脑区域中细胞类型特异性的细胞-细胞相互作用(包括非神经元细胞间,非神经元细胞和神经元之间以及神经元间)。几百对细胞亚类被确定,统计学结果显示有显著的相互作用。预测的大多数具有相互作用的细胞类型对包含多个配体-受体对,与同一细胞类型对中的非近端细胞对相比,近端细胞对的表达显著上调,为这些细胞间相互作用的分子基础提供了见解。在非神经元细胞之间,发现内皮细胞和周细胞均与大脑中的边缘相关巨噬细胞(BAMs)、巨噬细胞有显著的相互作用。在这两种情况下,与非近端细胞对相比,来自层粘连蛋白信号通路的配体-受体对在近端细胞对中均明显上调,一些细胞因子(内皮细胞中的Cytl1和周细胞中的Ccl19)在BAMs近端血管细胞中表达上调,这说明大脑中的血管细胞可能利用这些细胞因子来招募巨噬细胞(图6d,e)。小胶质细胞也被发现与内皮细胞、周细胞之间的显著相互作用;与内皮细胞相比,周细胞与小胶质细胞相互作用的可能性更高,而与BAMs相互作用的趋势则相反(图6f,g)。他们还观察到神经元和非神经元细胞之间的显著相互作用,例如星形胶质细胞和抑制性IMNs在嗅球中、星形胶质细胞和兴奋性IMNs在海马形成中表现出显著的相互作用。此分析也预测了一些神经元亚类之间的相互作用,例如,海马形成过程中Pvalb枝形吊灯状GABA神经元和CA3谷氨酸能神经元之间、IPN Otp Crisp1 GABA神经元和中脑的DTN-LDT-IPN Otp Pax3 GABA神经元之间的相互作用。图6 细胞间的相互作用和通信(图源:Zhang, M., et al.. Nature, 2023)文章结论与讨论,启发与展望通过MERFISH技术成像约1000万个细胞,并将MERFISH数据与全脑scRNA-seq数据集整合,该研究生成了一个具有高分子和空间分辨率的、横跨整个小鼠大脑的分子定义的细胞图谱。进一步将该图谱注册到了艾伦脑科学研究所发布的CCF中,提供了一个可被科学界广泛使用的参考细胞图谱,使科研人员能够确定每个大脑区域不同转录细胞类型的组成、空间组织和潜在的相互作用。一方面,非神经元细胞与神经元细胞或非神经元细胞之间的相互作用,以及配体-受体对、基因的相关上调,为测试不同非神经元细胞类型的功能作用提供了切入点。另一方面,将转录组成像与不同行为范式下的神经元活动成像相结合可以揭示神经元的功能角色[5]。未来的研究将结合空间分辨的转录组学分析和各种其它特性的测量(如表观基因组谱、形态学、细胞的连通性和功能、系统的基因扰动方法),将有助于大家阐述大脑的分子和细胞结构的功能和功能障碍在健康和疾病中的作用。MERFISH(Multiplexed Error-Robust Fluorescence In Situ Hybridization),一种空间分辨的单细胞转录组学方法,经过近年的发展已成为生命科学领域中最具有前景的单细胞测序技术之一。该技术独特的原理和方法,可实现对单细胞进行多重靶向探测,从而深入研究细胞的生物学特性,对于疾病诊治及药物研发等方面也有着广泛的应用价值。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制