动力学过程研究

仪器信息网动力学过程研究专题为您整合动力学过程研究相关的最新文章,在动力学过程研究专题,您不仅可以免费浏览动力学过程研究的资讯, 同时您还可以浏览动力学过程研究的相关资料、解决方案,参与社区动力学过程研究话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

动力学过程研究相关的耗材

  • 生物动力学附件 L2250145
    生物动力学附件这种生物动力学附件包括一个磁力搅拌式单样品池支架以及一个内置式温度传感器(0-100°C)的事件标记器。恒温效果通过外部水浴(不包括在产品套装内)而实现。本品包括6个搅拌棒。用于LS-45时需要辅助性PCB套件(L2250162)。订货信息:产品描述部件编号适用于LS50/45/55L2250145
  • 变温透射池
    程序升温,-190至250℃,可以做固体、液体的透射变温研究,直接放置在红外光谱仪的样品仓内。适合于反应动力学、催化剂、聚合过程、氧化反应、材料的相态结构研究等。 特点: 1. 温度范围:-190~250℃; 2. 液体、固体; 3. 杜瓦,程序升温; 4. 可以转换成液体的流动模式,进行动力学研究。 应用: 1. 变温研究,可以研究聚合物的结晶等过程; 2. 相态转变研究; 3. 催化剂研究; 4. 反应动力学研究; 5. 聚合过程研究。 Specac的变温透射池可以适用于各种红外光谱仪。
  • 快速滤光片附件
    快速滤光片附件快速滤光片是将一个滤光片安装到Cary Eclipse 光谱仪,用荧光探针的比率来测量细胞内离子快速进出细胞的运动。这类测量用于高速扫描单色器不能测量的快速动力学过程。需使用一对适合该荧光带通的滤光片安装在快速滤光片附件上。安捷伦提供用于测量与钙结合的呋喃-2 和吲哚-1染料的滤光片对。该滤光片直径25 mm,安装在一个黑色阳极氧化铝环内。订货信息:快速滤光片附件说明部件号用于检测 Ca++ 离子的呋喃-2 滤光片(340 到 380 纳米带通滤光片,20 纳米 SBW) 需要快速滤光片附件7910043800用于检测 Ca++离子的吲哚-1 滤光片(405 到 495 纳米带通滤光片,20纳米 SBW) 需要快速滤光附件7910043900

动力学过程研究相关的仪器

  • 超快光谱超快光谱探测技术被认为是自量子力学诞生以来,能够在相应非常短的时间尺度内探索微观量子性质的最有利工具之一,在研究超导材料的机理、非平衡物理及新奇量子态的诱导、量子态的外场调控等方面同样具有重要作用。很多新材料的研发需要借助超快光谱探测技术手段进行,如半导体磁性材料、超导体、绝缘体、复杂材料、太阳能电池等。在生物科学领域,NA、RNA等生物大分子在光激发后的反应过程和动力学过程,生物大分子的结构和生理机能探索,生物医学领域的基因工程等研究也需要超快光谱探测技术。显微超快光谱可以在微观尺度上探测样品的超快分子动力学过程,例如二维材料中边缘态动力学,载流子分布及扩散,光催化材料中的催化热点研究等等。卓立汉光的超快光谱测试系统,根据用户需求基于RTS显微系统,灵活搭建飞秒激光器、条纹相机、荧光寿命成像、飞秒瞬态吸收成像等超快模块,为超快化学及激发态动力学理论研究以及超快化学、物理和生物等交叉学科的研究提供更全面的数据支撑。超快光谱测试系统特点基于飞秒/皮秒激光器搭建,利用高能超短脉冲激发分子内部的动力学过程,监测过程中释放的超快荧光及瞬态吸收信号。激发光源可以自由切换,荧光显微系统使用高精度样品位移台,实现荧光寿命成像及荧光强度成像。条纹相机、光谱仪、显微镜构成联合诊断系统,提供超快空间-强度-时间分辨参数。飞秒瞬态吸收成像部分基于宽场显微镜搭建,可进行高通量快速成像。 超快光谱测试系统技术参数 荧光寿命成像光谱扫描范围200-900nm最小时间分辨率16ps荧光寿命测量范围500ps-10μs空间分辨率≤1μm@100X物镜@405nm皮秒脉冲激光器条纹相机光谱测量范围200-900nm时间分辨率≤5ps, (最小档位时间范围+光谱仪光路系统)测量时间窗口范围500ps-100us(十档可选)工作模式静态模式,高频同步模式以及低频触发模式系统光谱分辨率0.2nm@1200g/mm单次成谱范围≥100nm@ 150g/mm宽场飞秒瞬态吸收成像成像空间分辨率500 nm载流子迁移定位精度30nm时间分辨率500 fs (100 fs激光脉冲条件下)时间延迟线0-4 ns/0-8 ns显微镜模块倒置显微镜,上方为开放空间,后期可兼容低温模块、探针台、电学调控、磁场等特殊实验场景测量模式点泵浦+宽场探测(载流子迁移)宽场泵浦+宽场探测(载流子分布)仪器工作模式反射/散射新型二维材料中的边缘物理态研究(飞秒瞬态吸收成像系统)二维WS2中激子分布情况,激子寿命研究。从图中可以看出,二维WS2材料中多层的边缘具有更高激子密度和更长激子寿命。 ASE超快发光过程监测(条纹相机) 钙钛矿样品中的放大自发辐射(Ampl i f i ed Spontaneous Emission,ASE)发光过程研究。条纹相机可以监测到随着激光功率逐渐增大,样品从单纯的荧光发射(左图)变成荧光与ASE混合发光(中图),最后到只有ASE发光(右图)的全部过程。 钙钛矿荧光寿命成像(荧光寿命成像系统)钙钛矿样品不同寿命组分的寿命成像和相对振幅成像图。从图中可以看到两个寿命组分及其相对含量在样品中的分布情况。
    留言咨询
  • Flash DSC 2+Flash DSC 2+ 为快速扫描 DSC 带来了不小的变化, 该仪器可对以前无法测试的结构重组过程进行分析。 Flash DSC 2+ 是对传统 DSC 的完美补充。 现在,升温和降温速率范围已覆盖超过 7 个数量级。采用市售快速的 DSC — 它是研究 –95 °C到 1000 °C 温度范围内快速结晶和重组过程的完美选择。 它的升温与降温速率高,为研究热致物理转变和化学过程(如聚合物、金属和其他材料的结晶与结构重组)提供全新的视角。 超高升温与降温速率使用高升温速率可在不受重组过程干扰的情况下分析材料,这是因为材料根本没有时间,来不及出现此类过程。闪速差示扫描量热法还是研究结晶动力学的理想方法。快速响应传感器在 Flash DSC 2+ 中,样品直接放在 MultiSTAR 芯片传感器上。 使用动态功率补偿控制电路,允许在很高的升温与降温速率条件下进行测试,且噪音水平小。 Flash DSC 2+ 可使用两种 MultiSTAR 传感器(UFS 1 或 UFH 1)中的任意一种进行测试,它们被安装在一个可以传导电信号的稳定陶瓷基材上。
    留言咨询
  • 热动力学分析软件 400-860-5168转1322
    仪器简介:塞塔拉姆仪器与AKTS软件成为合作伙伴,共同为动力学分析和材料热稳定性的测定提供全球解决方案。 AKTS-热动力学软件包主要用来简化在原材料和产品研究,发展和质量保证过程中对DSC, DTA, TGA, EGA (TG-MS, TG-FTIR) 数据的动力分析。技术参数:这项技术提出在传统热分析方法基础上进一步推断的受检物质的额外的特性和反应的一种方法。这个方法从确定一个给定物质的一系列动力参数开始。这些参数于是用来预测在不同温度情形条件下的反应性质。比较起来,在低温以及复杂的温度类型下直接观测这样的反应是相当困难的(需要非常长的测试周期)。使用AKTS-热动力学 软件,反应速度和过程可以在以下温度分布下进行预测:等温,不等温,逐渐的,波动的或者期间性温度变化,快速升温(热冲击)和实地气候温度类型(多于700种气候)。主要特点:AKTS软件可以应用于物质热稳定性的研究,物理化学过程的安全分析和密封式物质安全性与质量的研究。AKTS 技术提供了一种推断附加特性和检验物质行为的方法,这些都基于传统热分析测量法。其关键优势在于产品热稳定性的精确测定(保存限期转化),包括数量和温度曲线图这些以往由于时间,成本和可行性关系而难以测量到的。 可用于安全评价及有效期、老化分析,包装扩散迁移率等。
    留言咨询

动力学过程研究相关的方案

动力学过程研究相关的论坛

  • 5.28《气溶胶吸湿性热力学和动力学过程的FTIR研究方法》张韫宏(北京理工大学)

    [font=Calibri][font=宋体]仪器信息网于[/font]5[/font][font=Calibri][size=10.5pt][font=宋体]月[/font]26-29[font=宋体]日组织召开[/font][b] [size=18px][b]第九届光谱网络会议[/b][/size][/b][/size][/font][font=Calibri][size=10.5pt][font=宋体],特邀嘉宾[url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=6560]张韫宏(北京理工大学)[/url][/font][font=宋体],带来报告《[b][url=https://www.instrument.com.cn/webinar/meetings/News/expert?id=6497]气溶胶吸湿性热力学和动力学过程的FTIR研究方法[/url]》[/b];[/font][/size][/font][font=宋体]欢迎感兴趣的你,报名参会![/font][b][font='Times New Roman'][color=#0563c1][url=https://www.instrument.com.cn/webinar/meetings/SCIEX522/]https://www.instrument.com.cn/webinar/meetings/iCS2020/[/url][/color][/font][/b]

  • 【资料】药代动力学研究在新药研发中的应用

    新药研发是一个快速发展的领域,随着组合化学等高技术和天然药物分离制备技术的发展,加快了候选药物的出现。在这些候选药物中,不仅需要对其药效学进行评价,药物代谢和动力学性质也是非常重要的新药筛选指标。理想的药物需要具有持久的药物作用时间和良好的生物利用度。每年都会有大量的候选药物因为其药代动力学参数和代谢特征不佳而被淘汰。因此,在新药的设计、筛选过程中应该考虑候选药物可能出现的代谢特征以及药代参数特点,以获得更为有效的药物。体内药物动力学和代谢研究在新药的研发过程中是相当重要的,需要申报临床研究的药物都需要进行临床前药代动力学研究。除了传统的动物试验以外,目前一些体外实验技术也在新药研发筛选过程中应用,包括组合给药技术,代谢预测模型以及体外肝代谢研究等,这些技术的应用将使对于药物代谢及动力学的筛选变得简便,几种技术的互补将大大加快新药研发的进程。全国科学技术名词审定委员会1999年公布的药学名词“pharmacokinetics”定名为“药动学”,而 “药物代谢动力学”与“药代动力学”为不推荐用名。本文综述的是药物动力学及代谢的应用,故采用 “药代动力学”(pharmacokinetics and metabolism)表达以上意思。1 药代动力学研究的内容药代动力学是应用动力学原理与数学处理方法,定量描述药物在体内的动态变化规律,研究通过各种途径进入人体的药物,其吸收(absorption)、分布(distribution)、代谢(metabolism)和排泄(excre- tion),即ADME过程,并且探讨药物在体内发生的代谢或者生物转化途径,进一步确证代谢产物的结构,研究代谢产物的药效或者毒性,使其结果为新药的定向合成、结构改造和筛选服务。描述药物体内过程的药动学参数主要有以下几个,速率常数(rate constant),包括吸收速率常数(ka)、总消除速率常数(k)以及尿药排泄速率常数(ke)等:生物半衰期(biological half life,t1/2),表征药物在体内的量或者血药浓度消除一半所需的时间,是衡量一种药物从体内消除快慢的指标;表观分布容积(apparent volume of distribution,AUC),是体内药量与血药浓度间相互关系的一个比例常数,是药物的特征参数,对于一个具体的药物来说,其值大小能够表示出该药的分布特性;清除率(clearance),指单位时间从体内消除的含药血浆体积或单位时间从体内消除的药物表观分布容积,常用Cl,又称体内总清除率表示。

动力学过程研究相关的资料

动力学过程研究相关的资讯

  • 分子超快动力学过程研究获进展
    飞秒泵浦-探测技术是一种可以在原子运动时间尺度上实时观测化学反应的有力手段,在飞秒泵浦-探测技术基础上发展起来的分子超快动力学是当前分子反应动力学研究领域的热点和焦点之一。   中科院武汉物理与数学研究所-武汉国家光电实验室张冰研究员领导的研究团队一直从事分子超快动力学方面的研究。近日,该团队利用飞秒泵浦-探测技术与飞行时间质谱和光电子影像技术相结合,对碘甲烷分子的B带预解离超快动力学过程进行了研究并取得重大进展。通过采集不同时刻下的光电子影像(见下图),获得了分子电离时的光电子能量和角度分布,并得到它们随泵浦-探测时间延迟变化的动态信息。实验中观察到碘甲烷母体的三种电离通道。通过光电子影像,直观地研究了碘甲烷分子的B带预解离过程,实验测得B带与A带交叉发生预解离的时间为1.55 ps。 不同时间延迟下的光电子影像   该项工作得到国家自然科学基金项目的支持,结果发表在《光学快讯》(Optics Express) (2009,17(13):10506-10513)上。
  • 物理所发展原位透射电镜技术表征离子输运动力学过程
    离子输运是物理、化学和生命科学研究的一个基本过程,其性质对储能、催化和阻变存储等器件性能有重要的影响。在实验上高分辨表征离子输运过程和表界面电化学反应对揭示器件工作机理和开发新型器件具有重要的意义。中国科学院物理研究所/北京凝聚态物理国家实验室(筹)表面物理国家重点实验室多年来致力于原位透射电镜-扫描探针联合技术的开发与纳米表征研究。利用原位透射电镜(in-situ TEM)方法可以将纳米器件置入电镜内对器件工作的动态过程进行原位高分辨观测表征,研究器件的工作机理。最近,他们通过优化扫描探针的机械和电子学设计方案,改善仪器的性能,提高了观测的稳定性和分辨率,在离子输运动力学及其相关的阻变存储器机理研究方面取得新进展。   阻变存储器(RRAM)因其具有低功耗、高集成度、低写入电压、可3D集成等诸多优点,有潜力成为下一代非易失性存储器。它主要是利用某些薄膜材料在电激励的作用下会出现不同电阻状态(高、低阻态)的转变现象来进行数据的存储。RRAM器件一般具有&ldquo 金属&mdash 介质&mdash 金属&rdquo 的三明治结构。这种三明治结构的绝缘介质层可以是二元或者多元的金属氧化物,或者是硫属化合物,以及有机化合物等。根据在绝缘体层传导的离子不同,又常将RRAM分成阳离子型存储器与阴离子型存储器。离子传输引起导电物质迁移从而形成导电通道,这是被广泛接受的模型,但是对于离子输运和导电通道形成的动力学过程目前仍然缺少直接的实验证据。   在过去的几年里,研究人员利用原位透射电镜方法研究了金属氧化物和硫化物中氧离子、金属离子的电迁移和电极界面氧化还原反应过程,以及这些过程导致的阻变效应【JACS 132, 4197 (2010) ACS Nano 4, 2515 (2010) APL 99, 113506 (2011) JAP 111, 114506 (2012), etc.】,这些工作是阻变存储器机理研究的有益探索。最近,他们开展了Ag/SiO2/p-Si体系的阻变机理研究,在透射电镜内原位观测Ag纳米颗粒的生长、迁移的动力过程及其伴随的电致阻变效应。针对一个独立的SiO2中包埋的Ag颗粒进行观察,在电场下银颗粒逐渐收缩,沿电场前方有小颗粒析出并逐渐长大,同时刚生长的颗粒前方又开始有新的小颗粒析出。该颗粒充当&ldquo 中继站&rdquo 的作用,其后方的颗粒物质传递过来,同时又输送给前方颗粒使其逐渐长大,沿着电场方向依次进行,递推前移。其物理过程是,银颗粒表面在电场下产生极化,沿电场方向的两侧表面分别呈现正和负极性,即一个金属颗粒表现为双极性,当极化强度足够大时,在正负电极处发生氧化还原反应,即正极一侧氧化生成银离子,电场驱动其迁移,负极一侧又将传输过来的银离子还原。银离子在电化学势作用下发生迁移,并和氧化还原反应同时进行,形成了边消耗边生长的逐步移动过程。从能带的角度给出了离子输运动力学过程的物理图像,还进行了有限元方法模拟计算,指出这些银颗粒作为双极性电极需要满足的临界尺寸,与实验结果一致。这项研究应用自行研制的原位透射电镜仪器表征了固体介质中金属离子输运及其伴随的电化学传质过程,对深入理解离子型阻变存储器机理具有重要意义。该工作是由博士生田学增、副研究员许智、研究员王文龙和白雪冬等完成的,相关结果发表在近期的Advanced Materials 26, 3649 (2014)上。   这项工作得到了国家自然科学基金委、科技部和中科院的资助。  图1. 实验测试示意图和Ag颗粒电迁移过程的原位TEM图像,Scale bar: 10 nm   图2. 包埋在SiO2中的Ag颗粒及其双极性极化示意图   图3. 纳米Ag颗粒电化学传质过程的高分辨成像   图4. Ag离子输运及其伴随的电化学传质过程的物理模型
  • 超快光谱:让皮秒/飞秒时间尺度的动力学过程可视化——访南方科技大学陈熹翰副教授
    相关报道显示,超快光谱测试技术在Nature、Science及子刊上频频出现,吸引越来越多科研工作者的青睐。也有专家评价说,超快光谱的出现,给相关科学领域带来了一场新的革命。那么什么是超快光谱?超快光谱有多快?又能解决哪些关键问题……为了进一步了解超快光谱的技术及应用现状,仪器信息网编辑特别走进了南方科技大学机械与能源工程系,邀请在超快光谱研究应用方面颇有建树的陈熹翰副教授给大家分享他心目中的超快光谱技术。南方科技大学 陈熹翰 副教授超快光谱:向时间更快、空间分辨率更高方向发展据悉,早期的超快光谱空间分辨率没有很高,只有大概几微米或者几百微米的空间,现如今,随着各种显微技术的快速发展,超快光谱的空间分辨率可以达到几百纳米。同时,超快光谱时间分辨率非常高,近年来,发展迅速的超快光谱成为了研究皮秒和飞秒时间尺度内的分子结构与超快动力学行为的强有力手段。通俗来比喻,超快光谱类似超快摄像机一样,让人们能通过一帧一帧的“慢动作”观察到处于化学反应过程中原子与分子的转变状态。当前,超快光谱已被越来越广泛的应用在物理、化学、生物、材料、医疗、能源及环境等众多领域。其中,在物理领域,超快光谱可以应用于半导体磁性材料、超导体、绝缘体、复杂材料、量子结构、纳米和表面体系、太阳能电池等研究领域。对于超快光谱技术当前的研究进展,陈熹翰表示,总体来讲,国内外发展比较均衡,目前主要有两个重要的发展方向:一个是时间更快,即在超快的基础上提出新的概念——阿秒(10-18秒),以便了解更多分子、原子里电子的动力学过程;另一个是空间分辨率更高,以便可以看到更小、更加清楚的动态过程。除此之外,国内外的相关人员也在尝试把超快光谱拓展到不同的波长,例如从X光到太赫兹甚至微波,以持续推动超快光谱前沿技术的应用拓展。“虽然当前在科研研究中得到大家的青睐,但超快光谱更多的情况下是一种研究方法,未来在成为一种通用技术的道路上还有许多局限性。” 陈熹翰在采访中分享了制约超快光谱应用的三个因素:一是采集数据的时间较长。采集一次的时间约10~30分钟,如果需要更高的数据信噪比,则需要一个小时甚至两个小时;二是需要专业人员分析数据。在分析光谱时,要赋予其物理意义,将实验与实际结合,这需要一定的知识背景和经验积累;三是激光器成本较高。飞秒激光器费用可高达百万元以上,加上搭建激光器、光路和探测仪器等费用,一套仪器设备的投入可能需要300万元左右。这些问题在一定程度上限制了当前超快光谱更大规模地应用于市场。超快光谱在光电材料领域的应用优势显著都说热爱源于兴趣,陈熹翰就是如此,他喜欢研究事物背后的机理,特别是物理化学的转化过程。据介绍,陈熹翰在读本科时,就发现常用的化学手段没有办法非常清楚的展现反应的进行过程,例如太阳能的转化过程。之后,他接触到了超快光谱,发现超快光谱能够契合他的想法,并对其产生了极大的兴趣,由此踏入了超快光谱研究领域,并于2017年在美国取得化学博士学位(超快光谱方向),2021年加入南方科技大学,目前主要从事太阳能光电转化材料(如太阳能电池)以及机理研究工作。据介绍,当前,陈熹翰研究团队共有6~7人,在超快光谱技术及应用的相关研究中已经取得了一系列的研究进展。在光电转换材料方面,基于超快光谱的研究方法,陈熹翰团队自己搭建并设计了一些光路、功能、模型和方法,比如与反射光谱、太赫兹光谱等联用,用来研究太阳能转化材料的表界面性质,进而分析表界面动力学和转化效率的关系;在光电化学材料方面,陈熹翰团队在超快光谱技术的基础上开发了原位全反射光谱的方法,直接研究光电化学分解水的过程,他介绍说:“通过超快光谱,就像照相一样可以直接看到制约分解过程的两种反应中间体,并且可以通过pH或者其它方法来调控这两种中间体,进而控制水分解反应的速度。”2022年陈熹翰在《先进功能材料》期刊发布了一篇关于钝化钙钛矿界面处缺陷的文章,受到了极大的关注。特别值得一提的是,在这项成果的研究过程中,陈熹翰应用了大连创锐光谱科技有限公司(以下简称创锐光谱)的超快瞬态吸收光谱系统。对于为何会选择该国产仪器设备,陈熹翰表示:“我个人选择仪器的标准,第一点就是它的稳定性要好;第二点是可以定制化,我们可以做自己的改进;第三点就是售后服务一定要及时。”其实,陈熹翰一直在关注国内外相关的仪器产品,也做了很多调研对比,他表示,相比进口品牌,国产超快光谱仪器在国内科研应用中会更有优势。其评价说,以创锐光谱超快瞬态吸收光谱系统为例,相比进口品牌,这套系统的性能参数、稳定性可以完全对标,同时创锐还针对不同需求提供了定制服务,这是进口设备做不到的。系统交付后,双方在设备培训和沟通十分及时高效。系统可靠性也很优秀,投入使用至今未发生过异常。 创锐光谱超快瞬态吸收光谱系统技术亟待推广,多领域发展值得期待随着科学研究的不断深入,超快光谱也迎来了发展机遇。陈熹翰对于超快光谱的应用潜力信心满满,他分析道,从国家发展战略的角度出发,有三个方面的发展值得期待:首先,国家正在大力发展半导体产业,超快光谱对于研究半导体系统缺陷、提升其工艺水平十分重要;其次,在可再生能源领域,特别是太阳能电池、光催化分解水等方面,应用超快光谱可有助于研发出更高效的太阳能电池和催化剂,更快地完成从传统能源到新能源的转型;另外,国家也在积极推动生物制药等领域的发展,超快光谱可以用来研究生物体系中的一些能量转换模式,为之后的生物制药相关过程分析提供指导。机遇意味着拥有无限可能,对于超快光谱未来发展的可能性,陈熹翰也分享了自己的观点。他表示:未来,超快光谱在科研、工业两个方向都会有比较大的发展。科研方向上,超快光谱除了朝着时间更快,空间利用率更高的趋势发展之外,波长范围也将会更广,这样超快光谱将在任意波段都可以进行相关的研究;工业方向上,超快光谱将更多的与软件相结合,通过预设模型既可使采集数据更快,又可直接通过软件进行大数据分析,直接给出大家想要的结果。采访中,陈熹翰特别表示,虽然目前超快光谱的发展还处于起步阶段,但潜力非常大,亟需向大众宣传推广,以推动其在相关前沿基础科学研究及工业中的应用拓展。陈熹翰表示:“除了像我们一样的专业人士之外,希望能让更多的人了解、使用超快光谱技术。当然,实际应用中需要操作者有一定的材料学、物理学技术背景,确实有一些难度,不过随着我们国家的发展,理工科人才越来越多,大家的知识背景越来越强,这项技术就可以进行更多、更广泛的推广。”同时,对于未来的推广方式,陈熹翰也给出了自己的想法,“在我看来,超快光谱想要推广应用,一是需要在高校、科研院所、产线上刷存在感,吸引更多的用户去了解它,应用推广的机会也就越多;二是通过相关网站、各大平台等做更多的科普宣传,向大家普及超快光谱如何使用,有何优势,可以帮助解决何种问题等;三是超快光谱若能够作为国家战略层面上的一项技术或者一项储备来宣传的话,将会达到事半功倍的效果。”
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制