拉曼成像

仪器信息网拉曼成像专题为您整合拉曼成像相关的最新文章,在拉曼成像专题,您不仅可以免费浏览拉曼成像的资讯, 同时您还可以浏览拉曼成像的相关资料、解决方案,参与社区拉曼成像话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

拉曼成像相关的资讯

  • 轻松实现粗糙表面样品拉曼成像 ——EasyNav拉曼成像技术包
    HORIBA新推出的拉曼成像技术包——EasyNavTM,融合了NavMapTM、NavSharpTM 和 ViewSharpTM三项革命性应用设计,能够让您便捷导航、实时聚焦、自动定位,轻松实现粗糙表面样品拉曼成像。1NavMapTM快捷导航、定位样品作为一种新的视频功能,NavMapTM可同时显示全局样本和局部放大区域的显微图像,这意味着您可以直接在全局图像上移动,并在局部放大图上鉴别出感兴趣的样品区域。便捷实时导航▼NavMapTM视图2NavSharpTM实时聚焦,获取清晰导航图像在您导航定位样品的同时,NavSharpTM可实时聚焦任意形貌样品,使样品始终处于佳聚焦状态,进而获取清晰样品表面图像。佳聚焦状态,增强用户体验▼ 使用/不使用NavSharpTM的区别3ViewSharpTM构建3D表面形貌图获取焦平面拉曼成像图在粗糙表面样品拉曼成像过程中,ViewSharpTM 可以获取样品独特的3D形貌图,确保样品实时处于佳聚焦状态,反映样品处于焦平面的显微图像。由于不依赖拉曼信号进行实时聚焦,拉曼成像速度要远远快于从前。使用/不使用ViewSharpTM的区别NavMapTM、NavSharpTM及ViewSharpTM技术各有优势,不仅可以单独使用,也可以综合起来,满足用户的不同测试需求,EasyNavTM拉曼成像技术包的功能已经在多种样品上得到实验和验证。晶红石样品的3D表面形貌图晶红石样品的3D拉曼成像图全新 EasyNavpTM 能够兼容 HORIBA 的 LabRAM HR Evolution 及 XploRA 系列拉曼光谱仪,功能更强大,使用更便捷。HORIBA科学仪器事业部结合旗下具有近 200 多年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 测试服务限时免费开启----拉曼光谱成像/光电流成像/荧光寿命成像
    测试服务限时免费开启----拉曼光谱成像/光电流成像/荧光寿命成像产品简介Nanobase XperRam C 紧凑型共聚焦拉曼光谱仪采用高于竞争对手30%效率的透射式光栅和高效率的自研CCD,可实现超高灵敏度。不同于传统的拉曼光谱设备采用平台移动的方式,它选择的独特的振镜扫描技术,保持位移平台不动,通过振镜调节激光聚焦的位置完成扫描成像,不仅速度快、扫描面积大,且精度也高。产品配置显微镜反射LED照明,右手控制的机械x-y载物台,物镜10×/20×/40×/50×/100×(选配),进口正置型显微镜扫描模块扫描模式:振镜扫描,分辨率: 焦长35mm光谱范围蕞大8150cm-1光谱分辨率低至3个波数检测器TE制冷CCD,1932×1452pixels,4.54um width 光栅 光栅刻线光谱范围分辨率2400lpmm70~2340cm-13cm-11800lpmm70~3400cm-14.4cm-11200lpmm70~5000cm-16.4cm-1600lpmm70~8150cm-19.8cm-1 其他选配项ND功率控制衰减片光电流源表、探针台实现光电流mapping偏振控制 目前我们针对XperRam系列光谱仪推出以下限时免费测试项目限时时间:2022.6.1-2022.12.31申请条件:微信朋友圈转发公众号文章,获取10个赞,并截图发给联系人即可享受测试项目测试内容测试条件激发波长探测器水平 拉曼测试 拉曼光谱、二维拉曼成像成像范围:200um×200um(40×物镜下),空间分辨率:激发波长:532nm/785nm,光谱分辨率:0.12nm 2000 × 256 pixels, 15 μm 像素宽度 (iVAC316, Andor) PL测试 PL光谱、PL二维成像激发波长:405nm/532nmTCSPC测试瞬态荧光寿命曲线、二维荧光寿命成像激发波长:405nm系统响应度:<200ps测量范围12.5ns-32us 光电流测试 I-V曲线、I-t曲线、二维光电流成像激发波长:405nm,532nm,785nm Semishare高精度探针台 Keithley2400源表蕞大电压源/量程:200v测量分辨率:1pA/100nV 设备优势1、拉曼光谱分析不同浓度的环境干扰物,体现了低浓度样本中仪器检测的高灵敏度。2、拉曼成像分析二维材料MoS2的分布3、拉曼测量硅片:透射式体光栅VPH和少量光学元件可以实现高通量和高S/N信噪比 典型应用介绍拉曼光谱在宝石鉴定中的应用 在1200cm-1~3600cm-1区间,没有明显的峰值出现,说明其中没有环氧树脂或有机染料等基团,是chun天然宝石。 1123cm-1、1611cm-1是环氧树脂中苯环特有的峰,因此属于被环氧树脂或其他胶填充裂纹的改善翡翠。拉曼光谱在二维材料中的应用 G峰和G、峰强度之比常被用来作为石墨烯层数 的判断依据,G峰强度随层数增加逐渐变大;G、 峰的半峰宽随层数增加逐渐变大,且往高波数蓝移。拉曼光谱在植物研究中的应用 不同浓度的胡萝卜素的拉曼成像图中红色和绿色区域分别代表高浓度和低 浓度的羰基。在Control样品中,绿色区域连续 分布在粉末中,表明淀粉在微胶囊内部和外部 的分散相对均匀。在掺入海藻糖后,在微胶囊 的外部周围检测到含有高浓度和低浓度羰基的混合区域。该结果证实了海藻糖和淀粉由于其 亲水性而在微胶囊中具有良好的相容性。拉曼光谱在光波导中的应用 光波导主要通过对折射率的调控来实现,折射率分布影响导波性能。 光刻过程材料吸收能量发生热膨胀,导致应力变化、晶格破坏和化学键键 长变长,从而使拉曼位移发生变化。拉曼光谱在催化中的应用——原位升温拉曼 Ag/CeO2在不同温度和气 氛中的原位拉曼光谱。 目前我司的光电测试系统已在国内外各个高校均有服务,欢迎各位老师同学前去调研。关于昊量光电昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
  • 拉曼、质谱、AFM三种成像技术结合用于生物成像
    p   最 span style=" FONT-FAMILY: times new roman" 近这些年,将振动光谱、质谱和原子力显微镜(AFM)成像技术方面的研究逐渐兴起,并且发展迅速。这几种技术在成像应用方面的确非常有潜力,尤其是在生物医药领域。来自德国耶拿大学的Thomas Bocklitz博士就致力于将这三项成像技术结合以更好的发挥他们的作用。 Bocklitz精通数学物理学、生物物理学和化学信息学,以下是对Bocklitz的采访节选。 /span /p p style=" TEXT-ALIGN: center" span style=" FONT-FAMILY: times new roman" img title=" Thomas_Bocklitz.png" src=" http://img1.17img.cn/17img/images/201603/insimg/8649ab2d-f9c6-425f-9243-28f794923c2a.jpg" / /span /p p em span style=" FONT-FAMILY: times new roman" strong span style=" FONT-FAMILY: times new roman COLOR: rgb(0,112,192)" 在最近的一项研究中,您将拉曼显微成像和基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS)成像相结合(1),用在分析鼠脑等生物组织。您为何要将这两种技术用在一起呢? /span /strong /span /em /p p span style=" FONT-FAMILY: times new roman"   strong  Bocklitz: /strong 我们结合这两个技术(拉曼显微成像和MALDI-TOF-MS)主要有两个目的。其一是两种技术渠道的结合必然能给生物组织分析带来更加全面和综合的视野,我们能从中获取更多的信息。目的之二是我们想通过MALDI-TOF的使用更加了解生物组织的拉曼光谱信息。 /span /p p em span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: rgb(0,112,192)" strong 在分别完成MALDI-TOF成像和拉曼成像之后,数据相关性调整是此项研究的初始阶段,称为“登记步骤”。在这个阶段是否存在挑战? /strong /span /span /em /p p span style=" FONT-FAMILY: times new roman"    strong B /strong strong ocklitz: /strong 两种成像方式的数学校准基于对应记录的标记,这种标记能很大程度上影响校准质量。我们面临的挑战是将一个成像方式的信息值转换为其他的参考系统。除此之外,两种成像方式带来的信息图像量非常大,更增加了信息值转换的难度。 /span /p p em span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: rgb(0,112,192)" strong 接下来,将结合的数据关联起来也就是最为关键的步骤。这个步骤中有哪些复杂性产生? /strong /span /span /em /p p span style=" FONT-FAMILY: times new roman"    strong Bo /strong strong cklitz: /strong 在这个步骤中最复杂的并不是技术问题,而是在多种研究中的实际问题。在拉曼光谱、MALDI质谱、生物学中的专家需要共同工作将他们的知识结合在一起。 /span /p p em span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: rgb(0,112,192)" strong 在您的这项研究之前也有将质谱和振动光谱技术结合使用的先例,但只提供了定性信息数据。您在研究中提出了定量比较方法,您称之为“量化相关性”。那么什么是“量化相关性”,您又是如何应用的? /strong /span /span /em /p p span style=" FONT-FAMILY: times new roman"    strong B /strong strong ocklitz: /strong 我们使用这个词“量化相关性”,是说可以用我们的方法获取图像中某一点的光谱信息,同样我们也可以用它来定量。例如,可以利用m/z 703这个信息来建立一个拉曼光谱的回归模型。我还要强调一下,并不是定性相关性不如定量相关性重要,不同的途径方法应该区分开来。 /span /p p em span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: rgb(0,112,192)" strong 您认为这个方法带来的最大好处是什么? /strong /span /span /em /p p span style=" FONT-FAMILY: times new roman"    strong Bocklitz: /strong 使用这个方法,拉曼光谱信息和MALDI质谱信息共同提供生物组织的综合视图和信息。该方法也许能够为基本诊断找到新的视角和标记物。 /span /p p em span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: rgb(0,112,192)" strong 在另外一项研究中(2),您将原子力显微镜(AFM)与成像相结合来区分五种病毒,用在如传染病的疾病诊断中。在此方法中,您应用“图像矩法”来分析AFM得到的图像记录,从而将图像的形态学转化为如高度、体积和面积等量化的信息,接下来再用以统计分析。与其它显微镜技术如电镜和扫描隧道显微镜相比,将AFM用于病毒分析有何优势? /strong /span /span /em /p p span style=" FONT-FAMILY: times new roman"    strong Bocklitz: /strong 我也认为电镜和扫描隧道显微镜是研究病毒的标准技术。然而,这两种技术需要严格的样品准备过程,如样品真空腔环境、金属薄膜等。以上两种样品准备方式都会极大程度的改变样品。而AFM并非如此,其可以测定潮湿样品。对于AFM的优势,还有一点也值得一提。我们将AFM的相关数据信息与尖端增强拉曼和常规成像分析相结合。 /span /p p em span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: rgb(0,112,192)" strong 方法中的数据分析存在怎样的挑战? /strong /span /span /em /p p span style=" FONT-FAMILY: times new roman"    strong Bocklitz: /strong 这个方法中最大的挑战就是数学数据分析,与此相比别的困难都显得微不足道。一旦这个难题解决了,接下来就是将所有测得的数据和分析步骤整合在一起。 /span /p p em span style=" FONT-FAMILY: times new roman" strong span style=" FONT-FAMILY: times new roman COLOR: rgb(0,112,192)" 您认为在此方法的基础上是否可能建立一种自动化病毒鉴定方法? /span /strong /span /em /p p span style=" FONT-FAMILY: times new roman"    strong Bocklitz: /strong 是的,很有可能。而问题是这种方法能够适用于多大范围的病毒类别。我认为病毒家族能将通过AFM的精确测量所预测,但这需要未来研究的证明。 /span /p p em span style=" FONT-FAMILY: times new roman" span style=" FONT-FAMILY: times new roman COLOR: rgb(0,112,192)" strong 您接下来将研究哪些内容? /strong /span /span /em /p p span style=" FONT-FAMILY: times new roman"   strong  Bocklitz: /strong 接下来的研究内容将与以上谈到的两个方面相关。有关的投稿已经递交,希望都能够被录用。除此之外,我还在做另外两个有趣的研究:从非线性多对比显微成像中获取生物医学相关信息 拉曼光谱测量标准化。这两项研究对于将拉曼光谱和非线性多对比显微镜技术带入到临床从而成为标准诊断手段具有重要意义。 /span /p p span style=" FONT-FAMILY: times new roman"   strong 参考文献 /strong /span /p p span style=" FONT-FAMILY: times new roman"   (1). T.W. Bocklitz, A.C. Crecelius, C. Matthaus, N. Tarcea, F. Eggeling, M. Schmitt, U.S. Schubert, and J. Popp, Anal. Chem. 85(22), 10829–10834 (2013). doi: 10.1021/ac402175c. /span /p p span style=" FONT-FAMILY: times new roman"   (2). T. Bocklitz, E. Kammer, S. Stockel, D. Cialla-May, K. Weber, R. Zell, V. Deckert, and J. Popp, J. Struct. Biol. 188(1), 30–38 (2014). ISSN 1047-8477. doi: 10.1016/j.jsb.2014.08.008. URL /span /p p style=" TEXT-ALIGN: right" span style=" FONT-FAMILY: times new roman"   《Spectroscopy》节选编译 /span /p p & nbsp /p

拉曼成像相关的方案

拉曼成像相关的论坛

  • 拉曼成像简介与应用

    本节微课的目标主要是使大家了解什么是拉曼成像以及拉曼成像可以做什么。具体的课程内容是通过通俗易懂,生动形象的方式向大家介绍拉曼成像的原理,成像方法以及应用示例。观看了本节微课后,希望大家能明白什么情况

  • 【求助】关于共焦显微拉曼成像的问题

    本人用JY公司的Horiba Aramis做显微拉曼成像分析,期间遇到了一些问题,在此向各位专家和高手请教:我的样品是用粘结剂将颗粒粘结并压缩制得的,因此表面不平整,在做共焦显微拉曼光谱成像时,先聚集到某一颗粒上,然后进行Mapping,请问这种情况下是否检测不到焦平面外样品的信号?但在我的检测中焦平面外的样品也出现了信号,只是强度和频移有变化,请问这种焦平面外样品的拉曼信号频移是否可信?此外,做Mapping时需要的时间比较长,样品经长时间激光照射后其峰位会出现偏移,但现在采用的激光功率已经是能得到拉曼信号的最小功率了(300mW),这个问题如何解决?谢谢各位!

拉曼成像相关的资料

拉曼成像相关的仪器

  • Thermo Scientific™ DXR™ 2xi 显微拉曼高速成像光谱仪,引领新一代显微拉曼化学成像分析技术,DXR™ 2xi所创造的可视化超快速图像采集 、Thermo Scientific™ OMNIC™ 实时同步优化的成像数据处理系统、智能化特征识别与多组分自动分离鉴别等强大功能,为材料研究等应用的拉曼光谱分析开拓了新的解决方案。DXR2xi 显微拉曼成像光谱仪可提供:●让处于任何技能水平的用户均可适应的简便操作●在屏幕上实时优化实验参数,快速实现数据可视化●直观的软件界面可满足高通量数据采集的各种应用需求●以下特点确保测试数据的高精度:Ⅰ自动准直和校准——无需专业工具Ⅱ自动背景扣除●任何用户可于数秒内调整仪器配置——自由更换激光器、滤光片和光栅,无需任何工具●强大的 Thermo Scientific™ OMNIC™ xi 软件可快速实现数据分析和光谱解析●高精度自动聚焦功能和形态分析,快速实现不平整表面的准确定位●利用化学成像分析以及其它多种成像模式可快速定位特征区域激光安全性:●显微镜为一级激光安全认证。可选的光纤附件和一些其他可选的附件为 3B级激光装置,需要激光防范措施和激光安全护目镜。●观察时,激光被护目镜物理阻挡在视径外,以防止眼睛直接暴露于激光。非常适合于以下领域:●纳米技术●材料科学●学术研究●制药●地质学
    留言咨询
  • DXRxi 显微拉曼成像光谱仪可提供:●无需耗时学习操作技术,面向多层次技能水平用户●实时可视化设定优化实验参数,快速获取实验数据●直观的操作与最快的样品测量速度,以满足各种苛刻的应用需求●利用最先进的仪器技术确保实验数据的准确性●仪器自动准直与校标,无需工具和手动操作●自动背景扣除功能●激光器、滤光片和光栅智能模块化设计。可在在数秒钟内快速转换仪器配置●以成像为中心的强大的OMNIC™ xi 软件能够迅速处理和解析巨量光谱数据流●独特的白光像和光谱自动聚焦技术精确聚焦不平坦样品区域 ●多化学特征的剖面分析所提供的图像信息能从整体到细节清楚解析材料的化学和物理特性。 激光的安全等级 ●OMNIC™ xi显微拉曼成像光谱仪为I级激光安全等级为。当外接拉曼光纤探头且处于工作状态时,激光的安全等级为3b级,使用时须采取防护措施,佩戴激光护目镜。● 通过显微镜可视光路观察样品时,激光光路会自动切断,以保护眼睛 DXRxi 以下研究领域的理想选择:●纳米科技●材料科学●学术研究●医药科学●地球科学与地质●生物工程●司法鉴定
    留言咨询
  • 采用我们智能的化学成像和数据采集方法,通过快速探查整个样品区域,准确找到需要找寻的目标。Thermo Scientific™ DXR™ 3xi 显微拉曼成像光谱仪快速、简便地呈现直观信息。所有人都能获取高质量的化学成像,加速推进新老用户的科学研究。转变您开展材料分析的方法。 DXR3xi 显微拉曼成像光谱仪可提供:让处于任何技能水平的用户均可适应的简便操作在屏幕上实时优化实验参数,快速实现数据可视化直观的软件界面可满足高通量数据采集的各种应用需求以下特点确保测试数据的高精度:自动准直和校准——无需专业工具自动背景扣除任何用户可于数秒内调整仪器配置——自由更换激光器、滤光片和光栅,无需任何工具强大的 Thermo Scientific™ OMNIC™ xi 软件可快速实现数据分析和光谱解析高精度自动聚焦功能和形态分析,快速实现不平整表面的准确定位利用化学成像分析以及其它多种成像模式可快速定位特征区域 激光安全性显微镜为一级激光安全认证。可选的光纤附件和一些其他可选的附件为 3B级激光装置,需要激光防范措施和激光安全护目镜。观察时,激光被护目镜物理阻挡在视径外,以防止眼睛直接暴露于激光。 非常适合于以下领域:纳米技术材料科学学术研究制药地质学
    留言咨询

拉曼成像相关的耗材

  • 拉曼激光器安全套装(785 nm) L1320262
    拉曼激光器安全套装(785 nm)订货信息:产品描述部件编号拉曼激光器安全套装(785 nm),具体包括带有10 M电缆的编码簧片开关,1副激光防护镜、激光成像卡、贴在门上的警告标签(美国和欧洲)L1320262门连锁套装,包括编码簧片开关及10 M电缆(每个安全套装内1件)L1320820激光成像卡,用于安全查看激光位置(每个安全套装内有1件)L1323521贴在门上的警告标签(美国和欧洲)(每个安全套装内有1件)L1323523用于785 nm的激光器安全护目镜,785 nm下的外径为6(每个安全套装内有1件)L1323518
  • TVS-ACCY-SNJ系列成像介质—水凝胶
    产品说明双光子、共聚焦显微镜的常用物镜为水镜,水凝胶具有粘度高、不易挥发的特点,可代替水充当物镜的成像介质,以进行长时间或特殊条件的成像。水凝胶生物兼容性好,也可用于动物的眼睛术中保持湿润等作用。 产品应用双光子显微镜、微型化双光子显微镜、共聚焦显微镜、拉曼显微镜 产品优势和水的折射率基本一致,可匹配多种型号的物镜和显微镜高粘度、易塑形,无色无味,易于保存且溶于水,易清洁不易挥发,非常适用于微型化双光子显微镜在小动物组织上进行长时程自由行为的成像观测罐装有尖嘴设计,易于填充到物镜和样本之间
  • 荧光显微成像系统配件
    荧光显微成像系统配件和欧洲进口的显微成像系统,可用于研究细胞形态、荧光探针检测(GFP)、荧光共振能量转移(FRET)和快速分子过程。荧光显微成像系统配件集成方案 使用的现代荧光成像技术极大得帮助科研人员研究细胞形态、荧光探针检测 量转移和快速分子过程。 提供实验所需的曝光时间,根据相机的设置 有效集成并优化同步各种部件 显微成像系统集成方案 已经成为研究活细胞和分子结构比不可少的科研工具 能够以相机的最大速度连续采集一系列图像 可以产生每秒幅的比率图像 在更短的时间内获得更好的实验数据 荧光显微成像系统配件 可编程控制的光源 时成像控制单元 显微成像系统科研型相机 显微镜适配器 成像软件和工作站 价值尽量减少光毒性 显微成像系统特点 时序控制准确: 满幅图像帧频最高可达图像分析灵活: 非常适合单个细胞或一组活细胞的动态过程的研究 荧光显微成像系统配件特点 图像采集和传输的控制达到微秒精度图像采集快速: 软件具有多维图像分析功能和各种应用模块 三维成像要求在轴上能够快速成像,才能获得重建数据 孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有包括凝胶成像仪在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个一产品是用户满意的完美产品。 我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。 更多关于显微成像系统价格等诸多信息,孚光精仪会在第一时间更新并呈现出来,了解更多内容请关注孚光精仪官方网站方便获取!

拉曼成像相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制