仪器信息网APP
选仪器、听讲座、看资讯

PMT、CCD 、CID 资料收集贴

直读光谱

  • 最近对检测器发生兴趣,搜集了一些资料,希望抛砖引玉,大家都来共享有关检测器的资料吧。

    现代分析仪器中的PMT、CCD 、CID 检测器(传感器)技术各有千秋.
    光电倍增管PMT在用真空电子管技术,经时间考验技术成熟,性能稳定,工作在常温下无须降温,电路简单,维修方便.
    电荷藕合固体检测器CCD,电荷注入固体检测器CID 采用半导体技术,是新型的面或线检测技术,时间较晚,必须进行降温处理,电路较复杂,但灵敏度高于PMT,维修稍麻烦一些,CCD , CID 技术前景广泛,但有待于时间的检验.

    CID以及CCD的对比
    自从20世纪70年代CID电荷注入式设备检测器就已经被使用,但只是最近几年对其技术才有了更明确的理解以及怎样更全面的应用他的经验。
    CID的概念最早是由通用电气公司设计半导体芯片的科学家们发明。采用Si的感光性特征,他们开发了一种简单的感光电容原理的X、Y(平面的)可设定地址的阵列,进而在1972年开发了第一个CID的相机。70年代和80年代不停的努力最终发明了现在采用的基本结构和读书技术的30多个专利。1987年7月通过杠杆买卖建立了CIDTEC这个公司。
    CID阵列上的每个像素可以单独通过行列电极的电子标定指数来寻址。不像CCD(电荷耦合式设备)在读数的时候会将像素中收集的电荷转移,电荷不会在CID阵列的点到点转移。电荷信息包在独立所选择的像素中的电容之间移动的时候,和所存储的信息电荷成正比的移位电流被读取。移位电流被放大,转换成为电压,作为部分复合视频信号或者数字信号输送给外部世界。由于信号电平被测定以后电荷完整无缺的保留在像素中,所以其读书是非破坏性的。要对新的帧进行几分而清除阵列,每个像素上的行和列电极就会即可切换到接地释放,或者“注射”电荷到底层。
    这种操作原理是的CID技术根本不同于其他成像技术,具有许多可以解决成像问题的技术优点。例如,CID照相机的非破坏性读书能力使得其可以传入高度曝光控制到静物的低光度观察。通过悬置电荷注射,使用者可以初始化多帧积分(延时曝光)同时能够在找到最佳曝光的时候再来观看图像。积分可以从毫秒高到几个小时(此时需要额外冷却检测器用来阻止有热所产生的暗电流的累积)。控制积分对于科学和照相应用特别是天文学非常有用。
    对于较明亮的光强,溢出和托尾效应讲的就是图像的扭曲,在固态视频照相机受到集中的、非一致的光的照射的时候。
    在读数的时候电荷会从过度饱和的单元溢出到邻近的像素或者位移寄存器(电荷转移原理),根除了部分图像。相反,CID图像更能够容忍强光,是由于光学过载在被照亮的像素上受到控制,电荷不会从像素集电极输出,因此其结构不提供繁殖过载的路径,电荷的径向铺展由于过量的电荷被引导到下置的电荷集电极而被缩小。这种固有的抗溢出能力保证了即便是在极端照明的条件下都有精确的图像,因此CID照相机已经有效的用于导弹追踪,半导体式样的鉴别,以及明亮物体的反射和出现引起在适当曝光的图像中的检验。
    CID阵列中的像素毗邻结构事实上没有可能损失图像细节的不透明区域而使图像更加精确。这一点对于在尺寸数据精确度非常严格的地方非常有用,特别是检查、测试、定位和追踪物体的边缘测定的时候。采用像素之间的处理技术,CID照相机目前普遍用于要求精确到半微米的设备的计量中。
    照相机独特的拓扑结构给激光轮廓的更精确重现的连贯照明提供了均一的像素到像素的相应;非常理想来用于光束诊断和分析。CID检测器同时提供了宽的光谱响应,从200到1100nm,允许捕捉从紫外到近红外的光源产生的图像。而且其PMOS结构降低了检测器发热的效应,使得CID比NMOS结构的CCD受到来自低强度发光环境中的破坏攻击更少。(NMOS结构用于许多CCD)。辐射稳定的CID目前用于核能、工业X射线,科学以及空间方面的应用。同时也用于几种机密的军工项目。
    CID中的每个像素都可以单独寻址,因此可以弹性的读数和选择处理。例如,循序扫描读数允许通过去除用于结合奇偶场(2:1交错扫描)的延迟来实时处理。相反,顺序的读取行(1,2,3,4等等)允许图像处理器在继续读取下一行的时候分析最近一行的视频信息。这些相机每秒60帧的输出提供了高速的操作而同时不用牺牲RS-170的兼容性,因此其兼容RS-170帧缓冲器,TV显示器和录像机。
    为了更有效联接的计算机界面,可使用二元格式的CID阵列(512*512, 256*256, 128*128)来匹配标准记忆格式。其正方形的像素简化了计算的运算法则,降低了处理的复杂性。含有这些阵列的照相机设计有高级功能,可以最大化图像处理能力,因此某些型号不支持限制性的用于广播电视的RS-170定时标准。但是有几家不同的厂商现在提供继承了这些照相机和RS-170系统元件的界面卡
    循序扫描同时开启了可以扩展用户选择范围的许多CID照相机的功能的大门。例如,在不需要全帧分辨但是需要更快捕捉的应用领域,“帧复位”是的照相机使用者可以降低垂直帧尺寸而取得更高的帧速率。如果降低要读取得的行,那么就可以更快速的读取“更短的”帧。帧复位在用户通过重新设定照相机用于新的帧扫描的控制情况下结束。
    对于在任意给定的时间内需要注意观看的区域很小的时候,“快速扫描”功能允许用户隔离感兴趣的多个区域,或者“窗口”来以正常的速率读数,同时在窗口之间以非常高的速度扫描。这种选择性的数据提取加速了读数,降低了数据容量,方便了高速处理。这种功能对于单独追踪几个不同的物体,同时以速度高达每秒几百像通过观察场的时候非常有用。显示或提取全部数据库图像中的一部分的过程(窗口)也用于高速观察制药瓶的具体部位,例如,读取检查盖帽定位或者查证呼气时间和标签代码。
    任意存取CID阵列(RACID)进一步拓宽了用户控制,通过提供在最大的扫描速率的时候以任意顺序选择性的读数来寻址规定的像素。读取顺序通过软件控制。RACID已经成功的应用于恒星追踪,天体导航应用,此时,指定的星体可以定位引导的读取和处理。
    CID照相机的“冻结帧”或者止动装置能力使得其能够精确的捕捉并读取不同时的高速时间。CID运算允许独立于照相机计时来捕获和处理图像,故用户可以定时照相机来捕捉事件,而不是定时事件来给照相机的“垂直熄灭间隔”(帧与帧之间的间隔时间,扫描返回到阵列的上端来准备读取新的帧。)
    随着瓶子沿着生产线往下走,在瓶子移动进入到照相机的观察区域的时候,可是系统感觉到同时结合注射约束功能。传感器继续扫描,但是读数暂停允许不间断的积分。可视系统在适当的时候激发闸门,同时瓶子的图像在传感器上捕捉到。在垂直熄灭间隔开始的时候,注射机制被释放来返回照相机到正常的状态。在熄灭完成,新的帧扫描开始的时候,所捕捉的图像继续读数。通过使用注射约束功能来即刻“控制”图像指导下一个圈帧开始扫描的时候可以取得不同时的图像,允许完整图像的读数。
    帧复位功能增加了在冻结帧应用方面的流量速度。在此案例中的瓶子移动到位的时候,可是系统引发帧复位,从而复位照相机用于新的帧扫描。闸门被开启,传感器在垂直熄灭间隔中捕捉图像。在熄灭完成新的帧扫描开始的时候,继续读取图像。可视系统不同时的复位照相机来响应任意的事件,提供所捕捉的图像几乎即刻的读数。60FPS每秒60帧的照相机不同时的可以捕捉并读取高到1800幅图像。采用窗口技术或者读取更小的帧可以允许更高的流量速度。

0
    +关注 私聊
  • 笑笑

    第2楼2006/03/27

    目前高端的直读光谱都是选用PMT,是不是说明PMT的检测结果更好些呢,据我所知,大多的便携式的直读光谱都是CCD,主要是用来定性的,所以目前选用CCD监测器在直读光谱中作精确定量用的还是不够理想的,那么我想了解在ICP中选用CCD检测器来定量的结果是不是可靠和理想呢?

0
    +关注 私聊
  • wekinlau

    第3楼2008/04/19

    有同样的疑惑,静候高手解答.

    jh_happy2008 发表:目前高端的直读光谱都是选用PMT,是不是说明PMT的检测结果更好些呢,据我所知,大多的便携式的直读光谱都是CCD,主要是用来定性的,所以目前选用CCD监测器在直读光谱中作精确定量用的还是不够理想的,那么我想了解在ICP中选用CCD检测器来定量的结果是不是可靠和理想呢?

0
    +关注 私聊
  • 热管

    第4楼2008/07/26

    ccd噪声大,灵敏度偏低,但响应时间快

    jh_happy2008 发表:目前高端的直读光谱都是选用PMT,是不是说明PMT的检测结果更好些呢,据我所知,大多的便携式的直读光谱都是CCD,主要是用来定性的,所以目前选用CCD监测器在直读光谱中作精确定量用的还是不够理想的,那么我想了解在ICP中选用CCD检测器来定量的结果是不是可靠和理想呢?

0
猜你喜欢最新推荐热门推荐更多推荐
举报帖子

执行举报

点赞用户
好友列表
加载中...
正在为您切换请稍后...