微孔材料

仪器信息网微孔材料专题为您整合微孔材料相关的最新文章,在微孔材料专题,您不仅可以免费浏览微孔材料的资讯, 同时您还可以浏览微孔材料的相关资料、解决方案,参与社区微孔材料话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

微孔材料相关的耗材

  • 普兰德 96孔微孔板,PP材质,U形底 培养板/微孔板/滴定板
    BOLOR铂勒品质提供的96孔微孔板,PP材质,U形底,300 μl,未灭菌 701330性能优越。产品特点:96孔微孔板,PP材质,U形底,300 μl,未灭菌 701330作为众多知名品牌的合作伙伴,BOLOR铂勒以其优良的品质和服务与阁下携手建立战略合作。 货号Produktname70133096孔微孔板,PP材质,U形底,300 μl,未灭菌BRAND GMBH + CO KG是一家总部位于德国韦特海姆,拥有60年历史的企业。拥有450名优秀员工, 公司以其优越的品质与价值在实验室设装制造领域建立了良好的声誉。BRAND生产制造*广泛的的移液操作产品线,诸如分液器Dispensette 与移液器Transferpette 以及相关的BRAND耗材满足生命科学实验领域的 广泛应用需求;BRAND坚持供应经典的容具,无论是玻璃制品还是塑料制品,还有临床实验用产品,满足临床实验室及各种通用实验室的应用需求。
  • 昨非zuofei过滤膜,尼龙66微孔滤膜,混合纤维MCE水性滤膜,PES聚醚砜微孔滤膜,尼龙6微孔滤膜,疏水PTFE微孔滤膜,亲水PVDF微孔滤膜
    微孔滤膜有不同种类的材质,客户可根据不同材质、不筒孔径、不同规格的膜片来选 择。材质可分为尼龙 6、尼龙 66(进口 PALL)、MCE(混和纤维素)、进口 PES(聚醚砜)、 进口或国产 PTFE(亲水、疏水聚四氟乙烯)、PVDF(亲水聚偏氟乙烯)。 尼龙6材质的微孔滤膜,通量大,低溶出物,机械强度好。尼龙良好的物理特性可满足各种试验条件。尼龙表面是亲水性的,同时对甲醇、乙腈、正己 烷、二氯甲烷、四氢呋喃等常用有机溶剂都可以耐受,所以水相、有机相或者混合向都 可以使用。规格及货号:尼龙 6直径(mm)孔径(um)规格NMF09130.45100 片/盒NMF10130.22 100 片/盒NMF11250.45100 片/盒NMF12250.22100 片/盒NMF29500.45100 片/盒NMF30500.22100 片/盒尼龙 66(进口) 加强型尼龙 66 微孔膜,具有天然的亲水性,以聚 丙烯为支撑层,所用材料符合 GMP 和 FDA 要求,不使 用表面活性剂和湿润剂,具有广泛的化学兼容性。多 皱滤材,打折结构,过滤面积大,容污能力强,固定 p 孔径结构双层无纺布支撑层对滤膜提供最佳保护。 PES(进口) 聚醚砜材质,聚醚砜(PES)微孔滤膜具有天然的亲水性能,与其 他膜品种相比较,PES 膜具有非常 好的水湿润性,因此 PES 膜具备极 高的水通量。 优点:1.过滤面均匀, 确保过滤 精度; 2.海绵体结构,确保材料的刚性, 使膜在外压下不易压扁; 3.截面非对称结构,大大提高材料 通量和使用寿。 MCE(混和纤维素) 混合纤维素酯膜(MCE 膜)在膜的平整性和均匀性 方面得到了进一步的提升,具有更好的性能表现。混合 纤维素酯膜(MCE 膜)不具有生物活性,在严格控制的 条件下生产和检测,是在分析和研究应用中最广为使用 的膜之一。孔径分布比较均匀穿透性的微孔,微孔率高 达 80‰的绝对孔径。主要用于水系溶液的过滤。 PTFE 膜(疏水) PTFE 膜是以聚四氟乙烯为原料,采用特殊工艺,经压延、挤出、双向拉伸等方 法制成的微孔性薄膜。PTFE 膜按用途可分 为服装膜、空气过滤膜、空气净化膜。PTFE 膜具有原纤维状微孔结构,孔隙率 85%以 上,每平方厘米有 14 亿个微孔,孔径范围 0.02um-15um。 PTFE 膜(亲水) 常规的疏水 PTFE 膜进行改性,得到亲水 PTFE 膜,可以适用于过滤水溶液。疏水 PTFE 本身是疏水 的,改性之后,既可以过滤水溶液,也可以过滤有 机溶液,比较方便。化学耐受性也好。 PVDF 膜(亲水) PVDF 膜即聚偏二氟乙烯膜,膜孔径有大有小,随着膜孔径的不断减小,膜对低分子量的蛋 白结合就越牢固。昨非zuofei过滤膜,尼龙66微孔滤膜,混合纤维MCE水性滤膜,PES聚醚砜微孔滤膜,尼龙6微孔滤膜,疏水PTFE微孔滤膜,亲水PVDF微孔滤膜
  • 进口酶标仪石英微孔板(96孔板、384孔板)
    德国Hellma公司成立于1922年,是全球比色皿与光学元件供应商,1995年荣获TUV Sudwest的DIN EN ISO 9001质保认证。为了确保品质,Hellma采用出自德国Heraeus公司的SUPRASIL高级石英为原材料,每一件比色皿都经过了严格的质量审查。 推出石英微孔板,专门用于紫外区的检测,全石英材质,在200-250nm波长透光度可达80%以上,96孔板、384孔板可选。 石英微孔板可重复使用,清洗方便,耐高温,可直接高压蒸汽灭菌!石英微孔板730.009/730.009B-QG规格目录描述 外径尺寸 H × B × L (mm)底部厚度 (mm)微孔产品号直径 mm深度 mm容量 µ l730.009-QG石英微孔板96 孔;底部:人造石英14.5 x 127 x 85.526.612300730-009-44730.009B-QG石英微孔板96 孔;底部:人造石英14.5 x 127 x 85.526.612300730009-B-44其它规格微孔板咨询请与我们联系!! 石英微孔板现货特惠促销!!!

微孔材料相关的仪器

  • 微孔滤膜MCE/N66/PES 400-860-5168转1222
    微孔滤膜是药品微生物检测和一些小规模液体过滤不可或缺的耗材。泰林生物现提供多种材质,不同直径和孔径的微孔滤膜,可配合不同型号的薄膜过滤器或过滤支架,微孔滤膜广泛用于多种液体的无菌、限度检查或者除菌、去微粒等。微孔滤膜性能特点:1. 提供独立无菌包装和非无菌包装两种方式(0.22μm仅提供非无菌包装),供客户自由选择;2. 非无菌包装可采用121℃,30min湿热灭菌方式灭菌(由使用者进行);3. 无菌滤膜采用EO方式灭菌;4. 亲水性强,微生物限度检查用膜回收率符合现行药典规定。微孔滤膜技术参数:1. 材质:MCE、N66、PES2. 直径:47mm、50 mm3. 孔径: 0.45μm、0.22μm4. 灭菌方式:EO(无菌膜片)、121℃湿热灭菌(非无菌膜片,由使用者进行)5. 包装方式:无菌独立包装、吸塑盒装(非无菌)微孔滤膜应用领域:1. 制药:纯化水、注射用水、原料药及口服液、片剂、胶囊、生物制品及制剂的微生物限度检查;2. 疾控:空调冷凝水、生活饮用水等水质的细菌总数检查,致病菌检测;3. 食品:饮料、矿泉水、纯净水的菌落总数检查;4. 化工:各种需测试微生物的水样检测。
    留言咨询
  • 安捷伦微孔板离心机提供稳定、高速的离心,其循环时间为 3 秒。微孔板离心机是一种体积紧凑、机械臂可访问的自动化离心机,可在小巧、低维护需求的机身内提供振动和噪音控制。该微孔板离心机是高通量或中等通量应用(例如 PCR 纯化、细胞采集和高密度微孔板中气泡的去除)的理想选择,能够快速可定制地加速和减速,最大限度减少所需的循环时间。该微孔板离心机具有 3 秒装载时间和稳定的运动控制,可以与大多数实验室微孔板处理器/机械臂整合操作。特性体积小巧紧凑 — 占用非常小的台面,易于整合到集成系统中通用访问 — 微孔板离心机具有自动化离心机装载器和高通量门的设计,可以与许多自动化系统整合可叠放设计 — 多个微孔板离心机单元可以叠放,在不增加占地面积的情况下提高了系统通量振动小 — 将振动与安装表面隔离,最大限度减小对相邻仪器的影响可选的微孔板装载器 — 微孔板无需用户干预,且便于放置到两个内部离心机微孔板载架上
    留言咨询
  • 仪器简介:安捷伦微孔板离心机(Microplate Centrifuge)是一款可以整合到实验室自动化系统中的微孔板离心机,它集低震、低噪音、超小型化和维护成本低廉等特点于一身,是高通量研究领域的理想选择。安捷伦微孔板离心机拥有优秀的加减速性能,可以极大地缩短运行周期。它在过滤操作、从高密度微孔板中驱除气泡以及分离细胞和细胞碎片等环节中都表现出众。由于具有稳固和有效的设计,安捷伦微孔板离心机还可以叠加使用以节省空间。离心机门的设计使得一系列垂直或水平关节机器人可以进入离心腔以实现高通量、自动化操作。对于不能进入离心机门的机器人,安捷伦自动化解决方案可提供专用的自动化离心装载器(Automated Centrifuge Loader),其强大的运动控制功能保障了进样时间可控制在3 秒内,并确保了其可被整合到绝大多数的自动化系统中。技术参数:最高速度/重力加速度(g):3000 RPM/1000 g最大有效装载量(每个离心腔):250 克[8.8 盎司]加速/减速:7.5 秒0-3000RPM最大平衡许可误差:10 克[0.35 盎司](更高的不均衡量,请咨询工厂)处理量:2 个微孔板或离心管架实验器材相容性:所有符合ANSI 标准的96-、384-、1536-孔微孔板、PCR 专用微孔板、管架等。微孔板最大高度:4.83 厘米[1.90 英寸]主要特点:特性和优点: 1,尺寸紧凑:节省空间以便于整合到自动化系统中 ,2,易于集成:配有自动化离心装载器后可整合入绝大多数自动化系统。 ,3,可堆叠使用:在实现高通量的同时不受空间制约 自动化离心工作站: 将配有自动化离心装载器(Automated Centrifuge Loader) 的微孔板离心机(Microplate Centrifuge)与BenchCel 微孔板操纵系统(BenchCel Microplate Handling System)整合构成BenchCel 离心工作站当有一批微孔板需要离心时,本离心工作站就是您的最佳选择。该微孔板离心机可以非常容易地与BenchCel 微孔板操纵器整合,为您提供自动化操作的便利性。简单的软件界面让用户能够方便地设置离心参数,您只需轻击鼠标,剩下的工作就可以完全交给BenchCel 机器人和微孔板离心机处理了! 可选配件,微孔板自动化离心装载器(Microplate Loader): 自动化离心机装载器的装载顺序如下:首先,自动门打开;然后,自动化离心机装载器托起机器人送来的微孔板;最后将微孔板置入离心机内两个微孔离心腔之一。
    留言咨询

微孔材料相关的试剂

微孔材料相关的方案

微孔材料相关的论坛

  • PTFE多孔材料(微孔膜,微孔滤膜)在仪器分析中有哪些应用?

    我们是做PTFE多孔材料的。刚刚进入这个行业,感觉比较迷茫目前查了一些资料,初步了解了PTFE多孔材料有用于液体纯化、色谱、过滤分离等领域大神们能否给我再详细拓展一下PTFE微孔膜,在仪器分析中的具体应用啊!比如为什么要选择PTFE过滤材料而不选择其他滤材

  • 【求助】关于微孔材料

    刚接触这方面的课题,想请教一下,怎样确定一个物质具有微孔结构,除了单晶解析还有其他办法吗。具有微孔结构的物质在X射线衍射上会有特殊表现吗。比如小角出现衍射峰?

  • 微孔测试技术

    一般把微纳米粉体表面上的孔按其尺寸分为三类,孔径大于50nm为大孔,孔径在2至50nm为中孔或介孔,孔径小于2nm称为微孔。从理论上说,氮吸附法测定孔径分布只适合于介孔。随着技术的不断进步,氮吸附法测孔的范围已可扩大至0.35~500nm的范畴,再大的孔需用压汞法测定,0.35nm已到微孔的极限,再小已无意义。测定微孔的技术非常复杂,因为,在氮气相对压力很低( 0.01)时才能发生微孔填充,孔径在0.5~1nm的孔只有在氮分压小于0.00001时,才能产生微孔填充,动态法是无能为力的,静态容量法需要氮气压力小于1Pa, 为了测定更细微的孔,常采用分子泵,采用氩气作为吸附质比较有利,他产生微孔填充的压力比氮气高,另一种可行的方法是采用CO2作吸附质在室温进行吸附,可以无需分子涡轮泵级的真空度。微孔分析的方法也很多,有D-R法、t-图法、 αs- 图法、 HK 、SF法、 NLDFT法等,其中t-图法相对比较实用。t-图法中,吸附量V被定义为吸附统计层厚t的函数,关键在于选择适当的t曲线,由V-t图中,可以很方便的得到比表面积、微孔孔径、微孔体积,在活性炭等微孔材料的分析中应用较多,效果很好。

微孔材料相关的资料

微孔材料相关的资讯

  • 约稿|微孔材料孔径分析难点及解决方案
    近年来,多孔材料的开发和应用进展迅速,如多孔聚合物、多孔陶瓷、泡沫塑料、多孔金属材料等。这些材料具有一些共同的特点:密度小、孔隙率高、比表面积大,在化工、电化学、建筑、军工及航天等领域发挥着独特且重要的作用。与此同时,一些新兴领域也越来越多地应用多孔材料来解决相关问题,例如某新推出的电动汽车电池采用了多孔海绵状的纳米多孔硅,可抑制硅碳负极膨胀,从而大幅提高锂电池的容量,提升电动汽车的续航能力。多孔硅用于锂电池负极多孔材料孔结构的研究需要准确、简洁的表征技术。根据检测目的,一般可分为X射线小角度衍射法、气体吸附法、电子显微镜观察法、压汞法、气泡法、离心力法、透过法、核磁共振法等。目前,表征材料比表面积和孔径最普遍的方法是气体吸附法,即气体分子(吸附质)在被测材料(吸附剂)表面因为范德华力产生的吸附,通过测量样品的吸附等温线,采用等效代换的方法计算出材料比表面积和孔径的特征。当前国内比表面积的测量仪器主要分为2种,动态色谱法和静态法容量法均可,但孔径的测量方法则是国际通用的静态容量法,此方法测量孔径的范围从0.35nm到100nm以上,其中IUPAC对孔径做了分类,见下图, 纳米孔纳米孔:包括微孔、介孔和大孔;大孔:孔宽大于50nm的孔;Fe3O4、硅藻土等材料含此类孔;介孔:宽度介于2nm到50nm之间的孔;大多数超细粉体是在这一范围内;微孔:孔宽小于2nm的孔;活性炭,分子筛,沸石,MOF等材料中大都含有微孔,后面对微孔又做了细分和补充;极微孔:孔宽大于0.7nm的较宽微孔;超微孔:孔宽小于0.7nm的较窄微孔。1、 微孔测试难点对于微孔材料的孔径和孔体积进行分析是很困难的,如下图所示,在微孔内相对的两个孔壁距离很近,孔壁产生的作用势重叠,对吸附质分子的作用力比中孔和大孔大,在液氮温度77K下的N2吸附是微孔和介孔分析最常用的吸附质,此时气体分子的扩散速度和吸附平衡都很慢,填充0.35nm~1nm的孔要在相对压力10-9<P/P0<10-5间才会发生,为了达到微孔填充所需的较低相对压力需要涡轮分子泵级别真空,即整个真空系统需达到很高真空。2、 静态法高性能仪器针对微孔,超微孔以及极微孔的测试难点,国仪精测推出了静态法高性能UltraSorb仪器。静态法高性能UltraSorb仪器如上图所示,为保证整个测试过程的高真空度,UltraSorb仪器从分子泵、真空管路到样品管全体系采用金属面密封,通过VCR金属垫片连接。该仪器没有采用常规仪器所使用的石英样品管,而是采用了一种新型样品管——不锈钢焊接石英管。此样品管特点是:上部不锈钢部分与高性能UltraSorb仪器之间通过金属垫片进行硬连接,进一步提高整个仪器的密封性能,不锈钢焊接石英玻璃管的下部石英玻璃部分发挥石英玻璃样品管低导热性能,在实验测试中能够降低冷却液(液氮)挥发,从而提高液氮使用时间。为获取测试微孔所需较低相对压力,高性能UltraSorb仪器在提高真空系统真空度方面包括以下关键几点:1) 采用两级机械泵叠加涡轮分子泵协同工作实现更高真空。真空泵抽取真空将仪器系统降低到一定真空度后开启涡轮分子泵,通过高速旋转的旋叶将扩散至分子泵中的气体分子排出,从而减少真空体系中的气体分子,进一步实现更高的真空度。2)改进高真空涡轮分子泵连接方式。由于波纹管和O型密封圈在低真空下存在自身放气问题,将涡轮分子泵的连接方式进行了改进,传统仪器采用ISO-K连接方式,分子泵和波纹管通过O型圈密封;高性能仪器连接方式改为CF刀口法兰,即通过铜垫片将涡轮分子泵和高真空微焊管路系统进行连接,这种连接方式可以将分子泵极限真空度提高2个数量级。3)涡轮分子泵进气口采用轴向直连设置方式。较大的口径更便于气体分子的扩散,为了发挥涡轮分子泵的优势,设置分子泵轴向进气CF法兰连接方式,将工作口径优化到最大,且将涡轮分子泵和高真空微焊管路系统腔体采用CF刀口法兰直接连接的方式,可进一步提高整个系统真空度。4)优化气体管路,充分发挥分子泵优势。所有管路均为高真空微焊管路系统,全系统内管壁电抛光处理,管路之间采用金属面密封的VCR接口配件连接,克服O型圈密封在低真空下自身放气问题,确保高真空下漏气率达到1*10-11Pa.m3/S要求。5)配套的VCR接口气动阀门,消除电磁阀局部发热引入的测量误差。除此之外,高性能仪器还应用了高精度数字化压力测量以及数据采集系统,多量程压力传感器分段测量,工业标准RS485或RS232通讯模式,以及油浴控温腔,同位预处理方式等措施确保微孔测试数据的准确性。3、 总结静态法高性能UltraSorb仪器测试微孔标样测试结果见下图所示,相对压力P/P0最低可达到10-7,位于微孔分析相对压力区间,测试微孔的中值孔径为0.84nm,符合微孔标样的标准值,证明仪器在温度77K下氮气测试微孔完全可以满足要求。(国仪精测 供稿)
  • 用于工业废气处理的新型硅基微孔材料研制成功
    近日,中科院大连化学物理研究所研究员朱向学和研究员李秀杰团队在脱除不同分子尺寸的挥发性有机化合物(VOCs)吸附材料的研究方面取得了新进展。团队制备了富含开放微孔的新型硅基材料,可以用于VOCs的高效脱除,相关成果发表在《化学工程杂志》上。VOCs治理是大气污染治理的重要组成部分,是我国改善空气质量、打赢蓝天保卫战的重要抓手。吸附脱除或吸附脱除与燃烧法组合工艺是目前工业VOCs 废气处理最常用方法,其核心和关键在于高效吸附材料,尤其是在高湿气氛、多组分复杂工况条件下高效大容量吸附材料的开发。针对常用沸石吸附材料孔道结构单一,难以实现高湿气氛下多组分VOCs高效吸附的问题,团队提出了沸石晶化前驱体液可控水解和自组装的合成策略。通过对水解过程(模板剂类型及含量、碱度等)和自组装过程(干燥条件等)的调控,制备得到了具有丰富开放微孔结构的新型硅基吸附材料(MIS),并实现了MIS材料孔结构的灵活调变。在优选条件下,团队制备得到的MIS材料的微孔孔容约0.28cm3/g,且微孔分布较宽(0.5至2.0 nm),具有吸附不同分子尺寸VOCs的能力。进一步研究发现,在高湿度条件下间二甲苯吸附过程中,MIS材料表现出较MCM-41、Silicalite-2、硅胶、SBA-15和多级孔ZSM-5等传统吸附剂更优异的吸附性能,同时在多次循环吸附—脱附实验中未见吸附量降低;在丙酮、异丙醇、甲苯、苯乙烯、间二甲苯和三甲苯等不同分子尺寸VOCs的吸附中均表现出优异的吸附性能。该工作为相关新型吸附材料的开发提供了新思路。相关论文信息:https://doi.org/10.1016/j.cej.2022.140077
  • 【用户案例】基于微尺度3D打印技术制造适用于微重力环境的微孔板
    来自德国法兰克福大学(Goethe University Frankfurt)布赫曼分子生命科学研究所(Buchmann Institute for Molecular Life Sciences)的研究人员使用摩方精密 (BMF)的微尺度3D打印机microArch S140制造了一种微型培养皿——水凝胶微孔板(hydrowells)的模具,该微孔板可在微重力环境下用于培养3D多细胞球体。此项研究是太空多细胞球体聚集与生存实验(Spheroid Aggregation and Viability in Space, SHAPE)的一部分,该实验由德国航空航天中心(DLR)支持并将在近地轨道上的国际空间站(ISS)上进行。多细胞球体和培养细胞的水凝胶微孔板这种定制的水凝胶微孔板(hydrowells)由琼脂糖(一种多糖)制成,用于替代塑料或玻璃培养皿在微重力环境下培养多细胞球体。多细胞球体是三维的组织模型,特别适合再生医学和癌症等研究。微孔板的孔与孔之间互不连通,可助力简单扩散实现物质交换且可为细胞提供生物相容的环境。细胞悬浮在单独的微孔中生长,逐层堆叠形成多细胞球体。微孔板则可很好地规避多细胞球体生长到不可控尺寸的风险。布赫曼分子生命科学研究所参与的太空多细胞球体聚集与生存实验要求微孔板具有特殊的设计:漏斗形的入口、圆柱形的横截面以及U形/锥形或截去顶部锥形的底部。这些底部的特殊形状有利于多细胞球体的形成和长时间的细胞培养。微孔板是通过阳膜,即具有凸形的模具翻铸而成。微尺度3D打印可以实现超高光学精度、生成光滑表面、可使用高性能材料以及支持快速研发,因此,此研究中被用来制备凸模。漏斗形顶部的微孔板模具圆柱形截面的微孔板模具U形底部的微孔板模具微尺度3D打印设备和材料摩方精密微尺度3D打印机microArch S140具有10μm的超高光学精度,所制造的零件顶部表面光洁度Ra可以达到0.4~0.9μm,侧面可以达到1.5~2.5μm。microArch S140基于面投影微立体光刻技术(PμSL),可以实现高的表面光洁度和精度,优于光学精度约为25~50μm的SLA立体光固化3D打印机。microArch S140 支持多种高性能3D打印材料,同时也支持工程级的405nm波段光固化树脂。用于制造微孔板模具的材料是摩方精密的HT200树脂材料,这种材料可承受温度高达200°C,同时兼具高强度和耐用性。这些优异的性能使模具可以进行高温高压蒸汽灭菌,使微孔板免受细菌污染。经过高压蒸汽灭菌后,模具并未出现翘曲或分层。这种具有优异热学性能和机械性能的3D打印材料确保了最终产品出色的整体性。microArchS140 微尺度3D打印机摩方精密HT200树脂材料使用HT200材料制造的微孔板模具微孔板模具的特写模具的精度,表面光洁度和高压蒸汽灭菌法兰克福大学布赫曼分子生命科学研究所的终身科学家、首席研究员——Francesco Pampaloni博士测试了用来生产微孔板的3D打印模具,他评价摩方精密微尺度3D打印的模具具有高的精度和表面光洁度,使用这种模具生产的微孔板可以培养出尺寸一致的多细胞球体。Pampaloni博士还补充道,用于制造模具的3D打印材料完全可以承受121℃和2.1bar的高压蒸汽灭菌条件,确保了微孔板的无菌环境。水凝胶微孔板有多细胞球体和没有多细胞球体的微孔板点击底部“阅读原文”了解更多有关microArch S140和PμSL(面投影微立体光刻技术)
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制