仪器信息网APP
选仪器、听讲座、看资讯

【分享】如何选择质谱分析方法?

同位素及其它无机质谱

  • 如何选择质谱分析方法?
    ——是用于研究蛋白,核苷酸还是小分子,这里也许有理想的答案 正如其它先进的技术一样,质谱技术冲击带来了市场的膨胀,造成了多选择性的产品,专业性的术语,这也就无形中增加了研究人员选择合适于他们的系统的困难性。正如西雅图Fred Hutchinson癌症研究中心蛋白组主任Philip Gafken所说的那样,“无论大家相信与否,这种技术并没有如它们所被应用的那样被逐渐的了解,研究人员没有认识到利用这种技术的真正目的。”
    比如说三级四极质谱仪(Triple Quadrupole Mass Spectrom)是一种相对便宜一点,但扫描速率(scan rate)也相对比较慢的质谱仪,而目前精良的傅立叶变换离子回旋共振质谱仪(Fourier transform ion cyclotron resonance,FTICR)则在精确性和分辨率都是首屈一指的,当然价钱也会比较贵。
    Gafken说道,“人们总是倾向于购买一些顶级的产品,但是事实上,这些应用中很大一部分都能由一些相对便宜一点的仪器来完成”,所以我们需要购买适用于各自需要的正确仪器。
    1.Protein Chemist级分析
    对于protein chemist而言,需要得到的仅仅就是知道他在研究的是什么。通过分析一种蛋白的免疫共沉淀的成份,或者利用二维电泳识别特殊的蛋白斑点,protein chemist就可以了解这种蛋白质的生物学特性了。对于这种应用,快速而并不需要太精确的方法就可以满足需要了。
    推荐系统:MALDI+TOF

    理由:肽指纹图谱(PePtide Mass Fingerprinting,PMF)和基质辅助激光解析电离飞行时间(matrix-assisted laser desorption ionization-time of flight,MALDI-TOF)质谱是可以考虑的首选方法。
    TOF是一种简单的质谱分析系统,灵敏度高,能进行从10原子质量单位到上百上千单位的片段分析。另一个TOF的优点就是分析的速度,伊利诺斯大学的化学副教授Neil Kelleher就表示“这就是它为什么能与MALDI配合工作的原因,你可以以一种高重复率在激光上操作,每秒获得许多光谱。”
    而MALDI则是一种首先就可以考虑的方法,但是并不适合如何人,来自华盛顿大学的化学教授,Journal of the American Society for Mass Spectrometry杂志的编辑Michael Gross就说,“如果你的免疫共沉淀中有20或30个蛋白,每一个有50条特殊带,那么你就有1000条带,利用MALDI并不能在气相中打到全部的”,为了得到更多的信息,必需要考虑一个可以提供序列详细信息的任意构造,比如MALDI-TOF-TOF,或者一个更加灵敏的仪器——离子捕获。
    +关注 私聊
  • 老鱼

    第1楼2007/10/26

    2. 灵敏级
    难题总是出在事实本质的详细内容当中,对于蛋白而言,那就是指翻译后修饰了。比如说,假设你正在研究包含有乙酰化和三甲基化修饰的组蛋白,但是一个标准的质谱也许无法区别出这两种修饰,这时就需要高精度的仪器了,这种仪器能获得二位或者四位小数位的报告。
    推荐系统:LC+ESI+FTICR with ECD


    理由:准确度高的仪器可以区别对于所谓的正常(nominal-mass)仪器而言相同的分子,一般认为选择液相色谱(liquid chromatography,LC)与电喷雾电离化(electrospray ionization,ESI),以及傅立叶变换离子回旋共振质谱仪(Fourier transform ion cyclotron resonance,FTICR)相结合能达到高精度和高灵敏度的要求。也许还需要电子捕获解离技术(electron capture dissociation,ECD)来获得可重复的结果。

    虽然经典的碰撞诱导解离技术(collision induced dissociation,CID)介导的串联质谱方法可以进行斑点修饰(spot modifications),但是对于识别包含了修饰的蛋白残基而言,这并不是一种理想的方法,这主要是由于解离蛋白的时候常常会降解多肽的蛋白修饰,然而ECD则可以保持这种修饰的完整性。不过来自辛辛那提大学的Patrick Limbach提出一个忠告:这些仪器偏差范围小,因此可能会丢失掉一些未预期到的情况,比如天冬酰胺残基的脱酰胺,或者磷酸化。
    3.边缘分析级
    并不是每一人都对蛋白质感兴趣的,比如说,也许你想知道的是一种特殊的核酸是否包含了不同寻常的或是修饰了的残基(比如methyl-C),以及这些序列定位在那儿。回到这两个问题也许就需要利用到LC-ESI串联质谱(LC-ESI-tandem mass spec),对于前面那个问题需要在负电荷模式里——因为核苷酸是带负电荷的,而后者则需要正电荷模式。
    推荐系统:LC+ESI+ION TRAP 或 QUAD+TOF

    推荐理由:Limbach博士在进行其核酸实验的时候使用的是LC-ESI线性离子阱(LC-ESI-linear ion trap),LC-ESI-QTOf(quadrupole time of flight hybrid,杂交四矩飞行时间) 质谱两种技术,他指出,“你有哪种特殊的串联质谱并不是关键问题,关键是你需要哪种串联MS功能”,比如要想完成能识别修饰,以及确定多聚核苷酸链中修饰定位在哪儿这两项任务。在这种串联质谱模式中,可以检测离子,降解(比如CID或ECD),然后获得序列以及结构的信息,但是串联质谱并不是都一样的。来自Scripps研究院的细胞生物学家John Yates表示,线性离子阱速度很快,“要比QTOf快许多,但是分辨率和质谱精度要低一些”。但这两种相对于FTICR仪器而言,都是比较便宜的选择。这些都是值得推荐的质谱方法,当然也要考虑相对慢和灵敏度低的缺点,因此需要一个超导磁(superconducting magnet)和有经验的操作人员。
     
    4.混合分析级
    对小分子代谢物(比如糖类,脂质)进行详细的分析需要一套不同的仪器设备,也许你就在这个探索的过程中——寻找一种特殊疾病或者药物有效性的生物标记,那么你需要的是能明确得到化学结构的串联质谱分析能力,可供选择的就是LC-ESI-triple quad。但更重要的是,你还要借助多离子方法撒开更广的网,因此我们可以考虑两种选择:APPI(大气压光离子,atmospheric pressure photoionization),和APCI(大气压化学电离,atmospheric pressure chemical ionization)。
    推荐系统:LC+ESI+triple quad with multiple ionization sources

    推荐理由:APCI可以利用溶剂中的化学成份使样品电离,Limbach表示,“比如说我有一个样品在甲醇/水的溶液中,(APCI)就可以利用甲醇或者水分子发生化学反应电离样品,这样透射入光,光化学产生离子”,当然正如MALDI和电喷雾不能精确电离同样的分子,APCI和APPI也不行。
     

0
    +关注 私聊
  • 老鱼

    第2楼2007/10/26

    5. 计算分析级
    一旦你识别了所需的生物标记,也许就需要在成百上千的生物样品中对其进行评估计算,可以考虑的定量应用分析仪器就是triple quad——与液相色谱和电喷雾离子化串联使用。Gafken就认为,“triple quads的关键用途就是真实定量,虽然有许多对蛋白和多肽进行定量,但是如果你需要的是绝对定量,那么最好的方法就是triple-quad仪器。”
    推荐系统:LC+ESI+triple quad with single or multiple reaction monitoring

    推荐理由:Limbach认为,“Quadrupoles(四极)实际上是滤波器,就像是无线电装置一样运转:你调出一个频率,就会有一个特殊的离子传出,这样你就可以扫过这些无线电转盘(radio dial)获得离子,其它的一切都会被剔除”。这些仪器的优势就在于可以进行一个或两个离子频率的扫描(即质荷比(mass-to-charge),m/z),缺点就是对于在许多研发模式工作中需要的高m/z扫描而言太慢了。
    但是怎么知道所观测到的离子就是你想要的呢?在任何生物样品中,几个离子也许有相同的m/z值,这就需要single-reaction monitoring介入,Gross认为,“这就能克服第一quad和扫描的慢速问题,因为你知道什么是你想要的”,比如说你的特异分子有m/z1000,m/z300片段离子,你就可以设置第一quad为m/z1000滤波器离子,在第二个quad中将其断裂,然后在第三个quad中对其进行计算(m/z300)。而在multiple reaction monitoring,则可以将仪器设置成“hop”——从一个m/z值到另一个,因此可以同时计算2个,或者3个分析组。
    (生物通:张迪)
    附:
    名词解释——
    基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS)
    MALDI-TOF-MS是近年来发展起来的一种新型的软电离生物质谱,其无论是在理论上还是在设计上都是十分简单和高效的。仪器主要由两部分组成:基质附助激光解吸电离离子源(MALDI)和飞行时间质量分析器(TOF)。MALDI的原理是用激光照射样品与基质形成的共结晶薄膜,基质从激光中吸收能量传递给生物分子,而电离过程中将质子转移到生物分子或从生物分子得到质子,而使生物分子电离的过程。因此它是一种软电离技术,适用于混合物及生物大分子的测定。TOF的原理是离子在电场作用下加速飞过飞行管道,根据到达检测器的飞行时间不同而被检测即测定离子的质荷比(M/Z)与离子的飞行时间成正比 ,检测离子。MALDI-TOF-MS具有灵敏度高、准确度高及分辨率高等特点,为生命科学等领域提供了一种强有力的分析测试手段,并正扮演着越来越重要的作用。
    电喷雾质谱技术(Electrospray Ionizsation MassSpectrometry,ESI-MS)

    电喷雾质谱技术是在毛细管的出口处施加一高电压,所产生的高电场使从毛细管流出的液体雾化成细小的带电液滴,随着溶剂蒸发,液滴表面的电荷强度逐渐增大,最后液滴崩解为大量带一个或多个电荷的离子,致使分析物以单电荷或多电荷离子的形式进入气相。电喷雾离子化的特点是产生高电荷离子而不是碎片离子,使质量电荷比(m/z)降低到多数质量分析仪器都可以检测的范围,因而大大扩展了分子量的分析范围,离子的真实分子质量也可以根据质荷比及电行数算出。

    电喷雾质谱的优势就是它可以方便地与多种分离技术联合使用,如液一质联用(LC-MS)是将液相色谱与质谱联合而达到检测大分子物质的目的。
    肽指纹图谱( PePtide Mass Fingerprinting,PMF)
    肽指纹图谱测定是对蛋白酶解或降解后所得多肽混合物进行质谱分析的方法,对质谱分析所得肽片与多肽蛋白数据库中蛋白质的理论肽片进行比较,从而判别所测蛋白是已知还是未知。由于不同的蛋白质具有不同的氨基酸序列,因而不同蛋白质所得肽片具有指纹的特征。
    快原子轰击质谱技术

    快原子轰击质谱技术(Fast Atom Bomebard-ment Mass Spectrometry ,FABMS)是一种软电离技术,是用快速惰性原子射击存在于底物中的样品,使样品离子溅出进入分析器,这种软电离技术适于极性强、热不稳定的化合物的分析,特加适用于多肽和蛋白质等的分析研究。

    FABMS只能提供有关离子的精确质量,从而可以确定样品的元素组成和分子式。而FABMS-MS串联技术的应用可以提供样品较为详细的分子结构信息,从而使其在生物医学分析中迅速发展起来。

    同位素质谱

    同位素质谱是一种开发和应用比较早的技术,被广泛地应用于各个领域,但它在医学领域的应用只是近几年的事。由于某些病原菌具有分解特定化合物的能力,该化合物又易于用同位素标示,人们就想到用同位素质谱的方法检测其代谢物中同位素的含量以达到检测该病原菌的目的,同时也为同位素质谱在医学领域的应用开辟了一条思路。

1
    +关注 私聊
  • yangruihong1001

    第3楼2011/10/25

    不错的帖子

0
猜你喜欢最新推荐热门推荐更多推荐
举报帖子

执行举报

点赞用户
好友列表
加载中...
正在为您切换请稍后...