腐殖质

仪器信息网腐殖质专题为您整合腐殖质相关的最新文章,在腐殖质专题,您不仅可以免费浏览腐殖质的资讯, 同时您还可以浏览腐殖质的相关资料、解决方案,参与社区腐殖质话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

腐殖质相关的耗材

  • 色谱科 Discovery DPA-6S SPE小柱(聚酰胺树脂)(适合于水溶液中羟基和羧基化合物的分析,如单宁、叶绿素、腐殖酸等)
    Discovery DPA-6S SPE小柱(聚酰胺树脂)(适合于水溶液中羟基和羧基化合物的分析,如单宁、叶绿素、腐殖酸等) 助留机理:反相 样品基质相容性:水溶液或甲醇溶液 聚酰胺树脂:粒度:50-160&mu m,表面 pH:4.5-7.5,密度:0.2-0.3cm3/g,含水量: 5%用于按照反相机理,通过化合物羟基基团与树脂的酰胺基团之间的强烈的氢键作用,从水溶液或甲醇溶液中吸附极性化合物(-OH 基团,尤其是酚醛化合物)用于萃取单宁、叶绿素、腐殖酸、药理活性的类萜、黄酮类、没食子酸、儿茶酚 A、原儿茶酸和间苯三酚也用于萃取芳族羧酸和硝基芳香化合物不可逆地保留苯醌
  • SP Bel-Art 菌落复制工具,用于96孔板(Bel-Blotter)
    SP Bel-Art 菌落复制工具,用于96孔板(Bel-Blotter)这种独特产品的96个开口吸管头设计用于以最小的努力完成繁琐的任务,适合所有类型的96孔板,从平板、V形或圆形底板到0.2ml薄壁PCR板和管。• 贴片将保留高达10ml的液体,用于放置在滤纸、板或其他接收介质上• 可用于复制重组DNA文库、接种菌落杂交过滤器、PCR、噬菌体分型和其他应用• 由聚碳酸酯制成;易于使用• 可重复使用的高压灭菌器 货号: F37876-0002 重量: 0.09kg 尺寸: 15.24cm x 15.24cm x 5.08cm
  • 色谱科 Discovery DPA-6S SPE小柱(聚酰胺树脂)货号:52625-U
    Discovery DPA-6S SPE小柱(聚酰胺树脂)(适合于水溶液中羟基和羧基化合物的分析,如单宁、叶绿素、腐殖酸等)助留机理:反相样品基质相容性:水溶液或甲醇溶液 聚酰胺树脂:粒度:50-160&mu m,表面 pH:4.5-7.5,密度:0.2-0.3cm3/g,含水量: 5%用于按照反相机理,通过化合物羟基基团与树脂的酰胺基团之间的强烈的氢键作用,从水溶液或甲醇溶液中吸附极性化合物(-OH 基团,尤其是酚醛化合物)用于萃取单宁、叶绿素、腐殖酸、药理活性的类萜、黄酮类、没食子酸、儿茶酚 A、原儿茶酸和间苯三酚也用于萃取芳族羧酸和硝基芳香化合物不可逆地保留苯醌订货信息: 52624-U Discovery DPA-6S SPE小柱(聚酰胺树脂) (适合于水溶液中羟基和羧基化合物的分析,如单宁、叶绿素、腐殖酸等) 50mg/1ml,108支/盒 52625-U Discovery DPA-6S SPE小柱(聚酰胺树脂) (适合于水溶液中羟基和羧基化合物的分析,如单宁、叶绿素、腐殖酸等) 250mg/3ml,54支/盒 52626-U Discovery DPA-6S SPE小柱(聚酰胺树脂) (适合于水溶液中羟基和羧基化合物的分析,如单宁、叶绿素、腐殖酸等) 250mg/6ml,30支/盒 52627-U Discovery DPA-6S SPE小柱(聚酰胺树脂) (适合于水溶液中羟基和羧基化合物的分析,如单宁、叶绿素、腐殖酸等) 500mg/6ml ,30支/盒 52629-U Discovery DPA-6S SPE小柱(聚酰胺树脂) (适合于水溶液中羟基和羧基化合物的分析,如单宁、叶绿素、腐殖酸等) 1g/12ml,20支/盒 52631-U Discovery DPA-6S SPE小柱(聚酰胺树脂) (适合于水溶液中羟基和羧基化合物的分析,如单宁、叶绿素、腐殖酸等) 2g/20ml,20支/盒 52632-U Discovery DPA-6S SPE小柱(聚酰胺树脂) (适合于水溶液中羟基和羧基化合物的分析,如单宁、叶绿素、腐殖酸等) 5g/60ml,16支/盒

腐殖质相关的仪器

  • 1. F-7100简介日立荧光分光光度计F-7100是在前代机型F-7000的基础上更新升级,基本性能得到了进一步提升。灵敏度(S/N)是选择荧光分光光度计的重要因素之一,F-7100与前代机型相比,灵敏度提高了1.5倍。与此同时,F-7100 采用长寿命氙灯,与前代机型使用的耗材氙灯相比,使用寿命延长了5倍。F-7100 配置荧光指纹测定功能和日差变化校正功能,使操作更加简单。 2. F-7100特点 这里为您介绍F-7100的三大特点。(1)更高灵敏度的检测系统F-7100继承F-7000高可靠性的光学系统,同时采用高亮度氙灯和更好的检测光学系统,实现了更高的灵敏度。 水拉曼散射的S/N对比 上图所示是F-7100与F-7000水拉曼散射的S/N对比情况。F-7100灵敏度是前代机型的1.5倍,即便是微弱的信号,也能实现低噪声检测。 微量荧光素区域的测定示例 上图表示以Blank(纯水)为参照,超高灵敏度的检测示例。使用F-7100 可检测低至1×10-13mol/L(亚皮摩尔) 量级的荧光素。从线性曲线图可知,即使在超微量区域,也能获得很好的线性关系。 (2)长寿命光源 灯使用寿命对比 亮灯时间和灵敏度(S/N:PP)之间的关系 F-7100采用全新氙灯,并改良了灯电源,使得光源亮度提升,并有效延长了氙灯的使用寿命。延长灯泡更换周期可降低耗材成本,减轻灯泡更换等作业负担(如上左图)。由如上右图可知,F-7100性能卓越,即使氙灯使用接近2500h,也能够维持较高的灵敏度。 (3)FL Solutions 软件性能提升① 可校正日差变动的荧光强度标准化功能该功能可校正荧光强度的经时变化和日差变化。荧光强度通常会受到光源亮度、室温变化、光学系统状态变化等因素的影响。先测定标准样品的荧光强度,然后将待测样品的荧光强度换算成标准样品的荧光强度,最终根据变动原因校正荧光强度。如测试环境水中的腐殖质时使用硫酸奎宁做换算,测试水中的叶绿素时使用荧光素做换算,做试剂纯度控制时使用硫酸奎宁做换算。通过荧光强度标准化功能可以使不同时间、不同仪器测试的荧光峰强度值有可比性。 通过荧光强度标准化功能调节日差变化 ② 可支持多变量分析的报告输出功能 三维测定数据一次性输出功能 ● 可将测定的三维数据汇总输出荧光指纹分析是指多变量分析多个三维荧光光谱数据。F-7100标配三维测定数据一次性输出功能,可将多个三维荧光光谱数据整合输出至1个Excel表中。输出时还可以更换矩阵,而且数据可输出至其他多变量分析软件。● 可输出指定波长的三维测定数据在指定波长表中输入您希望测定的波长,输出至 Microsoft Excel® 时可只输出指定波长的测定结果。● 可输出过滤高阶光后的数据F-7100新设“高阶光过滤”功能,可在多变量分析三维荧光光谱数据时,将不含二阶光区域的数据至 Excel 表。与不输出比激发光波长要短的波长的数据的“过滤散射光”联用,可轻松将分析时需要的数据输出到Microsoft Excel® 。 3. 结束语以上为F-7100特点和新功能的介绍。此外,F-7100继续延续前代机型的高波长扫描速度(60,000 nm/min)和丰富的配件用以应对多种应用领域,包括LED、太阳能电池零部件等工业材料、食品检测、生命科学、生物技术等领域。今后我们还将迎合市场需求,大力开展产品配件、软件和应用的开发和产品化工作。
    留言咨询
  • Thermo Scientific AquaPro 型通用控制器1. 可同时连接多达4 个电极2. 灵活配置任意通道为各分析参数,如pH/ORP,电导率,溶解氧(含RDO),臭氧,余氯,浊度,悬浮物,酸碱浓度等3. 强大的电极兼容性,如可连接常规模拟量电极、数字电极等4. AquaPro 仪表可现场对各传感器进行校准、设置、诊断5. 支持多种数据通讯协议6. 可经由USB 端口现场对仪表固件进行升级7. 可记录1000 组数据,并可经由USB 下载8. 可快速拷贝、复制两台仪表的配置9. 最多可选择8 路4~20 mA 模拟输出及6 路报警/ 控制继电器10. 提供包括中文在内的6 种语言供用户选择11. 大屏幕、彩色显示12. 聚碳酸酯材料机壳抗紫外,防水等级达NEMA4X,IP6613. 分析仪可选墙装、盘装及管道安装方式14. 100~240V 交流供电方式(可选24V 直流)订购信息
    留言咨询
  • 仪器简介:SC100是HACH公司数十种数字化探头的通用操作平台。技术参数:操作温度:在传感器负荷小于7瓦时:-20° -60℃(-4° 到140° F);0-95%相对湿度,不出现冷凝。在传感器负荷小于25瓦时:-20℃-40℃(-4° 到104° F);0-95%相对湿度,不出现冷凝。继 电 器:三个SPDT,可赋值,230VAC,5A模拟输出:两路4~20mA,最大阻抗500ohm。通讯协议:RS-232(MODBUS® ):为个人计算机的分析仪配置和检索所测得的数据。RS-485(MODBUS® ):与直接PLC或SCADA系统之间进行的先进的通讯/联网。Profibus DP防护等级:NEMA 4X/IP66;防爆等级:Class Ⅰ,Divission Ⅱ,Group A,B,C,D, T4外形尺寸:144× 144× 150mm仪器重量:1.6Kg主要特点:● 可同时联接一个或两个不同类型数字化探头● 多种通讯协议可选● 探头可&ldquo 即插即用&rdquo ● 可存储长达数月的数据● 具有防爆功能
    留言咨询

腐殖质相关的试剂

腐殖质相关的方案

腐殖质相关的论坛

  • 腐殖质的检测?

    腐殖质的检测方法很多资料都查的到但是我检测过很多样后发现很多资料上讲最后滴定时颜色时由橙红——绿色——灰紫色;但是我经过大量的检测发现滴定颜色到深绿色后就不会再变化了请问有朋友做这方便的检测没结果是怎样的?

腐殖质相关的资料

腐殖质相关的资讯

  • 智云达致力为消费者解决水质隐患
    兰州自来水污染问题愈演愈烈,大家对饮用水的关注也被重新点燃,中国的水质问题也成为大家茶余饭后谈论的话题。饮水安全是影响人体健康和国计民生的重大问题。近年来,由于国际上一些地区和国家频繁发生恶性事件,饮水安全和卫生问题引起了全球的关注,饮水安全已成为全球性的重大战略性问题。 在中国,饮用水的安全问题被曝光的次数很少,但这并不代表我们饮用的水没有问题。每年对水的全面水质检测也只有两次。而且在被发现后,官方也总会找到合适的理由为自己开脱。就像此次兰州的水污染事件中,兰州市政府就曾发布消息称,自来水苯超标系此前两次事故产生的含油污水所致,检测结果也只显示苯超标,而甲苯、乙苯、苯酚等检测均没有问题。3月6日兰州市民发现自来水有异味,但当地政府表示是谣言并对传谣者进行处置,并称3月6日自来水确实存有异味,但与此次苯超标完全没有关系。随即,水样被送往中科院生态研究所进行水质检测,检测结果显示水中含有两种特殊物质,只需几微克就有臭味。而这两种特殊物质,由冰雪覆盖的草根、藻类等腐殖质产生。“黄河因为不结冰,其支流黄水河结冰,这些特殊物质应该来源于黄水河。” 既然这样,水质问题看起来就不能避免了。此次兰州水污染事件从一定程度上反应了自来水从生产开始到监管到检测的一系列问题。从目前来看,为了饮水安全,不管是企业还是个人,对水质检测已经成为至关重要的一部分。所以,大家也开始把更多的注意力关注到水质检测仪器上。随着人们对水质质量要求的提高,对水质检测仪器的要求也会更为苛刻。检测部门对水质的检测强调现场、及时而且检测项目多,需要更为先进的大型的仪器进行全面的水质检测,如果监管部门的监管力度足够强大,我们相信水质问题可以被扼杀在摇篮里。但不能避免的还是会发生监管不利,出现问题水这类的状况,这时就需要消费者自己检测、随时监督,便携式的小型水质检测仪器就会大有用武之地。也许只有这样全面的检测监管,才能保障我们自己和家人的饮水安全。 北京智云达在水质检测仪器方面已经很成熟完善,水质检测产品可以分为三类:多参数水质检测系列适用于大型企业、检测和研究机构,可随身携带,并可在无电源接入的现场进行长时间检测。其中最多可同时检测水中33项指标,稍小型的仪器可以检测多达20项指标;单参数水质检测系列会更适合家庭使用,个人可以根据不同地区易出现的问题,根据检测对象选择合适的检测仪器,且产品的品种多,单参数水质检测仪有28种之多;同时,公司还制定了水质检测解决方案,包括四套饮用水检测解决方案、两套水产养殖水质检测解决方案和一套泳池水质检测解决方案,这些可以帮助政府和企业进行水质的监管。智云达现在依然没有停住创新的脚步,仍然在依据不断发生的新问题,根据质监部门、企业和个体消费者的新需求研发新产品。智云达立志为所有的消费者排除水质隐患,为水质问题把好最后一关。
  • 通过减少土壤物理性质对光谱的耦合作用来提高高光谱遥感在估算土壤有机质的时空可迁移性:以中
    摘要土壤有机质(SOM)在全球碳循环中起着非常重要的作用,而高光谱遥感已被证明是一种快速估算SOM含量的有前景方法。然而,由于忽略了土壤物理性质的光谱响应,SOM预测模型的准确性和时空可迁移性较差。本研究旨在通过减少土壤物理性质对光谱的耦合作用来提高SOM预测模型的时空可迁移性。基于卫星高光谱图像和土壤物理变量,包括土壤湿度(SM)、土壤表面粗糙度(均方根高度,RMSH)和土壤容重(SBW),建立了基于信息解混方法的土壤光谱校正模型。选取中国东北的两个重要粮食产区作为研究区域,以验证光谱校正模型和SOM含量预测模型的性能和可迁移性。结果表明,基于四阶多项式和XG-Boost算法的土壤光谱校正具有优异的准确性和泛化能力,几乎所有波段的残余预测偏差(RPD)均超过1.4。基于XG-Boost校正光谱的SOM预测精度最 高,决定系数(R2)为0.76,均方根误差(RMSE)为5.74 g/kg,RPD为1.68。迁移后模型的预测精度、R2值、RMSE和RPD分别为0.72、6.71 g/kg和1.53。与模型直接迁移预测相比,采用基于四阶多项式和XG-Boost的土壤光谱校正模型,SOM预测结果的RMSE分别降低了57.90%和60.27%。 这种性能比较凸显了在区域尺度 SOM 预测中考虑土壤物理特性的优势。Figure 1. Framework of the proposed SOM estimation model.研究区域试验点1位于中国东北黑龙江省黑土耕地保护区,如图2所示,面积为1095 km2。该地区属温带大陆性季风气候,年降水量为450–650 mm,降水主要集中在6–9月,占全年降水量的80%。研究区地势南高北低,西高东低,大部分地区为堆积平原。该研究区是全球仅有的四个黑土区之一,耕层深厚,土壤肥沃,含腐殖质的土层厚度为25–80 cm,适合种植玉米、大豆等作物。图 2. 研究区域概览。(a)研究区域的地理位置;(b、c)分别为站点 1 和站点 2 的土壤采样点;(d、e)“裸土期”的土壤表面。试验点2 位于中国吉林省黑土耕地保护区,如图 2 所示,面积为 713 km2。站点地势平坦,海拔在 189 至 237 m 之间。该区域为东部湿润山区与西部半干旱平原区的过渡地带。研究区属温带大陆性半湿润季风气候,年平均气温 4.6 ℃,年降水量 600—700 mm。该区域河流水系丰富,农业水资源相对丰富,地表土壤空间异质性强。该区域土壤主要为黑土,腐殖质层厚度为 0.6—1.0 m。试验点2的土壤类型、地表特征等环境因素与试验点1有明显差异,可以验证本研究中SOM含量预测模型的时空可迁移性。2022 年 10 月 29 日至 30 日,共从试验点 1 采集了 104 个表层土壤样品(图 2b)。2023 年 4 月 14 日至 15 日,从试验点 2 采集了 40 个表层土壤样品(图 2c),用于测试模型的时空可迁移性。图3. 样区内土壤样品采集与参数测量示意图。(a)象限采样示意图;(b)土壤表面点云数据测量。研究过程样品运回实验室后,通过称重、烘干等方法获得每个象限9个子样本的SM和SBW,并计算子样本的平均值。然后,将9个子样本混合成复合样本,在实验室内使用(ASD FieldSpec 4地物光谱仪)进行光谱测量(取十次测量的平均值)和使用重铬酸钾加热法测定SOM含量。为保证每个样品的SBW相同,将土壤样品装入一次性培养皿中进行光谱测量。对每个测量点的土壤表面点云数据进行拼接、裁剪和滤波。利用处理后的点云数据建立三维相对坐标系(图3b),提取所有点云数据的Z坐标,计算该象限的RMSH。资源一号02D(ZY1-02D)高光谱图像数据来自中国科学院空天信息创新研究院,图像生成时间与土壤采样时间同步,所有图像的云量均小于1%。本研究选取450~1290nm、1408~1828nm和1963~2460nm波段作为光谱波段。为了验证ZY1-02D高光谱图像的可靠性,将土壤像素光谱与土壤地面光谱进行了比较(图4)。尽管土壤像素光谱的形状与土壤地面光谱相似,但在可见光-近红外(VNIR)波段范围内存在一些噪声和平滑度较低的情况。此外,土壤像素的光谱反射率略低于实验室测量的反射率。计算了像素反射率与地面反射率之间的斯皮尔曼相关系数(SCCs)和皮尔逊相关系数(PCCs)。结果表明,大多数波长范围内的PCCs低于0.5,而在480至680nm和2000至2500nm波长范围内的SCCs基本大于0.5,表明可能存在非线性关系。为了揭示影响像素光谱的因素,比较了不同物理属性梯度下土壤反射率的差异。随着SM的增加,土壤光谱反射率显著下降,尤其是在500至1300nm和1450至1700nm波长范围内(图5)。随着SBW的增加,土壤光谱反射率的下降幅度相对较小。RMSH对土壤光谱的影响最为显著,反射率随着RMSH的增加显著下降。综上所述,SM、SBW和RMSH对光谱的耦合效应是导致两组光谱数据偏差的重要原因,严重限制了成像光谱仪对土壤“纯光谱”的获取。因此,有必要在像素光谱数据中分离土壤的物理和化学信息,以提高高光谱遥感对土壤有机质(SOM)预测的准确性。图4. 成像光谱、实验室光谱及其相关系数。图5. 不同物理性质土壤的光谱特征。图6. 基于多参数估计模型的土壤物理参数与土壤像素光谱拟合的R² 值。图 7. 使用试验点 1 数据建立的 XG-Boost 模型,基于 (a) 原始像素光谱、(b) 地面光谱、(c) 四阶多项式校正光谱和 (d) XG-Boost 校正光谱和站点 2 数据测量和预测的 SOM 含量的散点图。结果本研究利用卫星和地面高光谱数据以及土壤物理参数数据,分别基于四阶多项式和XG-Boost构建了两种土壤光谱校正模型,以缓解土壤物理性质对像素光谱的耦合效应。通过使用来自两个试验点的数据,评估了土壤光谱校正模型的性能及其对SOM预测模型精度和时空可迁移性的影响。主要结论如下:土壤像素光谱反射率与土壤地面光谱反射率呈非线性关系。表面物理性质的差异是导致这两种光谱数据类型偏差的主要因素。RMSH对土壤像素光谱的影响最为显著,其次是SM和SBW。四阶多项式和XG-Boost模型具有良好的土壤光谱校正精度。基于XG-Boost的土壤光谱校正模型精度更高,时空可转移性更强,因为它考虑了所有特征,持续调整树的权重,防止结果陷入局部最优。土壤光谱校正显著缓解了土壤物理性质对土壤像素光谱的耦合效应,有效提高了SOM预测模型的准确性,更重要的是,大大增强了基于像素光谱的SOM预测模型的时空可转移性。未来,通过充分考虑更多土壤特性,可以获得更准确的SOM预测结果。本研究为预测其他区域的土壤性质参数提供了一种新的研究范式。
  • 复制时间|弗尔德仪器授权代理商销售培训
    如果说世上最珍贵的东西是时间,那么怎样在有限的时间内尽可能地使效率最大化呢?答案昭然若揭,复制时间可以最大程度地提高效率。谈起复制时间,弗尔德仪器深谙其道,走遍全国办讲座与仪器培训相辅相成、并驾齐驱,在有限的时间内口传心授,力求让更多的客户了解到弗尔德仪器的精湛工艺。为了促进弗尔德仪器更好地开枝散叶,7月30日弗尔德召集了全国授权代理商,进行了为期一周的全方位、高深度的产品销售培训,培训产品涉及德国Retsch(莱驰)研磨、粉碎与筛分仪器,CarboliteGero(卡博莱特盖罗)的高端马弗炉,德国Eltra(埃尔特)碳/氢/氧/氮/硫元素分析仪。区别于以往代理商销售培训,此次弗尔德仪器邀请了全国授权代理商资深销售,重点分享了产品销售经验,剖析销售案例的成与败。对于今年新加入的授权代理商而言,此次培训无疑是快速成长与经验借鉴的取经之地。每个成功案例的背后都暗藏玄机,“始于颜值、陷于功能、忠于品质”,弗尔德仪器正是依赖于上述三大基石,吸引了众多客户选择牵手弗尔德仪器。失败乃兵家常事,从销售分析的失败案例中,我们依旧能收获宝贵的销售经验,扬长避短,力求下次成功牵手心仪客户。立足于弗尔德(上海)仪器设备有限公司上海总部,弗尔德仪器技术人员倾囊相授,将仪器使用、产品应用的利器交付于授权代理商手上,并经由授权代理商将弗尔德质量过硬的产品、优质人性化的服务推向全国。福利篇弗尔德仪器实验室英雄联盟Superheroes解放科研人的双手、节省实验时间,给您带来非凡的仪器使用体验。现在登录弗尔德官方网站,即可参与Superhero弗尔德仪器英雄联盟全国抽奖活动,更多大奖等你来拿。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制