仪器信息网APP
选仪器、听讲座、看资讯

DNA修复机制和非同源末端连接(NHEJ)单分子可视化

  • QUANTUM量子科学
    2018/08/02
  • 私聊

生命科学仪器综合讨论


  • 1 同时利用4个光阱模拟DNA-蛋白质相互作用的示意图。


    分子水平研究DNA修复机制
    DNA修复是人生命活动中最基本的过程,识别和修复DNA损伤的机制复杂而精细。没有DNA修复机制,细胞就丧失了转录其基因组重要区域的能力,从而导致有害突变的累积,最终使细胞受到损伤。
    DNA损伤的来源主要包括双链断裂和DNA内部发生交联,如不及时修复,最终会发展为恶性肿瘤。深入的研究DNA的修复,单分子水平的技术手段必不可少。然而,既要在体外模拟体内的生物学行为,还要达到足够的灵敏度和分辨率,在原来是几乎不可能的。LUMICKS公司采用最新技术——C-Trap™ 可以满足实时可视化单分子水平观测DNA修复过程中DNA与DNA修复相关蛋白的相互作用。在保证高度模拟体内环境的前提下,大大提高了灵敏度和分辨率。尤其是当C-Trap配置了STED (超分辨显微镜,SuperC-trap™ )之后,直接观察单个蛋白分子的动态变化成为了可能。
    上图表示:一个DNA分子被两个由光镊控制的微球拉直,多种DNA修复相关蛋白与DNA相互作用。通过共聚焦显微镜可以实时定位荧光标记蛋白的位置,因此可以用来研究蛋白的结合位点、扩散、折叠/去折叠等一系列蛋白与DNA互作过程。同步进行的“力-距离”信号检测能够将蛋白的活性和酶动力学结合起来,反映DNA-蛋白复合物的力学特性。

    2 X轴为时间,Y轴为沿着DNA的结合蛋白的定位。图像显示实时监测DNA修复过程中DNA与蛋白的相互作用。

    3 DNA修复相关蛋白 XLF (红色) 、XRCC4(绿色) 和复合体(黄色)在DNA上的精确位置。
    C-TrapTM可以实时观测DNA与蛋白质的相互作用,包括DNA的修复、复制、转录和发卡结构的形成。DNA双链由两个光镊控制的微球拉直。通过荧光显微镜可以精确定位荧光标记的蛋白,实时观测与DNA修复相关的蛋白所参与的生物学反应。
    Figure 2 显示DNA修复相关蛋白XRCC4(绿色,占总量的9%)和XLF(红色,占总量的62%),这两种DNA修复相关蛋白参与到非同源末端连接(NHEJ)修复过程中并形成XRCC4-XLF复合物(黄色,占总量的29%)。XRCC4和XLF还参与DNA桥联过程,此实验需要通过额外添加两个光阱。利用四个捕获微球可拉伸两条双链DNA,通过光镊施力模拟细胞内非同源DNA与DNA末端相互连接的过程。然后与DNA修复相关蛋白共孵育,检测出何种蛋白参与DNA的修复。
    Figure 3 显示2个DNA双链与200 nM XLF和200 nM XRCC4共孵育,过段时间后DNA形成了桥联结构。可以发现2个DNA双链形成四聚体的桥接结构的确需要这两种蛋白介导。然后通过对微球施力可进一步证实桥联的稳定性,研究应力状态下DNA修复蛋白的生物学特性。比如:当向右上和右下微球施加高强度的力(>100pN)时,XLF-XRCC4 DNA 修复蛋白复合体将会结合到左侧的DNA上,启动非同源末端连接(NHEJ)修复模式。继续增加施力,当施力大于250pN时,桥联出现明显的断裂,反映出这种修复方式的桥接具有高度的稳定性和韧性。这种4微球双DNA模型技术是首次应用到DNA修复领域相关实验中。此外,由于DNA修复过程经常发生于蛋白高度密集的微环境中,因此结合STED超分辨显微镜也是一种区分标记蛋白和损伤DNA分子的技术手段。
猜你喜欢最新推荐热门推荐更多推荐
举报帖子

执行举报

点赞用户
好友列表
加载中...
正在为您切换请稍后...