动态氧化诱导温度

仪器信息网动态氧化诱导温度专题为您整合动态氧化诱导温度相关的最新文章,在动态氧化诱导温度专题,您不仅可以免费浏览动态氧化诱导温度的资讯, 同时您还可以浏览动态氧化诱导温度的相关资料、解决方案,参与社区动态氧化诱导温度话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

动态氧化诱导温度相关的耗材

  • 麻醉诱导盒
    诱导麻醉,是对实验动物进行正式麻醉前进行的预麻醉处理。 用高浓度、大流量的麻醉气体对动物进行预麻醉,使其在很短的时间(一两分钟)之类进入麻醉状态,以方便对动物进行保定或术前处理等操作。 因为使用的是高浓度大流量麻醉,所以必须要在密封式空间进行如麻醉诱导盒或麻醉诱导仓,快速见效,也方便尾气的收集和吸收处理。麻醉诱导盒规格,Length×Width×Height,625px×275px×300px,可容纳一只4大鼠或两只小鼠 麻醉诱导仓规格(内部空间),Height×Diameter:小型,222.5px×332.5px, 大型,507.5px×507.5px。
  • 激光诱导等离子体光谱仪配件
    激光诱导等离子体光谱仪配件是一款欧洲进口的高度安全的激光诱导等离子体光谱仪,采用高度模块化设计,专业为样品分析而研发,是实验室科研和现场检测的理想工具。广泛用于材料分析,元素检测,工业检测,安全检测,反恐和国防等领域。孚光精仪还有更多激光仪可供选择,欢迎前来咨询。激光诱导击穿光谱仪配件特点安全型模块化设计具有世界上最为安全的配置,这套仪器对操作人员的危害几乎为零。特别对于样品室使用防激光辐射的高档光学窗口玻璃,不仅可以让您观看样品的测量,同时又保证您的安全。具有高度的使用灵活性,您可以手持着它进行测量,也可以放置到样品室上测量。中国最大的进口精密光学器件和科学仪器供应商!激光诱导等离子体光谱仪配件特色* 高度模块化和多功能设计,适合实验室和现场多种应用;* 高效率的等离子体采集光学,可配备6通道或8通道光谱采集系统;* 具有多种激光器选项,50mJ@1064nm, 355nm, 266nm, 100mJ@1064nm,355nm,266nm, 还有更多激光器供选择 * 可配备样品室(具有I级激光安全标准)或不配备样品室直接测量(IV级激光安全) * 激光头和样品方室可以多向安装工作;* 具有其他清洗功能(与外界气源连接,可供氩,氮,氦,空气等气体);* 可安装高达8个光谱仪模块覆盖185-1000nm * 激光器电源小型化,非常方便拆卸,搬运;* 软件两年免费升级。孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有包括光谱仪,激光诱导等离子体光谱仪在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个一产品是用户满意的完美产品。我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。更多关于激光诱导等离子体光谱仪参数,光谱仪价格等诸多信息,孚光精仪会在第一时间更新并呈现出来,了解更多内容请关注孚光精仪官方网站方便获取!
  • LIBS2500+激光诱导衰减光谱仪
    LIBS2500+激光诱导衰减光谱仪LIBS2500+激光诱导衰减光谱仪是一种探测系统,允许进行固体、溶液和气体中元素的实时定性测量。该系统具有光谱宽,分辨率高的特点。系统的光谱分析范围是200-980nm,光学分辨率大约0.1 nm (FWHM)。特点: 宽光谱,高分辨率光谱分析(0.1nm光学分辨率,波长范围200-980nm) 实时定性测量 PPb和皮克灵敏度 可应用材料分析,环境监控,法医和生物医学研究,艺术品修复等等应用: 环境监控(土壤污染,微粒) 材料分析(金属,塑料) 法医和生物医学研究(牙齿,骨骼) 军事和国防(爆炸,生化武器) 艺术修复/保存(颜料,珠宝/古代金属制品) LIBS2500+光谱仪如何工作一个高强度的脉冲激光器被放置在离样品几十厘米到一米的位置,它发出一个10纳秒宽的脉冲激光束,经聚焦后照射到样品表面用于激发样品。当激光发射,激光照射形成高温,从而产生了等离子体。随着等离子体衰减或冷却(激光脉冲发出后~1.0us),等离子体中处于的激发态原子发出与其元素对应的特征光谱。 所有元素的发射光谱都在200-980nm的波长范围内。探测系统最多可以同时使用7个HR2000+高分辨率微型光纤光谱仪进行同时测量(读写数据),每个均有2048像素的线阵CCD。LIBS2500+探测器同时收集200-980nm的光宽谱传送至应用软件显示数据。 宽光谱LIBS技术的优点:传统LIBS探测系统提供小范围的光谱,而LIBS2500+光谱仪是第一个提供宽带光谱分析的系统。由于良好的安全保护,用户可以进行现场实时测量,包括恶劣的工业,化学和生物医学环境,无需样品准备。由于LIBS2500+光谱仪的采用海洋光学的HR2000+高分辨率微型光纤光谱仪,系统具有便于携带,可通过USB端口与电脑相连等特点。 附加LIBS组件SPECIFICATIONSLIBS2500+的激光器 LIBS2500+的激光器可以有两个选择,它们都是激光工业的先导Big Sky的产品。激光烧蚀和等离子体的形成对不同样品都是非常独特的,因此对于不同的样品有不同的能量要求。在多数应用上我们采用Q开关的1064nm Nd:YAG激光器。如果要多种功能,我们建议使用带衰减器的200mJ激光器,它可以根据样品调整激光能量。激光能量和波长的选择将根据材料和允许损害的程度而定。LIBS-LASER采用50mJ CFR Nd:YAG激光器,针对金属和薄膜样品。LIBS-LAS200MJ采用200mJ CFR Nd:YAG激光器,可适用于玻璃和高OH材料。对于液体样本,可以采用双波长激光器,样品中的氧化物质会减缓等离子体的形成,所以需要另一个激光器增强等离子体的形成。其它特性 LIBS2500+光谱仪的使用方便,可与任何32位,兼容USB的Windows电脑连接。通过一个USB端口与PC相连,实现即插即用。我们提供OOILIBS应用软件用于操作LIBS2500+和启动激光。通过OOILIBS应用软件,用户可实现光谱补偿和数据保存。OOICOR相关软件由Florida大学开发可在使用LIBS2500+时提供即时的材料鉴定。LIBS成像模块 LIBS-IM-USB成像模块直接连接在LIBS-SC样品室,用户可放大样品图象,从而在样品上精确地定位。该模块都适合不同的应用领域,包括法医,半导体分析,植物学,生物医学分析,宝石学和冶金学。图象模块可以使用户通过一个CCD相机和PixeLINK(基于Windows的图象捕捉软件)看到样品的放大图象。PixeLINK可以捕捉图象,保存在计算机硬盘上。捕捉到的图象可用于比较分析和记录保存。模块中的CCD相机提供了1280 x 1024像元的分辨率。每个像元为6.0x 6.0微米平方。在1280 x 1024分辨率下相机可以提供了12.7帧/每秒的刷新速度。 图像模块是电脑供电的,不需要外设电源,与笔记本电脑相连时需要外设电源。外设电源的价格包括在模块的价格中。LIBS 系统LIBS光谱仪通道通道不一定需要连续的

动态氧化诱导温度相关的仪器

  • 前言作为物质存在的第四种状态的等离子体通常由电子、离子和处于基态以及各种激发态的原子、分子等中性粒子组成。等离子体中带电离子间库伦相互作用的长程特性,是带电粒子组分的运动状态对等离子体特性的影响起决定性作用,其中的电子是等离子体与电磁波作用过程中最重要的能量与动量传递粒子,因此,等离子体中最重要的基本物理参数是电子密度及其分布以及描述电子能量分布的函数以及相应的电子温度。而对于中高气压环境下产生的非热低温等离子体来说,等离子体中的主要组分是处于各种激发态的中性粒子,此时除了带电粒子外,中性粒子的分布和所处状态对等离子体电离过程和稳定性控制也起着非常重要的作用,尤其是各种长寿命亚稳态离子的激发。为了可以充分描述等离子体的状态,在实验上不仅要对带电粒子的分布和运动状态进行诊断,如电子温度、电子密度、电离温度等参数,还需要对等离子体中的中性粒子进行必要的实验测量,来获得有关物种的产生、能量分布以及各个激发态布居数分布等信息,如气体温度、转动温度、振动温度、激发温度等参数。基于这种要求,结合相关学科的各种技术形成了一个专门针对等离子体开展诊断研究的技术门类,如对等离子体中电子组分的诊断技术有朗缪尔探针法(Langmuir Probe),干涉度量法(Interferometer),全息法(Holographic Method),汤姆逊散射法(Thomason Scattering, TS),发射光谱法(Optical Emmission Spectroscopy, OES)等,对离子组分的光谱诊断技术有光腔衰减震荡(Cavity Ring-Down Spectroscopy, CRDS)和发射光谱法(OES),而对中性粒子的光谱诊断技术包括了吸收光谱法(Absorption Spectroscopy, AS),发射光谱法(OES),单光子或者双光子激光诱导荧光(Laser Induced Fluorescence, LIF)等。 二、激光诱导荧光(LIF or TALIF)LIF在等离子体上的应用诊断开始于1975年左右,首先是由R.Stern和J.Johnson提出的利用LIF装置可以测量中性基团和离子的相对速度、速度分布函数等。90年代后,LIF被陆续应用到了ECR、ICR、磁控管、螺旋波HELIX、ICP以及微波驱动CVD等等离子体源中。2.1、 等离子体 LIF诊断的基本模型处于基态或亚稳态的粒子吸收具有一定能量的光子后被激发,再从激发态衰变为自旋多重度相同的基态或低能态时,就会发出荧光辐射。而荧光光强与粒子数成正比,因此,通过测量荧光光强,可以确定处于基态或亚稳态的粒子密度。由于这种荧光发射的时间长度低于微妙量级,必须采用脉冲宽度在纳秒量级的激光来激发荧光,这种诊断方法因此被称作激光诱导荧光(LIF)。图1. LIF基本原理图图1[1]为LIF的基本原理图,在一个三能级系统中:离子处于亚稳态时,当照射激光能量等于跃迁激发的能量,离子被泵浦到激发态。由于激发态不稳定,离子又会迅速退激到基态并辐射出荧光。在激发态上停留时间很短暂(一般只有几纳秒宽度)。由于离子不是静止的,根据多普勒效应可知,在激光传输方向上存在一个速度选择,只有在激光传输方向上满足一定速度的离子才能被特定频率的激光诱导激发:窄带激光束(ωlaser,κlaser)入射,在入射方向上,只有离子速度 和激光频率满足关系式 时,才能通过相应的激光激发被泵浦到激发态。对入射激光频率进行扫描变换,测量相应的荧光光强变化,就能得到亚稳态离子速度分布函数在入射激光方向上的投影。如果假定亚稳态离子温度和主体基态离子温度一致,离子速度分布函数等动力学参数即可获得。2.2、 典型LIF实验架构与世界上的LIF架构参考如图2所示,为典型的等离子体装置LIF诊断实验架构图。图2 典型的等离子体LIF诊断架构图因为基团和粒子的激发波长不同,因此我们选择了波长可调谐的纳秒脉宽染料激光器,通过添加不同的染料,输出不同的波长对被测试的粒子和基团进行激发,从而得到激光诱导的荧光衰减与光谱信号,这些信号经由相关的搜集光路被捕获到光谱仪与ICCD探测器组成的光谱探测系统中,从而得到光谱、强度与时间尺度的三维荧光光谱,让研究人员进行相关的分析。图中所用的DG535/645作为整个实验系统的时序控制装置。图3到图4为世界上比较典型的不同等离子体装置的LIF诊断情况。图3. University of Greifswald LIF诊断系统(H原子)图4. IHP LIF诊断系统2.3、典型的LIF波长选择举例对Ar等离子体和He等离子体放电,常用的激光器波长可调谐范围不需要太宽要测H(氢)等离子体,激光波长需要205nm测CF等离子体 需要261nm同时测 Ar等离子体的LIF,因为观测另一条谱线,所用的激光波长又是611nm的所以LIF的波长范围应该根据要观测的等离子体放电的气体种类及观测那条谱线来决定2.4、硬件配置推荐 根据用户需求,一般推荐的配置如下:1、染料可调激光器:可选配置从200-4500nm 宽范围调谐2、 光谱仪:Ø Zolix 北京卓立汉光仪器有限公司的Omni-500I 或750I光谱仪搭配1200l/mm和1800l/mm的全息光栅Ø 207或者205高光通量光谱仪,搭配110*110mm 的大尺寸1200l/mm光栅和1800l/mm光栅2、 探测器: ICCD, 18mm 增强器,13*13mm 探测面;DG645:用于系统触发控制的时序单元其他光学平台及光路设计等 光电倍增管PMT/锁相放大器/ Boxcar 模块 等请咨询卓立汉光销售人员!参考文献[1] 赵岩, 柏洋, 金成刚, 等.激光诱导荧光在低温等离子体诊断中的应用[J]. 激光与红外, 2012, 4(42): 365-371.
    留言咨询
  • 塑料差示扫描量热法(DSC)第6部分:氧化诱导时间(等温OIT)和氧化诱导温度(动态OIT)的测定1、氧化诱导期分析仪范围GB/T19466的本部分规定了用差示扫描量热法(DSC)测定聚合材料氧化诱导时间(等温OIT)和氧化诱导温度(动态OIT)的试验方法。本部分适用于充分稳定混配的聚烯烃材料(原料或最终制品)。本部分也适用于其他塑料。2、氧化诱导期分析仪规范性引用文件下列文件中的条款通过GB/T19466的本部分的引用而成为本部分的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。GB/T1845.2—2006塑料聚乙烯(PE)模塑和挤出材料第2部分:试样制备和性能测定(ISO1872-2:1997,MOD)GB/T2035—2008塑料术语及其定义(ISO472:1999,IDT)GB/T2546.2-2003塑料聚丙烯(PP)模塑和挤出材料第2部分:试样制备和性能测定(ISO1873-2:1997,MOD)GB/T9352—2008塑料热塑性塑料材料试样的压塑(ISO293:2004,IDT)GB/T17037.3—2003塑料热塑性塑料材料注塑试样的制备第3部分:小方试片(ISO294-3:2002,IDT)GB/T19466.1-2004塑料差示扫描量热法(DSC)第1部分:通则(ISO11357-1:1997,IDT)ISO8986-2:1995塑料聚丁烯(PB)模塑和挤出材料第2部分:试样制备和性能测试3、氧化诱导期分析仪术语和定义GB/T2035-2008和GB/T19466.1确立的以及下列术语和定义适用于本部分。3.1氧化诱导时间oxidationinductiontime等温OIT,isothermalOIT稳定化材料耐氧化分解的一种相对度量。在常压、氧气或空气气氛及规定温度下,通过量热法测定材料出现氧化放热的时间。注:以分(min)表示。3.2氧化诱导温度oxidationinductiontemperature动态OIT,dynamicOIT稳定化材料耐氧化分解的一种相对度量。在常压、氧气或空气气氛中,以规定的速率升温,通过量热法测定材料出现氧化放热的温度。注:以摄氏度(C)表示。4、氧化诱导期分析仪原理4.1概述在氧气或空气气氛中,在规定的温度下恒温或以恒定的速率升温时,测定试样中的抗氧化稳定体系抑制其氧化所需的时间或温度。氧化诱导时间或氧化诱导温度是评价被测材料稳定水平(或程度)的一种手段。试验温度越高氧化诱导时间越短;升温速率越快氧化诱导温度也越高。氧化诱导时间和氧化诱导温度还与试样承受氧化的表面积有关。应注意,在纯氧中测试会比普通大气环境下测得的氧化诱导时间短或氧化诱导温度低。注:氧化诱导时间或氧化诱导温度能评价试样中抗氧剂的效果,但在解释数据时须注意,因为氧化反应动力学与温度和样品中添加剂的固有性质有关。例如经常用氧化诱导时间或氧化诱导温度对树脂的配方进行优选,某些抗氧剂尽管在最终制品的使用温度下性能优异,但由于抗氧剂的挥发或氧化反应活化能的差异,也可能导致较差的氧化诱导时间或氧化诱导温度测试结果。4.2氧化诱导时间(等温OIT)试样和参比物在惰性气氛(氮气)中以恒定的速率升温。达到规定温度时,切换成相同流速的氧气或空气。然后将试样保持在该恒定温度下,直到在热分析曲线上显示出氧化反应。等温OIT就是开始通氧气或空气到氧化反应开始的时间间隔。氧化的起始点是由试样放热的突增来表明的,可通过差示扫描量热仪(DSC)观察。按照9.6.1测定等温OIT。4.3氧化诱导温度(动态OIT)试样和参比物在氧气或空气气氛中以恒定的速率升温,直到在热分析曲线上显示出氧化反应。动态OIT就是氧化反应开始时的温度。氧化的起始点是由试样放热的突增来表明的,可通过差示扫描量热仪(DSC)观察。按照9.6.2测定动态OIT。5、氧化诱导期分析仪器和材料5.1概述仪器和材料见GB/T19466.1-2004第5章,以及下述5.5至5.8(5.7和5.8仅适用于氧化诱导时间测试)。5.2差示扫描量热仪(DSC)仪器差示扫描量热仪(DSC)仪器的最高温度应至少能达到500℃。对于氧化诱导时间的测试,应能在试验温度下、整个试验期间(通常为60min),保持士0.3℃的恒温稳定性。对于高精度测试,建议恒温稳定性为0.1℃。5.3坩埚将试样置于开口或加盖密封但上部通气的坩埚内。最好使用铝坩埚,通过有关方面商定后,也可使用其他材质的坩埚。注:坩埚的材质能显著影响氧化诱导时间和氧化诱导温度的测试结果(即具有相关的催化作用)。容器的类型决定于被测材料的用途。通常,用于电线电缆工业的聚烯烃可用铜坩埚或铝坩埚,而用于地膜和防雾滴膜的聚烯烃仅使用铝坩埚,5.4流量计流速测量装置用于校准气体流速,如带流量调节阀的转子流量计或皂膜流量计。质量流量计应用容积式测量装置进行校准。5.5氧气99.5%工业氧一等品(特别干燥)或更高纯度的氧气。警告——使用高压气体应进行安全、妥当的处理。另外,氧气是极强的氧化剂,能加速燃烧。应将油脂远离正在使用或载氧的设备。5.6空气干燥且无油脂的压缩空气。5.7氮气99.99%纯氮(特别干燥)或更高纯度的氮气。5.8气体选择转换器及调节器氮气和氧气或空气之间的切换装置,用于测量氧化诱导时间时气体的切换。为使切换体积最小,气体切换点和仪器样品室之间的距离应尽量短,滞后时间不能超过1min。对于50mL/min的气体流速,死体积不应超过50mL。注:若滞后时间可知,则能获得更高的测试精度。测定滞后时间一种可行的方法是对一种在氧气中立即氧化的不稳定材料进行测试。用该测试所得的氧化诱导时间可对以后的等温OIT测定值进行修正。6、氧化诱导期分析仪试样6.1概述试样见GB/T19466.1—2004第6章。试样厚度为(650土100)μm,要求厚度均匀、表面平行、平整、无毛刺、无斑点。注:样品和试样的制备方法取决于材料及其加工历史、尺寸和使用条件,它们对测试结果与其意义的一致性是非常关键的。另外,试样的比表面积、样品不均匀、残余应力以及试样与坩埚接触不良都会显著影响试验精度。若要进行横穿样品厚度方向的OIT测试,可能需要厚度远小于650μm的试样。应在试验报告中注明。6.2模压片材的试样为获得形状和厚度一致的试样,应按照GB/T9352-2008或其他与聚烯烃制品相关的标准,如GB/T1845.2-2006、GB/T2546.2—2003,以及ISO8986-2:1995标准,将样品模压成厚度满足6.1要图片转文字台井拆分水印PDF压缩文栏对比搜索与替换求的片材。也可从较厚的模压片材上切取适当厚度的试样。如果相关产品标准没有规定加热时间,在模压温度下最多加热5min。用打孔器从片材上冲出一直径略小于样品内径的圆片。从片材上冲取的试样圆片应足够小,平铺在坩埚内,不应叠加试样来增加质量。注:试样质量随直径变化而变化。根据材料的密度不同,通常对于直径为5.5mm、从片材上切取的试样圆片,其质量应在(12~17)mg之间。6.3注塑片材或熔体流动速率测定仪挤出料条的试样从厚度满足6.1要求的注塑试样上取样。注塑样品时按照GB/T17037.3-2003或其他与聚烯烃制品相关的标准,如GB/T1845.2-2006、GB/T2546.2-2003以及ISO8986-2:1995。最好用打孔器从片材上冲出一直径略小于样品内径的圆片。也可从熔体流动速率测定仪挤出料条上切取试样。此时,应从垂直于料条长度方向上切取,并通过目测观察试样以确保其没有气泡。最好用切片机切取厚度为(650土100)μm的试样。6.4制品部件的试样按照相关标准从最终制品(如管材或管件)切取圆形片材,获得厚度为(650±100)μm的试样。建议采用下述步骤从较厚的最终制品上取样:用取芯钻快速直接穿透管壁以获得一个管壁的横断面,芯的直径刚好小于样品的内径。注意在切取过程中防止试样过热。最好使用切片机,从芯上切取规定厚度的试样圆片。若期望得到表面效应的特性,则从内、外表面切取试样,然后将原始表面朝上进行试验。若期望得到原材料本身的特性,应切去内、外表面,从中间部分切取试样。7、氧化诱导期分析仪试验条件和试样的状态调节见GB/T19466.1—2004第7章。8、氧化诱导期分析仪校准8.1氧化诱导时间(等温OIT)采用两点校准步骤。对聚烯烃可用钢和锡作为标准物质,因为两者的熔点涵盖了规定的分析温度范围(180℃~230℃)。若分析其他塑料,可能需要改变标准物质。按照GB/T19466.1-2004第8章校准仪器。在氮气气氛中使用密封坩埚进行校准。若校准程序中未提供升温速率的校正,则采用下列熔融步骤:钢:以10℃/min从室温升至145℃;再以1℃/min从145℃升至165℃。锡:以10℃/min从室温升至220℃;再以1℃/min从220℃升至240℃。8.2氧化诱导温度(动态OIT)应按照GB/T19466.1—2004第8章所述步骤对仪器进行校准,所用吹扫气为氮气或空气。9、氧化诱导期分析仪操作步骤9.1仪器准备见GB/T19466.1—2004中9.1。9.2试样放置见GB/T19466.1—2004中9.2。若试样是切自管材或管件内、外表面,应将其关注的表面朝上放入坩埚内。由于此时不测定热流,称量试样时可精确至土0.5mg。将试样放到适当类型的锅内。必须加盖时,应将其刺破以使氧气或空气流至试样。除非坩埚是通气的,否则不能密封坩埚。9.3坩埚放置见GB/T19466.1-2004中9.3。9.4舞气、空气和氧气流速设定采用与校准仪器时相同的吹扫气流速。气体流速发生变化时需重新校准仪器。吹扫气流速通常是(50士5)mL/min。9.5灵敏度调整调整仪器的灵敏度以使DSC曲线突变的纵坐标高度差至少是记录仪满量程的50%以上。计算机控制的仪器无需此调整。9.6测量9.6.1氧化诱导时间(等温OIT)在室温下放置试样及参比样,开始升温之前,通氮气5min。在氮气气氛中以20℃/min的速率从室温开始程序升温试样至试验温度。恒温试验温度的选取尽量是10℃的倍数,而且每变化一次只改变10℃。可按照参考标准的规定或有关方面商定采用其他的试验温度。当试样的OIT小于10min时,应在较低温度下重新测试;当试样的OIT大于60min时,也应在较高温度下重新测试。达到设定温度后,停止程序升温并使试样在该温度下恒定3min。打开记录仪。恒定时间结束后,立即将气体切换为同氮气流速相同的氧气或空气。该氧气或空气切换点记为试验的零点。继续恒温,直到放热显著变化点出现之后至少2min(见图1)。也可按照产品技术指标要求或经有关方面商定的时间终止试验。试验完毕,将气体转换器切回至氮气并将仪器冷却至室温。如需继续进行下一试验,应将仪器样品室冷却至60℃以下。每个样品的试验次数可由有关方面商定。建议重复测试两次,报告其算术平均值、低值和高值。注:由于氧化诱导时间与温度和聚合物中的添加剂有复杂的关系。因此外推或比较不同温度下得到的数据是无效的,除非有试验结果能证实。t1——氧气或空气切换点(时间零点);t2——氧化起始点;t3——切线法测的交点(氧化诱导时间);t4——氧化出峰时间。图1氧化诱导时间曲线示意图切线分析方法9.6.2氧化诱导温度(动态OIT)开始升温之前,在室温下用测试用吹扫气(即氧气或空气),将载有试样及参比样坩埚的仪器吹扫器5min。在氧气或空气气氛中从室温开始程序升温试样至放热显著变化点出现后至少30℃(见图2)。尽量采用10℃/min或20℃/min的升温速率。也可按照产品技术指标要求或经有关方面商定的温度终止试验。试验完毕后,将仪器冷却至室温。如需继续进行下一个试验,应将仪器样品室冷却至60℃以下。每个样品的试验次数可由有关方面商定。建议重复测试两次,报告其算术平均值、低值和高值。T1——聚合物的熔融温度;T2——氧化起始点;T3——切线法测的交点(氧化诱导温度);T4——氧化出峰温度。图2氧化诱导温度曲线示意围——切线分析法9.7清洗在空气或氧气中至少升温至500℃并保持5min以清洗污染的DSC测量池,清洗频率可根据相关认可程序或结果偏离情况而定。作为预防措施,清洗频率应按照实验室的规程执行。10、氧化诱导期分析仪结果表示将数据以热流速率为Y轴,以时间或温度为X轴进行绘图。采用手工分析时,为便于分析应尽量扩展X轴。记录的基线应充分延长至氧化放热反应起始点之外,外推放热曲线上最大斜率处的切线与延长的基线相交(见图1或图2)。该交点对应的时间或温度即是氧化诱导时间或氧化诱导温度,保留三位有效数字。上述切线分析法是确定交点的优选方法。但当氧化反应缓慢时,可能会产生逐步放热的峰,此时在放热曲线上选择合适的切线比较困难。若用切线分析法时选择的基线很不明显,可使用偏移法。在距离第一条基线0.05W/g处(见图3或图4)画一条与其平行的第二条基线。将第二条基线与放热曲线的交点定义为氧化起始点。有逐步放热峰的热分析曲线也可能是由于试样制备欠佳,如,试样厚度不均、不平或有毛刺、斑痕造成的。因此,在用偏移分析法对结果进行评价时,建议在确保试样满足第6章中需求后重复扫描,以确认有逐步放热峰的热分析曲线的存在。经有关方面商定,也可采用其他处理手段或基线间距。t1——氧气或空气切换点(时间零点);t2——氧化起始点;t3——偏移法测的交点(氧化诱导时间);t4——氧化出峰时间。图3有逐步放热峰的氧化诱导时间曲线——偏移分析法T1——聚合物的熔融温度;T2——氧化起始点;T3——偏移法测的交点(氧化诱导温度);T4——氧化出峰温度。图4有逐步放热峰的氧化诱导温度曲线——偏移分析法11、氧化诱导期分析仪精密度11.1氧化诱导时间精密度三种聚乙烯和三种聚丙烯样品精密度试验结果见表1。表1聚乙烯和聚丙烯氧化诱导时间的精密度数据11.2氧化诱导温度精密度因未获得实验室间数据,氧化诱导温度试验方法的精密度尚不可知。待得到实验室间数据后,将在下次修订中增加有关精密度的内容。注:ISO的精密度参见附录A。12、氧化诱导期分析仪试验报告试验报告应包括GB/T19466.1-2004第10章中要求的信息以及下列内容:a)样品及试样制备方法的详细描述;b)所用的吹扫气类型及流速;c)试验温度;d)所用的测量技术(切线法、偏移法或其他协定的方法);e)氧化诱导时间(min),或氧化诱导温度(℃),均保留三位有效数字;f)升温程序(包括氧化诱导温度的升温速率);g)任何与GB/T19466本部分规定有差异的条件或材料的细节。附录A(资料性附录)lSO11357-6:2008的精密度A.1精度及偏差由瑞士材料测试协会EMPA于1998和2000年对四种不同PE在14和16个实验室间进行了循环测试,相应的等温及动态OIT试验结果见表A.1、表A.2。表A.1等温OIT的重复性和再现性表A.2动态OIT的重复性和再现性
    留言咨询
  • 产品介绍:DZ-DSC100A是南京大展检测仪器一款灵敏度较高的氧化诱导期测试仪,采用上开盖式的炉体设计,保温性高,耐高温,同时测试样品方便,双向操作,7寸彩色触摸屏显示,操作便捷。测试范围:DZ-DSC100A氧化诱导期测试仪主要测材料的熔点和氧化诱导期,同时可测玻璃化转变温度、冷结晶、相转变、熔融、结晶、热稳定性等。应用范围:DZ-DSC100A氧化诱导期测试仪主要应用在材料科学、化学、生物医学和食品工业等领域。性能优势:1.新的炉体结构,更好的解析度和分辨率以及更好的基线稳定性仪器主控芯片。2.数字式气体流量计,控制吹扫气体流量,数据直接记录在数据库中。3.仪器可采用双向控制(主机控制、软件控制),界面友好,操作简便。4.采用USB双向通讯,操作更便捷。5.采用7寸24bit色全彩LCD触摸屏,界面更友好。6.采用专业合金传感器,更抗腐蚀,抗氧化。技术参数:温度范围室温~600℃ DSC量程0~±600mW升温速率0.1~100℃/min温度分辨率0.01℃温度波动±0.01℃温度重复性±0.1℃气体流量0~200ml/minDSC精度0.01mW控温方式全程序自动控制工作电源AC220V/50Hz(或定制)气氛控制仪器自动切换显示方式24bit色,7寸 LCD触摸屏显示数据接口标准USB接口参数标准配有标准物质,带有一键校准功能,用户可自行校正温度和热焓
    留言咨询

动态氧化诱导温度相关的方案

动态氧化诱导温度相关的论坛

  • 【求助】关于氧化诱导时间和氧化诱导温度,与PE材料性能之间的关系?

    在一定温度下,PE材料氧化诱导时间越长所代表其抗氧性越好,耐候性越好,但具体曲线或者公式是什么?为什么在PE管材涉及标准中,规定氧化诱导时间大于20min这个标准制定的依据是什么?http://simg.instrument.com.cn/bbs/images/brow/em09509.gif平时没学好,要用时候发现这个标准是根据什么制定的的不知道。各位大大帮帮忙啦!

  • 氧化诱导期问题

    氧化诱导期问题

    氧化诱导时间的测试一定要过样品的熔点吗?1、我的样品只要转氧就会立即氧化;即使我将温度设定稍低于熔点了还是有这样的趋势;材料是尼龙,所以氧化诱导时间一定要过材料的熔点测试才有意义吗?标准里好像也没有这样的规定。2、如果温度太低呢,氧化诱导时间可能会很长,难道尼龙就不适合做氧化诱导时间?氧化诱导温度我做过,没什么问题,在320℃左右。[img=,690,428]https://ng1.17img.cn/bbsfiles/images/2023/09/202309110914235323_5961_3929349_3.jpg!w690x428.jpg[/img]

动态氧化诱导温度相关的资料

动态氧化诱导温度相关的资讯

  • 我国学者在纳米二氧化硅诱导心血管损伤新机制方面取得进展
    图1 纳米二氧化硅穿过气血屏障吸附载脂蛋白A-I并导致其耗竭的模型示意图  在国家自然科学基金项目(批准号:21976145、22176206)等资助下,中国科学院生态环境研究中心宋杨研究员与西南大学研究团队合作在纳米二氧化硅诱导心血管损伤新机制方面取得进展。研究成果以“纳米二氧化硅颗粒暴露通过消耗血清载脂蛋白A-I诱导矽肺患者心血管损伤(Serum apolipoprotein A-I depletion is causative to silica nanoparticles-induced cardiovascular damage)”为题,于2021年10月29日在线发表在《美国科学院院刊》(PNAS)上。论文链接:https://www.pnas.org/content/118/44/e2108131118。  游离二氧化硅粉尘俗称矽尘,是工业界广泛存在的职业健康有害因素。近年来流行病学研究发现,长期接触矽尘不仅可以引发矽肺,游离二氧化硅细颗粒物的暴露还会对心血管系统产生重要影响,但其损伤机制尚不清楚。  该研究团队发现,经呼吸暴露的纳米二氧化硅在小鼠肺泡中通过吸附肺表面活性物质穿过气血屏障,进入血液循环系统。肺表面活性物质的包裹显著促进了纳米二氧化硅在血液中吸附载脂蛋白A-I,从而显著缓解了纳米二氧化硅的细胞毒性和促炎效应。随着纳米二氧化硅在血液中快速清除,血液中的载脂蛋白A-I被大量消耗,从而导致了动脉粥样硬化的发生。因此,长期呼吸暴露纳米二氧化硅颗粒可诱发小鼠心血管损伤,但实验同时证明,载脂蛋白A-I模拟肽的补充可显著减缓该损伤效应的发生。在临床样本中,矽肺患者血清中的载脂蛋白A-I的浓度较健康人乃至冠心病患者显著降低,这进一步验证了纳米二氧化硅暴露对载脂蛋白A-I的清除作用(图1)。  该研究揭示了纳米二氧化硅诱导心血管损伤的新机制,为深入开展纳米颗粒暴露诱导心血管疾病防治研究提供了新思路。
  • 世界首台全自动化干细胞诱导培养设备通过验收
    p    strong 干细胞,养起来更简单(解码· 发现) /strong /p p   5月15日,中科院广州生物医药与健康研究院(简称广州生物院)全自动干细胞诱导培养设备研制项目团队研制的全自动干细胞诱导培养设备顺利通过验收,这是世界上首台全自动、大规模、规范化诱导及扩增的干细胞诱导生产系统。该设备将实现全自动化、规模化、智能化的诱导干细胞制备,对再生医学及其相关的细胞治疗领域产生重大影响。 /p p    strong 人工操作难以实现规范化与标准化,已成干细胞发展瓶颈 /strong /p p   干细胞是具有自我复制功能及多向分化潜能的细胞,在特定条件下能再生成人体的各种细胞、组织或器官,医学界称为“万能细胞”。干细胞在基础研究和转化医学应用中具有重要意义,在再生医学、疾病模型、药物筛选、精准医学等领域具有广阔的应用前景。但是,由于常规的干细胞存在量不足,干细胞研究兴起了诱导多能干细胞这一领域的发展,试图解决干细胞作为种子细胞的来源问题。 /p p   “科学家发现如果将人的体细胞进行处理,可以获得一种新的干细胞,这种干细胞被称为诱导多能干细胞。它在形态、基因和蛋白表达、表观遗传修饰状态、细胞倍增能力、类胚体和畸形瘤生成能力、分化能力等都与胚胎干细胞极为相似,是胚胎干细胞的完美替代细胞。”广州生物院研究员潘光锦说,“目前,诱导多能干细胞已成为相关医学研究的核心工具,用于新药研发、神经损伤修复、心肌细胞修复、组织器官再生或移植等领域。” /p p   为了获得实验所需的大量诱导多能干细胞,科研人员需要制备并让其大量增殖,也就是养细胞。然而,当前干细胞诱导、培养及筛选过程均只能依靠人工操作完成,存在很多的不足。潘光锦说:“一方面,由于缺乏对细胞命运变化及诱导多能干细胞克隆筛选和扩增的实时及定量监控,难以实现干细胞诱导流程的规范化与标准化 另一方面,人工操作也存在效率低、成本高、通量低、安全性差等问题。” /p p   因此,如何实现干细胞自动化规模化的均质培养与扩增,避免这些问题,是诱导多能干细胞技术走向实际应用亟须突破的瓶颈。 /p p   在此背景下,财政部支持的国家重大科研装备研制项目“全自动干细胞诱导培养设备研制”,于2013年立项,由广州生物院负责承担。项目团队以创新技术为核心,利用院内国际领先的诱导多能干细胞技术、干细胞诱导分化技术等研究成果,并结合自动化技术,历时4年,攻克8项关键技术,取得多项创新性成果,成功研制国际首台全自动干细胞诱导培养设备。 /p p   广州生物院研究员张骁说:“有了这台设备后,从事诱导多能干细胞的科研人员不再靠人工操作养细胞,甚至不具备养细胞技术的人只要靠这台仪器就能获得诱导多能干细胞。” /p p    strong 可实现全过程实时追踪监测,并提高干细胞的制备质量 /strong /p p   全自动干细胞诱导培养设备占地25平方米,由自动化培养箱系统、自动化液体处理系统、显微在线观测系统、高精度克隆挑取系统、培养皿传送系统、设备控制系统六大模块组成。 /p p   据科研人员介绍,干细胞的重编程是从一个个体化的矩阵培养箱开始,培养箱可并行培养24份个体化的诱导多能干细胞。然后,再由自动传送臂在b级环境下将 6孔细胞培养板从培养箱传送至操作舱中。随后,培养板就被置入成像区。接下来,拥有1.2微米分辨率的显微成像系统就会对其成像,整个过程不超过10分钟。 /p p   “独立矩阵式培养箱主要是为细胞培养提供适当的温度、湿度和气体环境,保证细胞的培养处于合适的环境,同时也保障个体细胞间不会交叉污染。” 张骁说,“人养细胞,不会全程监测细胞状态。而这台设备能全天候坚守,可以通过手机APP端监测,并及时完成移液、换液等操作。细胞的培养时间也缩短了。它还能自动获取细胞成长信息,预测细胞成长趋势,自动挑选出符合要求的成熟诱导多能干细胞。” /p p    strong 改善了我国高端生命科学仪器装备依靠进口的局面 /strong /p p   全自动干细胞诱导培养设备从诱导多能干细胞重编程全过程研究出发,建立全程自动化细胞培养诱导技术体系,利用人工智能机器学习辅助无损无标记分析手段,建立细胞极性变化为基础的命运调控的Hiden Markov Model数学模型,从而指导细胞重编程理论在干细胞获取领域从理论模型到制备整机技术的全线突破,实现重编程多能细胞暨干细胞的制备。 /p p   张骁说:“该自动化智能技术可实现每月24人次为周期的GMP级别的细胞制备通量,为我国的生物先进制造提供了上游细胞来源的智能保障。” /p p   全自动干细胞诱导培养设备第一次实现了以机器学习及人工智能算法为判定的细胞重编程命运的自动化诱导,整机技术及识别核心算法的应用已达国际领先水平。 /p p   广州生物院研究员裴端卿表示,设备的成功研制,标志着我国在干细胞装备领域的自主研发取得新的突破,改善了我国高端生命科学仪器装备依靠欧美进口的局面,其成果填补了国内在该领域的多项空白。 /p p   项目技术验收专家认为,该项目研究成果涵盖基础研究、应用研究和开发研究全过程的生物技术自主创新体系,这将为实现本领域整体“并跑”、部分“领跑”,初步建立系统的生物技术创新体系,突破一批核心关键技术难点作出贡献。 /p p   中国科学院微电子所研究员夏洋说:“该设备的成功研制将促进诱导多能干细胞在再生医学研究领域的实际应用,推进我国在干细胞装备领域的自主研发进程,推动我国干细胞基础研究和临床应用的快速发展,为干细胞再生医学及精准医疗的研究奠定基础。” /p p   据了解,目前各医院细胞治疗临床应用迫切需要干细胞制备装置,全自动干细胞诱导培养设备已逐步在各研究单位或一级医院研究中心推广。该设备降低了人为干预,实现多人份、低成本、高品质、一体化的干细胞生产,社会效益巨大。(记者 吴月辉) /p
  • 单颗粒ICP-MS助力复合氧化物铁酸锰(MnFe₂O₄) 纳米材料诱导番茄提早开花的分子机制研究
    原创 飞飞 赛默飞色谱与质谱中国关注我们,更多干货和惊喜好礼 刘莉ENMs 在农业生产中,开花时间直接控制着果实数量和质量,提早开花通常伴随着高授粉率,意味着营养周期更短,可以最大限度地减少非生物迫害(例如气候变化与干旱)对农业生产的不利影响。如何控制开花时间也被认为是“植物科学的100个重要问题”之一。人工纳米材料(ENMs)在提高农业生产方面显现出巨大潜力。ENMs的小尺寸效应能使它们跨越生物屏障(植物气孔大小约为10~100μm),通过叶面或根部扩散至植物脉管系统,从而提高作物水分利用、增加养分吸收、诱导抗氧化、增强光合作用和促进开花等代谢过程,最终显著提升农业生产力。目前已陆续有文章报道了ENMs对高等植物生殖生长,包括开花过程的影响,然而ENMs诱导作物生殖生长改变的机制,尤其是初始植物激素的信号传送和代谢机制仍不清楚。江南大学环境与土木工程学院Le Yue,Yan Feng等以复合铁酸锰(MnFe2O4)ENMs和番茄作为研究对象,围绕 ①MnFe2O4 ENMs进入番茄叶片并促进光合电子传递的潜力;② MnFe2O4 ENMs对赤霉素(GA)的调节作用和对开花基因表达的诱导作用;③ 番茄果实产量和品质的采后变化等方面展开了深入研究,为揭示ENMs对作物生殖生长的作用机制提供了重要认知。相关研究的成果发表在ACS NANO期刊。 (点击查看大图) 01单颗粒ICP-MS的应用单颗粒ICP-MS技术是一项新兴的纳米颗粒检测技术,可以用于ENMs在植物体内的富集转化和迁移研究。相对于TEM、SEM、DLS等ENMs的传统表征手段,单颗粒ICP-MS(SP-ICP-MS)可以快速、同时获得ENMs的成分、粒径分布、颗粒浓度及离子浓度等参数信息,目前已越来越多地被应用于各种ENMs的表征研究。 (点击查看大图) 本研究使用了赛默飞iCAP TQ SP-ICP-MS分析技术,测定了叶片表面、角质层和内部叶片片段中的MnFe2O4ENMs的含量,明确了ENMs的有效接触和吸收规律;测定了番茄果实中的ENMs的含量,探究了铁(Fe)在果实中可能的存在形式。 (点击查看大图) 02番茄叶片ENMs的测定通过去离子水浸泡和涡流的方式回收叶片表面的ENMs。收集的溶液用“surface”表示,将经过水洗的叶片转移到35%(v/v)HNO3中,静置15min,以溶解角质层,收集的溶液用“cuticle”表示,剩余的叶片组织以“interior”表示。对于叶片内部,取 25 mg 的叶片组织,用去离子水清洗3次,然后在 3 mL 20mM 2-(N-吗啉代) 乙烷磺酸 (MES) 缓冲液 (pH=5.0) 中均质。随后在每份均匀混合物中加入 2 mL 5% 的离析酶 R-10,在 37 ℃ 下将混合物振荡 24 小时。沉淀 1 小时后,将上清液通过 0.45 μm 的滤膜,并用去离子水稀释。surface和cuticle溶液经0.45 μm滤膜过滤并用去离子水稀释。研究发现,经过ENMs处理的叶片中,Fe 和 Mn 的含量均明显高于未经处理的对照组(喷洒等量的去离子水)(下图a和c)。虽然在角质层的分离过程中使用 HNO3 会减少角质层溶液中的ENMs数量,但经过 MnFe2O4 ENMs处理后的叶片表面、角质层和内部的ENMs数量还是明显高于对照组(下图d),这表明 MnFe2O4 ENMs会在番茄叶片中累积。 (点击查看大图) 03番茄果实中ENMs的测定利用SP-ICP-MS 测定了番茄果实中的ENMs,发现MnFe2O4 ENMs很少能进入番茄果实,说明MnFe2O4 ENMs处理不会造成果实的健康风险。 (点击查看大图) 04结论 // 通过iCAP TQ SP-ICP-MS分析技术准确分析了番茄植株叶片和果实中的MnFe2O4ENMs含量,可为探究ENMs在植物体内的转化、迁移和富集规律提供精确的数据支撑。 参考文献:[1] Yue L, Feng Y, Ma C, et al. Molecular mechanisms of early flowering in tomatoes induced by manganese ferrite (MnFe2O4) nanomaterials[J]. ACS nano, 2022, 16(4): 5636-5646.[2] Vidmar J. Detection and characterization of metal-based nanoparticles in environmental, biological and food samples by single particle inductively coupled plasma mass spectrometry[M]//Comprehensive analytical chemistry. Elsevier, 2021, 93: 345-380.如需合作转载本文,请文末留言。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制