质谱正离子分子量

仪器信息网质谱正离子分子量专题为您提供2024年最新质谱正离子分子量价格报价、厂家品牌的相关信息, 包括质谱正离子分子量参数、型号等,不管是国产,还是进口品牌的质谱正离子分子量您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱正离子分子量相关的耗材配件、试剂标物,还有质谱正离子分子量相关的最新资讯、资料,以及质谱正离子分子量相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

质谱正离子分子量相关的厂商

  • 400-860-5168转6112
    质谱佳科技是国内专业从事分析仪器维修等技术服务、进口二手分析仪器销售和租赁的领先企业,原厂工程师团队为客户在色谱、光谱、质谱仪的维护保养、维修、仪器认证、技术升级、仪器搬迁,软硬件操作培训等多方面提供完善的技术支持和整体解决方案。 质谱佳科技在美国、欧洲、日本有着良好的合作伙伴,凭借优质的进货渠道和专业的选品团队为客户提供优质的二手仪器。主营品牌有:Thermo(赛默飞)、AB Sciex(爱博才思) 、Agilent (安捷伦)、Waters(沃特世)、Shimadzu(岛津)等,另外质谱佳科技还提供分析仪器配件、耗材的销售。 质谱佳科技总部位于长沙,通过设在上海、海口等地的分公司,形成服务全国的网络。为制药、食品、环保、三方检测、新能源等多个行业以及高校、科研院所、政府实验室等客户提供方便快捷的本地化服务。
    留言咨询
  • 合肥迪泰质谱检漏仪专业生产厂家。氦质谱检漏仪用于真空检漏、如电厂汽轮机组,镀膜机,高压真空柜,真空炉,如有需要请联系 15056044460 王小姐合肥迪泰真空技术有限公司是专业氦质谱检漏设备供应商。主要产品有:氦质谱检漏仪,充氦回收系统,真空箱检漏系统,高真空设备,真空零配件等。公司拥有专业化的研发团队和科技人才队伍。所生产的新一代全自动高灵敏度氦质谱检漏仪采用多项国际先进技术。真空箱氦检漏系统设计科学,产品性能稳定。氦质谱检漏广泛应用于航天航空,汽车制造,真空应用等领域。
    留言咨询
  • 400-860-5168转4496
    衡昇质谱专注无机质谱等分析仪器的研发和制造。公司业务聚焦在质谱领域的自主研发,既定战略是:只专注发展有自主知识产权的质谱仪器。 以“衡昇”命名,是将“张衡”“毕昇”两位我国古代科技创新的杰出代表作为榜样,希望继承先贤之创新精神,立足科学研究,促进创新发明,为我国科学仪器事业做贡献。
    留言咨询

质谱正离子分子量相关的仪器

  • 仪器简介:仪器特点荣获2004年度世界研究与发明技术最高奖(R&D 100 Award)的LTQ-FT线性离子阱回旋共振质谱仪是具有崭新技术观念的强有力的蛋白质组学分析系统。在真正液相色谱/质谱在线连接的工作状态下,得到超高分辨率、精确质量数和多级质谱分析数据并同时满足高通量常规分析的要求。该系统可以从多个角度进行蛋白质组学研究,其ECD和IRMPD裂解源可以得到和CID裂解源相补充的碎片离子,降低假阳性率和提高可信度,并可以从Top Down的方法进行蛋白质分析。这两种源也是翻译后修饰(PTM)未知肽序列测定(De Novo)研究的重要工具。除主要应用于蛋白质组学,LTQ FT还可用于分析如原料油中复杂混合物、分子量极靠近的相关成分这样的艰难任务。LTQ-FT Ultra是将世界领先的线性离子阱技术与FTICR技术整合在同一台仪器钟开发出的具有超高性能的质谱仪器。LTQ与FT的整合极大地简化了FT的操作使用,在保留LTQ所有优越性能的基础上弥补了单纯FT分析速度慢的缺点,从而扬长避短使FT质谱分析潜力得以充分发挥。LTQ-FT Ultra的出现使同时具备的高分辨,高准确质量测定与多级质谱(MSn)功能第一次成为常规的高通量分析手段。LTQ-FT Ultra采用了改进的核心部件即离子回旋共振腔体-Ultra cell。这一创新设计使LTQ-FT Ultra具有更高的灵敏度和更广阔的回旋半径,极大地减弱了空间电荷效应的影响。这些性能的提高无需增加磁场强度,因而也不存在相应的费用及操作难度问题。LTQ-FT Ultra在以下方面有了显著提高:更高的灵敏度,埃摩尔级的柱上灵敏度更精确的质量测定,ppb级的质量准确度更高的分辨率主要特点:1.超高分辨率2.精确质量数和多级串连质谱分析数据3.高通量常规分析
    留言咨询
  • timsTOF Pro 2由平行累积连续碎裂技术( PASEF )驱动,使得 4D-蛋白质组学和 4D-脂质组学为无偏向性细胞和血浆蛋白质组学、液体活检多组生物标志物发现,以及整合基因组学、蛋白质组学和表观蛋白质组学拓宽了道路。4D-组学时代 —— 解锁第四维度的价值4D-组学的重大突破速度:PASEF 技术实现了在不影响分辨率情况下达到超过 120 Hz 扫描速度。深度:额外一维离子淌度提高了数据完整性。高通量:超快数据采集速度使其可以使用短梯度实现生物样本的高通量分析。耐用性:独特的仪器设计使得其可以连续分析数千个样品,仪器保持稳定的性能而无需清洁。4D-Proteomics&trade 的新标准:更快速度实现蛋白质组全覆盖基于质谱( MS )的蛋白质组学一次可实现样本里成千上万蛋白的定性和定量。然而,受到目前质谱仪的扫描速度、灵敏度和分辨率的影响,实现蛋白质组的全覆盖仍然具有挑战性。timsTOF Pro 2 使用平行累积连续碎列( PASEF )的技术可实现极高的扫描速度和灵敏度,只需要少量样本就可以达到蛋白质组学鉴定新深度。双 TIMS 和 CCS 的分析捕集离子淌度谱( TIMS )首先是一项重要的气相分离技术,它是在高效液相色谱( HPLC )和质谱分离的基础上,带来额外一个维度的分离,可大大降低样品分析复杂度,极大提高峰容量和分析物鉴定可靠性。同样重要的是,TIMS 离子淌度管能对离子实现时间和空间上的聚焦,从而独特地提高灵敏度和扫描速度。双 TIMS 技术可以实现近乎 100% 的离子利用率,离子在前一根淌度管内累积,在后一根淌度管内根据离子淌度值分批释放。这种平行累积连续碎裂( PASEF )的过程能够实现碰撞横截面( CCS )的分析。CCS 额外一个维度信息能够提供很多进一步的分析可能性,可以从复杂数据库实现化合物的高可信度库匹配以及更低的错误发现率( FDRs )。4D-Proteomics&trade 的新标准:更快速度实现蛋白质组全覆盖基于质谱( MS )的蛋白质组学一次可实现样本里成千上万蛋白的定性和定量。然而,受到目前质谱仪的扫描速度、灵敏度和分辨率的影响,实现蛋白质组的全覆盖仍然具有挑战性。timsTOF Pro 2 使用平行累积连续碎列( PASEF )的技术可实现极高的扫描速度和灵敏度,只需要少量样本就可以达到蛋白质组学鉴定新深度。双 TIMS 和 CCS 的分析捕集离子淌度谱( TIMS )首先是一项重要的气相分离技术,它是在高效液相色谱( HPLC )和质谱分离的基础上,带来额外一个维度的分离,可大大降低样品分析复杂度,极大提高峰容量和分析物鉴定可靠性。同样重要的是,TIMS 离子淌度管能对离子实现时间和空间上的聚焦,从而独特地提高灵敏度和扫描速度。双 TIMS 技术可以实现近乎 100% 的离子利用率,离子在前一根淌度管内累积,在后一根淌度管内根据离子淌度值分批释放。这种平行累积连续碎裂( PASEF )的过程能够实现碰撞横截面( CCS )的分析。CCS 额外一个维度信息能够提供很多进一步的分析可能性,可以从复杂数据库实现化合物的高可信度库匹配以及更低的错误发现率( FDRs )。极高的稳定性和通量无需清洗许多用于蛋白质组学应用的 MS 仪器需要每月清洁一次,在大样本组中每天 24 小时运行。仪器性能下降即使在较短的时间段内也是显而易见的。timsTOF Pro 2 卓越稳定性意味着仪器可以全天运行很多周,而没有明显的信号和其它性能下降。PaSER Run & Done —— 加快4D-蛋白质组学的鉴定速度PaSER( 实时平行搜索引擎 )是一个结合硬件和软件的解决方案,能够实现基于样本序列管理的实时数据库搜索引擎。PaSER 以很快的速度就能提供结果,包括 PTM 搜索。通过使用基于 GPU 的搜索,PaSER 在实时或离线模式下可以提供相同的结果,而无需使用简化的算法或中间步骤。PaSER 极快的搜索速度使得在数据采集结束后数秒就能同步拿到搜库结果,真正实现运行并完成! PaSER 有效地打破了大队列样本数据分析通量壁垒。此外,实时蛋白组学的非标记定量也可以跨越 PaSER 获得的数据结果集,使其瞬间能过渡到定量蛋白质组学。通过 TIMS Viz 使得淌度偏移质量对齐( MOMA )变得可视化 ,从而用户可以鉴定和识别只有 4D-Omics 才能看到的共洗脱多肽。 dia-PASEF 增加鉴定可信度dia-PASEF比传统的 DIA 方法有更高灵敏度和选择性,是因为它将 PASEF 原理也应用进来,结合了 DIA 的优点和 PASEF 离子利用率高的优势。TIMS 分离提高了选择性,而且可以将单电荷母离子排除掉,从而降低本底噪音干扰。利用分子量和碰撞横截面 CCS 值的相关性,dia-PASEF 能够实现高可信度化合物鉴定。在 LC-MS/MS分析中, dia-PASEF 能够采集包含 m/z,离子淌度值( CCS ),保留时间和离子强度的 4D 数据。前所未有的蛋白质覆盖深度凭借强大的 SRIG( 不锈钢堆叠环形离子向导 )装置和新优化的 dda-PASEF 方法 ,timsTOF Pro 2 单针能够达到前所未有的蛋白组学覆盖深度。使用自制 HEK 酶切样本, 上样 200 ng,使用 Aurora - 25cm 色谱柱,在 60 分钟梯度下能够鉴定 超过 7,000个 蛋白和 60,000 条多肽。因此 timsTOF Pro 2 可以通过数据库搜索和运行之间的匹配,无需任何谱图库,在一些日常细胞系蛋白组定量实验中实现很高的蛋白覆盖深度。超高灵敏度的高通量靶向蛋白质组学和常规的靶向蛋白组学分析技术( SRM 和 PRM )相比,prm-PASEF 在单针中可极大提高监测多肽数目,同时不影响仪器选择性或灵敏度。靶向质谱( MS )技术是蛋白质组学实验中一种强大的技术,用来验证大队列样本中的候选生物标志物。与数据依赖采集( DDA )和数据非依赖采集( DIA )相比,这可以增加检测灵敏度。可是该技术受到在单针中监测离子数目和液相分离出峰时长以及整体灵敏度间的折中限制。只有通过更长的色谱分离时长或降低质谱的灵敏度和选择性,才能获得大量目标肽的完整数据。prm-PASEF 可以极大地提高单针中靶向监测的多肽数目,这得益于布鲁克 timsTOF Pro 2 的第四维分离可以极大提高选择性和灵敏度, PASEF 技术带来的速度可以增加靶向分析离子数量。超高灵敏度应对最困难的分析挑战随着某些特定细胞、少量细胞群或生物穿刺样本的生物研究越来越重要,低样本量蛋白组定量变得至关重要。而如此低的样本量对于质谱灵敏度提出了很高要求。使用高灵敏度的质谱仪对如此低的样本量进行原型定量至关重要。timsTOF Pro 2 上样 200 ng HeLa 样本,使用 Aurora - 25cm 色谱柱,在 30 分钟梯度下使用 PaSER 能够鉴定超过 74,200 个蛋白和接近 30,000 条多肽。dia-PASEF —— 高通量定量蛋白质组学中实现无与伦比的数据完整性和分析深度使用标准 dia-PASEF 方法多针测试结果有着很高重复性。三种不同的 dia-PASEF 窗口设置下使用 Aurora-25cm 柱在 60 分钟梯度下可实现接近 8,000 个蛋白定量和超过 70,000 条多肽,而且有极高的定量准确性。高灵敏度磷酸化蛋白组学分析和同分异构体分离支持 CCS 的近邻位磷酸化位点定量dia-PASEF 在 timsTOF Pro 2 上的高灵敏度、扫描速度和重现性甚至可以实现低样本量的磷酸化蛋白质组学分析。例如可以实现小鼠脑样本起始总蛋白仅为 25 μg 的磷酸化蛋白质组的非标记定量。使用 Evosep 每天 30 个样本的分析方法,三次重复可鉴定出多达 4,473 个 unique 磷酸化多肽。这些结果为针刺活检的应用带来了希望,可以用信号转导的信息补充癌症蛋白质基因组学数据。这些结果为针刺活检的应用带来了希望。此研究结果由 Stefan Tenzer 教授提供。分析样本量有限时的细胞信号传导当肽段在色谱上发生共洗脱时,由于等重性和信号重合,不能测量 CCS 值的传统蛋白质组学是不能实现磷酸化肽异构体的定量的。PASEF 技术使得基于 TiO2 富集时,使用 150 ug 蛋白富集起始量就能够鉴定 27,768 个磷酸化肽,展现了淌度偏离质量对齐( MOMA )的优点。1,946 条鉴定的共洗脱异构体中,20% 的异构体可以被TIMS 完全分离,这可以使得我们可以更好地理解邻位蛋白磷酸化位点信息。
    留言咨询
  • microflex LRF台式MALDI-TOF质谱系统,适用于不同领域、不同种类、质量范围跨度较宽的样品分析。microflex LRF具有线性和反射两种模式,可以灵活检测聚合物、多肽以及寡核苷酸;高达15000的分辨率,能够提供足够的谱图细节,满足诸如食品掺假等应用的需求,更可用于多种应用市场的研究和日常筛查工作。结构简单,性能可靠microflex LRF是一台结构设计紧凑、性价比高的基质辅助激光解吸电离-飞行时间(MALDI-TOF)质谱系统。别具一格的microScoutTM离子源以及无网格反射器,赋予microflex LRF优异的分辨率、卓越的质量准确度和突出的灵敏度,在同类仪器中独占鳌头。microflex LRF采用布鲁克独特的WhisperModeTM静音技术,凭借无油免维护真空泵,实现超静音运行。自诊断系统为每日运行的稳定性保驾护航。专利的AnchorChip技术使制备的样品非常均匀,位置更加准确,更容易实现快速的数据自动采集。可以把灵敏度提高10-100倍,不仅可以提高蛋白质鉴定时的序列覆盖率,还可以发现质控样品中的痕量杂质。久经验证的稳定性能独特的microScout&trade 离子源采用先进的脉冲离子提取技术;频率高达60Hz的氮气激光器具有激光频率可调功能,同时配备光纤传输系统;高分辨高传输率的无网格反射器设计。microflex LRF是一款可以满足各种实验室需求的功能强大而耐用的质谱仪。系统具有可以自动选择母离子的二级质谱性能(automated post-source decay autoPSD),Compass软件包无缝整合Polymerix, ProteinScape&trade , BioTools&trade 等软件,可选软件Compass Security Pack满足21CFR part 11法规要求。应用举例食品安全食品掺假对世界经济影响巨大,不同的掺杂物对人类和动物健康的危害也不容小觑。即使对于传统方法难以分析的样品,例如脂类和食用油,MALDI-TOF质谱也能快速低成本地获得高价值的分析结果。聚合物、寡核苷酸和合成多肽的简单快速质控(QC)简单的实验流程,易用的软件,几分钟就可以完成从样品制备到结果分析。聚合物专用软件有助于聚合物的深入分析。根据样品的特性,数据采集可选择正离子或者负离子模式,线性或者反射模式,从而可以检测、筛选不同电离特点的样品。
    留言咨询

质谱正离子分子量相关的资讯

  • 国产离子源技术新进展在美国质谱年会受到关注
    浙江好创生物技术有限公司董事长朱一心在2015年美国质谱年会(ASMS 2015)上发布了有关电喷雾离子源(ESI)带电机理,相关的论文在ASMS上作为墙报展示。由于这套理论与传统ESI带电理论有所不同,引起了强烈的反响。仪器信息网编辑将发布的内容整理,供国内感兴趣的专家学者参阅。  当前,蛋白质组学研究中最大的技术瓶颈之一就是生物质谱的离子源技术,因为现有离子源对离子的利用效率极低。  事实上,自从80年代中期John B. Fenn 将电喷雾离子源应用于大分子质谱分析以来,全世界成千上万的科学家涌入了这一研究领域。快30年过去了,对于电喷雾离子源机理,还是停留在两个模式:Ion Evaporation Model (IEM) 离子蒸发,与Charged Residue Model (CRM) 电荷残留机理。这两个模式所描述的都是带电液滴离开Taylor Cone 以后的单分子气相电荷的形成过程(如图1所示),至今也无法解释以下两个问题:  1、为什么电喷雾离子源中存在多电荷离子?  2、为什么电喷雾离子源存在离子抑制现象?图1 电喷雾离子源机理  有些学者认为多余的电荷是来自于液滴(Droplets that contain an excess of positive and negative charge detach from its tip.)  根据电磁场理论,介质在电场中,正负电荷是以成对的形式存在的,不可能形成正、负分离。在电极的同一端更不可能产生正、负离子分离的现象。图2 离子源机理实验图  下面是朱一心研究团队的实验过程。首先将离子源全封闭起来。图2中,瓶子 1、2、3 可以加上不同的液体或气体,作为辅助液气,控制泰勒锥周围的离子化气氛。图3 离子源离子化室内充满空气和氮气时的离子图  当离子源离子化室(Chamber)充满空气时,肽段离子信号如图3左所示,肽段离子信号非常强。  将离子源离子化室(Chamber)充满氮气,并且控制其质谱仪的真空度与离子源离子化室暴露大气时一样,如图3右所示,质谱仪无法检测到肽段离子信号。  这样我们可以直观的推断(M+H)+ 中的正氢离子并非来自于 Tip 中的液体(流动相)。图4 Air气氛状态下,咖啡因的溶剂为D2O和H2O的谱图  还有实验也能说明氢离子不是来自于流动相。分别用水(H2O)和氘水(D2O)溶解咖啡因,在没有辅助液体的时候,离子化室充满空气时,得到如图4所示的图谱,图中可见,上下图谱完全一致,这就说明了氢离子不是来自于流动相(Solvent)。如果是自于流动相,那么在用氘水(D2O)溶解咖啡因的质谱图中的主峰应该是(M+2)=196.17,而不应该与用水(H2O)溶解样品时得到的主峰一样(M+1)=195.17。咖啡因的结构如下图,它没有OH键,所以无法产生氢氘交换,最适合我们的实验。咖啡因(Caffeine),分 子 式:C8H10N4O2, 分 子 量:194.19  那氢离子到底来自于哪里呢?看了下面实验就知道了。  在上面的实验中的辅助气中加以D2O为辅助液体以后,得到了完全一致的谱图,主峰均为(M+2)=196.26如图5所示。图5 Air+D2O 气氛状态下,咖啡因的溶剂为D2O和H2O的谱图  从咖啡因的分子式可以判断,它100%无法进行氢氘交换。所以用氘水溶解样品,咖啡因的分子式不发生变化,在高电场中被电场极化的分子式与水溶解的咖啡因一致,分子量没有发生变化,还是M,吸附上一个氢离子以后形成(M+H)+ 正离子。加以氘水(D2O)辅助蒸汽以后,在泰勒锥(Taylor Cone)周围产生氘离子(D+),所以极化后的分子吸附一个氘离子(D+),形成(M+D)+ 正离子。这一实验就证明了氘离子((D+),是来自于泰勒锥以外的。  如果用传统的电喷雾理论,在这一实验中,用水(H2O)溶解咖啡因时,是永远见不到(M+2)+ =196.26的离子峰的。  这三个实验可以说明,电喷雾离子源使分子带电的过程其实是场致水分子电离后产生氢离子,极性分子在高电场中的极化,极化后的分子与氢离子又产生了静电吸附,从而形成多电荷分子离子。  图6 电喷雾离子源机理  如图6所示,电喷雾发射针处于正电压,在尖端表面形成一个稳定的Taylor Cone,因为Taylor cone 的曲率半径很小,在纳米数量级,尖端表面的电场很强,将刚刚离开Taylor Cone 的极性分子极化,形成长条形的不稳定极性分子 同时将尖端表面的水分子场蒸发,形成氢离子,氢离子被长条形的极性分子的负端吸附,从而形成了多电荷离子。  同时可见,当两个极性分子同时出现在Taylor Cone 附近,氢离子被极性大的分子吸附,从而出现了离子抑制现象。  美国康奈尔大学化学与化学生物学荣誉教授Fred Mclafferty(右)与朱一心先生探讨技术问题  赛默飞世尔R&D Director Jean-Jacques(右),与朱一心先生探讨技术问题
  • 2017无机及同位素质谱大会新晋产品——扫描电镜和飞行时间-二次离子质谱的火花
    质谱主要发展方向—小型化和质谱成像技术人类很早以前就对物质产生兴趣,我们很想知道物质的结构、成分、特点是怎样的,只要仔细观察一下周围的世界,我们就会发现自然界存在着复杂繁多的物质,而物质都在发生着变化,那物质是否是由少数元素构成的?构成物质的微粒是什么?这些构成物质的微粒是如何组成物质的?物质的结构与物质的性质之间存在什么样的关系?物质发生变化的本质是什么? 我们一直在不断努力,发明创造能够检测、观察和分析物质结构的方法和技术。质谱分析技术是一种很重要的分析技术,它可以对样品中的有机和无机化合物进行定性定量分析,同时它也是唯一能直接获得分子量及分子式的谱学方法。其中,无机、同位素质谱技术的发展历史最为悠久,广泛应用于元素含量及其形态、同位素分析,质谱成像分析等领域。 而随着科学技术的发展和研究领域的不断拓展,目前的质谱分析技术日趋成熟,在高通量、高灵敏度、高分辨率、低检出限等性能上均已达到很高的水平。比如表面分析技术飞行时间-二次离子质谱(TOF-SIMS),已拥有非常好的灵敏度和极高的分辨率,可以提供表面、薄膜、界面以至于三维样品的元素、分子等结构信息而被广泛应用。2017年8月19日在成都召开的2017年中国质谱学会无机及同位素质谱学术会议上,核工业北京地质院郭冬发研究员分享了题为《铀矿物质谱成像分析》的大会报告,向与会的的质谱专家们介绍了质谱成像技术的重要性和铀矿物分析的最新应用进展。郭冬发研究员谈到,随着质谱分析技术的发展和成熟,未来质谱的发展方向主要是小型化和质谱成像技术。利用现代质谱成像技术,可以实现单点成像(1D)、二维成像(2D)和 三维成像(3D),并用于铀矿勘查和铀基材料的加工研究。2017无机及同位素质谱学术会议核工业北京地质研究院郭冬发研究员分享报告质谱会议首亮相,联用技术的一场革命随着质谱成像技术的快速发展,现在的质谱成像技术已经不局限于一种或者几种分子,可以同时反应多种分子在空间上的分布信息。但从综合分析的角度,目前的质谱成像技术,无论是哪一种分析手段都无法在分析速度、灵敏率、分辨率、空间三维信息、消除背景干扰上得以兼顾。常规的SIMS分析手段对于样品表面成分分析可以达到非常高的灵敏度,但在样品的整个面和空间深度分析方向,虽然辅以现在的质谱成像技术,已经能够获得一些信息,但在成像速度和三维结构分析上仍然捉襟见肘。而对样品的大面积分析和空间三维信息的获取,正是FIB-SEM(聚焦离子束-扫描电镜)技术的优势所在。借助FIB-SEM极高的分析速度和更优异的空间成像能力,SIMS也能在三维分析上具有更好更快速的分析性能,这也是FIB—SEM—TOF-SIMS联用技术带来的应用价值,使质谱成像技术从单点一维、二维成像走向真正意义上的三维成像分析,快速全面的获取样品的分子和结构信息。核工业北京地质研究院是TESCAN FIB—SEM—TOF-SIMS联用系统的重要用户,在铀矿物质谱成像分析等方面做了大量实验和研究,在此次无机和同位素质谱会议上,核工业北京地质院郭冬发研究员也提到,目前质谱成像(MSI)仪器主要有LA-ICP-MS、FIB-SEM,LG–SIMS,其中LG–SIMS MSI更适用于点成像,LA-ICP-MS MSI更适用于元素成像,FIB-SEM-TOF-SIMS MSI更适用于界面成像。利于这项联用技术,更加有利于实现三维快速成像,获得样品的综合全面信息。TESCAN在此次质谱学术会议上,也携带其FIB—SEM—TOF-SIMS技术产品首次亮相质谱学术界,向参会的专家学者们介绍了这款FIB-SEM和TOF-SIMS新型联用技术碰撞出的新产品以及在质谱和材料分析领域所带来的应用拓展,解读了TESCAN公司在综合分析和联用拓展上的创新理念,而在TESCAN展台,不少专家在了解了这项技术后表示出了浓厚的兴趣。2017无机及同位素质谱会议TESCAN展台三维质谱成像,FIB—SEM—TOF-SIMS技术得天独厚TESCAN是第一个将TOF-SIMS和自己的SEM/FIB成功集成在一起,拥有这项技术的公司,这项技术是用聚焦离子束 (FIB)将试样剥离,产生带电离子或者中性粒子,采集带电离子作为TOF-SIMS的分析信号,实现对于轻元素、同位素、三维数据重构或者对薄膜深度方向的剖析和化学高分子试样的官能团等化学结构的解析。更加有利于实现三维快速成像,获得样品的综合全面信息。集成在FIB-SEM上的TOF-SIMSFIB—SEM—TOF-SIMS技术独特的优势同位素快速检测三维重构更好的空间分辨率水平方向分析示例:垂直方面分析示例:正离子和负离子模式而正是因为TESCAN“All In One” 的创新产品设计理念,使得TESCAN的任何系统在接入EDS、WDS、RAMAN、TOF-SIMS等更多分析附件和设备时表现出更好的兼容性和更优异的性能,对于样品的进一步组合分析提供了很大的便利。尤其是随着分析技术的发展,对分析的要求也越来越高,FIB与TOF-SIMS的联用开始受到越来越多的关注。TESCAN将TOF-SIMS和自己的SEM/FIB成功集成在一起,创新成为一体化系统,为更深入、更全面的分析应用提供解决方案,其双束聚焦离子束与飞行时间二次离子质谱联用系统(TOF-SIMS)将越来越多地在分析行业发挥巨大价值。TESCAN FIB—SEM—TOF-SIMS一体化系统(核工业北京地质研究院分析测试研究所) 关于TESCANTESCAN发源于全球最大的电镜制造基地-捷克Brno,是电子显微镜及聚焦离子束系统领域全球知名的跨国公司,有超过60年的电子显微镜研发和制造历史,是扫描电子显微镜与拉曼光谱仪联用技术、聚焦离子束与飞行时间质谱仪联用技术以及氙等离子聚焦离子束技术的开拓者,也是行业领域的技术领导者。关注微信公众号“TESCAN显微平台”,更多精彩资讯。
  • 中科院精密测量院应邀撰写分子筛限域孔道中碳正离子化学的综述性论文
    精密测量院郑安民研究团队近期应英国皇家化学会旗下Chemical Society Reviews 期刊的邀请,撰写了题为“Carbocation chemistry confined in zeolites: spectroscopic and theoretical characterizations”的综述论文,并被遴选为封面文章。论文从课题组围绕分子筛限域孔道中碳正离子催化的相关工作出发,系统地介绍谱学实验和理论计算在分子筛限域孔道中碳正离子化学的研究前沿与进展,阐述了分子筛限域孔道特性对碳正离子稳定性和反应性能的影响机制。烷烃、烯烃和醇等碳氢化合物的酸催化转化是重要的工业反应过程,碳正离子则是这些反应中最常见也最重要的中间体。酸性分子筛催化剂的催化效率、选择性和失活都与其中涉及的碳正离子稳定性、演化过程和寿命密切相关。因而,对于分子筛限域环境中碳正离子的深刻认识不仅有利于解释催化反应机理,还对分子筛催化剂酸性和孔道结构的设计和调控起到至关重要的作用。(a)分子筛限域孔道中芳香性碳正离子参与的甲醇转化机理;(b)分子筛限域孔道中芳香性碳正离子与骨架形成的FLP结构论文根据碳正离子的几何结构、电子结构及其稳定性出发确定了分子筛中碳正离子的类型,系统介绍了用于碳正离子表征的各种谱学实验(固体核磁共振、紫外可见光谱、红外/拉曼光谱、荧光光谱等)和理论计算方法,指出了这些方法在分子筛孔道中碳正离子结构表征和反应机理研究上的优势和局限性。论文进一步以甲醇制备烯烃和烯烃裂解反应为例,探讨了影响分子筛孔道中碳正离子稳定性的两个因素——酸性和限域效应,并从受阻的路易斯酸碱对角度讨论了分子筛中碳正离子的稳定性与反应活性之间的关系。基于对分子筛限域孔道中碳正离子化学的认识,论文总结了碳正离子在不同类型分子筛催化反应中所起到的关键作用,阐明了分子筛限域孔道与碳正离子结构匹配性对碳正离子稳定性所起到的重要作用,并指出原位谱学表征与从头算分子动力学结合方法将是确定分子筛限域孔道中碳正离子超快演化动力学行为研究的强有力研究手段。文章的第一作者是精密测量院特别研究助理/博士后陈伟。该工作得到了国家自然科学基金委与科技部的支持。 论文链接:https://doi.org/10.1039/D1CS00966D

质谱正离子分子量相关的方案

质谱正离子分子量相关的资料

质谱正离子分子量相关的论坛

  • 有关质谱正离子模式的问题

    [color=#444444]最近做了一个化合物分子量为1960,做质谱,正离子模式下最大峰为1938.3。请问这样的结果可以吗?[/color]

  • 质谱 母离子的分子量计算

    质谱 母离子的分子量计算

    [color=#444444]因为要做高分辨质谱,所以要知道化合物的分子式。看了很多文献,写花色苷的结构式时,那个氧原子上都有个加号,这个是正离子吧,如下图。它的中文名称是矢车菊-3-二葡萄糖苷-5-葡萄糖苷,按这个正离子数出来,应该是C(33)H(41)O(21),那么它的分子量计算时是不是要减去一个氢原子,为C(33)H(40)O(21)啊?做质谱时筛选母离子是用C(33)H(41)O(21) 还是C(33)H(40)O(21)来设置加氢加钠啊?应该按照请大家帮帮忙!谢谢!算分子量是不是要按照中性分子来计算啊?[/color][color=#444444][img=,421,280]https://ng1.17img.cn/bbsfiles/images/2019/09/201909060957079190_8147_1843534_3.jpg!w421x280.jpg[/img][/color]

质谱正离子分子量相关的耗材

  • TCSI Array® 成像质谱芯片
    【产品介绍】TCSI Array® 质谱芯片是国内第一款针对MALDI成像研究的一次性靶材,可一次性上机实现分子量校准、成像测试过程。检测对象包括穿刺、镜检、术中获得的组织样本和指纹、植物切片等。【产品优势】免基质喷涂,简化实验流程 | 高离子化效率,高保真度 | 含分子量校准位点,分子量精度高 | 适合多种成像平台,可根据用户需求定制和二次开发【产品应用】组织成像和内源性空间代谢组/脂质组分析;指纹成像和爆炸物残留测试;药物分布测试。适配真空环境质谱成像,可根据仪器进行尺寸及其他参数定制。
  • 88324赛默飞质谱Pierce ESI阴离子校准溶液
    Pierce™ Negative Ion Calibration Solution描述Thermo Scientific Pierce ESI阴离子校准液是一种高度纯化的电离分子混合物,适用于Thermo Scientific LTQ系列质谱设备的阴离子模式校准。 阴离子校准液的特点:• 明显峰值— SDS、牛磺胆酸钠、Ultramark 1621在乙腈/甲醇/乙酸溶液中的混合物。• 简单易用— 通过一个注射器向设备添加质谱参考标准品• 高纯度— 保存在非浸出性容器中的质谱级试剂• 稳定— 室温下保存时间超过一年Pierce ESI阴离子校准溶液是一款即用型液体试剂,是快速进行直接校准,维持Thermo Scientific质谱仪强大性能的理想选择。该校准液由ISO 9001设备制造,每一批次均经过严谨的质量控制,采用无渗漏的高纯度PTFE瓶包装。ESI阴离子校准溶液可用于LTQ、LTQ Velos、LTQ Orbitrap及Exactive系列质谱仪的校准。规格Detection Method:Mass SpectrometryFor Use With (Equipment):Mass SpectrometerProduct Line:Pierce™ Product Size:10 mLWorkflow Step:Calibration内容及储存Store between 2°C and 8°C.1323760 iCAP Q CALIBRATION Solution赛默飞质谱仪iCAPQ用调谐液1323770 iCAP Q TUNE Solution赛默飞质谱仪iCAPQ用调谐液
  • Flexar SQ 300质谱仪测试套装
    测试套装订货信息:产品描述部件编号SQ300安装性能测试套装MZ300061SQ300客户用性能测试套装MZ300085SQ300 ESI正离子和负离子测试套装MZ300096
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制