蛋白质鉴定

仪器信息网蛋白质鉴定专题为您整合蛋白质鉴定相关的最新文章,在蛋白质鉴定专题,您不仅可以免费浏览蛋白质鉴定的资讯, 同时您还可以浏览蛋白质鉴定的相关资料、解决方案,参与社区蛋白质鉴定话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

蛋白质鉴定相关的资讯

  • 中科院:预处理显著提高蛋白质鉴定率
    2014年11月30日,国际学术期刊《分子与细胞蛋白质组学》molecular & Cellular Proteomics在线发表了中国科学院上海生命科学研究院生物化学与细胞生物学研究所系统生物学重点实验室曾嵘研究组与美国范德堡大学定量科学中心石瑜研究组的最新合作研究成果,揭示了稳定同位素化学标记高精度质谱数据中高丰度、高频率噪音离子的去除可以显著提高蛋白质鉴定率。在定量蛋白质组学研究中,稳定同位素标签结合高精度质谱仪可以在一次实验中对多个样品进行相对定量比较,这种策略比非标记定量具有更高的精确性。另一方面,体外化学标记相对于体内标记方法如SILAC,具有更高的样品通量和普适性,使得体外化学标记在定量蛋白质组学研究中得到了广泛的应用。对于该策略得到的肽段二级质谱谱图,其中的报告离子用于定量,而其他离子则用于鉴定该肽段。但报告离子以及其伴生离子并未包含多肽序列信息,这些离子会降低数据库搜索鉴定的敏感性和准确性。由于定量是建立在数据库鉴定的基础之上,在数据库搜索前对质谱数据的预处理就尤为重要。在曾嵘研究员和石瑜教授的共同指导下,盛泉虎,李荣霞和戴捷等人对稳定同位素化学标记数据首先进行了高丰度、高频率离子的分析,然后进行了16种不同组合的数据预处理,最后用5种不同搜索引擎进行了数据库搜索分析。研究表明,在高精度质谱数据中,存在大量稳定同位素标签相关的高丰度、高精度离子。结合各种预处理方法,判别和去除这些离子可以提高四标数据16.3%的鉴定谱图,13.9%的鉴定肽段以及6.6%的双肽段鉴定蛋白质。对于八标复杂数据,预处理方法则可提高50.2%的鉴定谱图,39.5%的鉴定肽段以及25.2%的双肽段鉴定蛋白质。这表明,标记通道的增加,在提高样品通量的同时,也引入了更多的伴生离子,判别和去除这些离子可以更显著提高鉴定的敏感性。基于组学大数据和系统生物学平台,曾嵘研究组通过多年努力自主开发了一系列蛋白质组数据分析技术,该工作建立的方法与此前的Buildsummary,ProteomicsTools, SRMBuilder 等工具一起 (Sheng et al., J Proteome Res 2012 Su et al., JMCB, 2014),形成了更加完善的蛋白质组学工作流程。该研究工作得到了国家科技部和国家自然科学基金资助。示意图:预处理可以显著提高谱图、肽段和可靠蛋白质的鉴定率
  • 用亲和色谱法和四维蛋白质组学法系统鉴定血液中与顺铂结合的蛋白质
    大家好,本周为大家分享一篇发表在J Proteome Res.上的文章,Systematic Identification of Proteins Binding with Cisplatin in Blood by Affinity Chromatography and a Four-Dimensional Proteomic Method,该文章的通讯作者是华中科技大学药学院的杜支凤教授。以顺铂为代表的铂类抗癌药物广泛应用于治疗多种癌症肿瘤,如胃肠道癌、头颈部癌和卵巢癌等。在静脉滴注后,这些药物水解形成活性分子,与DNA结合并抑制DNA链的合成与复制,最终致使细胞死亡。然而,由于铂与硫醇的高亲和力,大多数铂在静脉注射后会与血液中的蛋白质结合;例如,人血清白蛋白 (HSA) 是含量最丰富的血清蛋白,也是血液中铂类药物的主要结合蛋白;另外,在红细胞中负责运输氧气的血红蛋白 (HB) 也被发现与铂结合,因此,有必要研究铂类药物在血液中的蛋白结合行为。先前的研究已经证明,利用质谱方法可以实现对高丰度蛋白质的可靠鉴定;然而,由于高丰度蛋白的干扰,占总蛋白的 80% 以上的低丰度蛋白则很少被鉴定。此外,由于缺乏足够信息,以及在胰蛋白酶消化过程中还原和烷基化剂的使用导致蛋白上的铂化位点无法被确定。更重要的是,目前排除假阳性结果的唯一方法是根据铂化肽的特征同位素模式,人工对比理论同位素和实验同位素,从而导致鉴定过程非常耗时并且具有较强的主观性。因此,有必要开发一种可靠、高效的方法来鉴定血液中铂类药物的结合蛋白质组。在血液蛋白质组学研究中,免疫亲和层析常用于消耗高丰度蛋白并富集低丰度蛋白。它有利于低丰度蛋白的鉴定和定量,从而可以提高血液中的蛋白质组覆盖范围。除了色谱分离外,离子淌度质谱 (IM−MS) 根据离子的迁移率差异进行分离,同样有助于低丰度蛋白质的分析。在金属化蛋白的鉴定中,金属化肽和游离肽的同位素分布模式明显具有差异,这有助于确定这些肽是否与金属药物结合。已经开发了一些数据处理软件程序来自动分配金属药物在已知蛋白质上的结合位点,如智能数字注释程序 (SNAP) 算法和 Apm2s 。本文结合高丰度蛋白分离和4D蛋白质组学方法 (IM-MS) ,系统、全面地鉴定了血液中顺铂的结合蛋白,并利用铂化肽的特征同位素模式和相似性算法来消除假阳性的识别。如图1所示,首先用超滤去除游离药物,然后使用多亲和去除柱分离血液样本中的高丰度和低丰度蛋白;用FAIMS Pro界面的nano-LC−MS/MS进行消化和分析;用MaxQuant对铂化的多肽和蛋白进行鉴定,用相似性算法Apm2s排除假阳性结果。在此基础上,采用基于平行反应监测 (PRM) 的方法测定了血浆中多肽与顺铂的结合率。本研究为系统鉴定血液中金属药物的结合蛋白提供了一种新方法,鉴定出的蛋白可能有助于了解铂类抗癌药物的毒性。图1 铂化蛋白的分离和鉴定以及用蛋白质组学方法测定顺铂与多肽之间的结合率的示意图本研究采用顺铂与人血浆的反应混合物建立了一种分析方法。为了与文献进行比较,样品的制备方法与文献中的制备方法相同1。选择CID作为碎裂方式,结果表明,从低丰度部分共鉴定出212个蛋白,从高丰度部分共鉴定出169个蛋白。在低丰度部分,共鉴定出1192个游离肽和208个铂化肽。其中,154个铂化肽被排除为假阳性结果,如文中表S1所示。高丰度部分的游离肽数和铂化肽数分别为1124个和169个,其中,144个铂化肽被排除为假阳性,如表S2所示。低丰度结合蛋白的鉴定在以往的研究中,由于高丰度蛋白的干扰,很少发现低丰度蛋白与铂的结合。本研究在高丰度蛋白被消耗后,从29个蛋白中共鉴定出54个铂化肽。APOA4中铂化肽的理论和实际质谱如图2所示,前体离子和铂化产物离子表现出特征的同位素峰。图片显示了关键的碎片离子的质谱图,用于分配铂化位点。在鉴定出的铂化蛋白中,CERU、FETUA、ITIH1和B4E1Z4有4个或更多的含铂肽,这表明铂可以与这些蛋白质的多条肽段结合。虽然低丰度蛋白只占血液中蛋白的一小部分,但它们具有非常重要的功能,对于维持正常生理活动不可或缺。例如,CERU可以将Fe2+氧化为Fe3+,并在铁代谢中发挥重要作用;B4E1Z4与补体激活相关。顺铂与这些蛋白的结合是否会对其功能产生影响仍有待进一步研究。图2 从低丰度蛋白部分鉴定出的铂化蛋白APOA4。(A)铂化肽的理论(左)和实验质谱(右);(B)铂化肽的MS/MS和指示铂化位点的关键碎片离子的质谱图高丰度结合蛋白的鉴定IGHG1中一个铂化肽的理论和实验质谱如图3所示,其前体离子和铂化产物离子表现出特征同位素峰。根据关键的碎片离子确定了铂化位点。在已鉴定的蛋白中,ALBU(白蛋白)和CO3(补体C3)有4个或更多的含铂多肽。HSA负责血液中药物和小分子的运输,CO3在补体系统的激活中起着重要作用。高丰度蛋白与顺铂的结合已被用于提高肿瘤化疗的疗效和选择性,而新发现的高丰度结合蛋白有助于相关研究。与低丰度组分鉴定的铂化蛋白相比,大部分与低丰度组分蛋白不同,两个组分中仅共同检测到FETUA和CFAH作为铂化蛋白,这表明亲和层析对高丰度蛋白和低丰度蛋白的分离效果较好。图3 从高丰度蛋白部分鉴定出铂化蛋白IGHG1。(A)铂化肽的理论(左)和实验质谱(右);(B)铂化肽的MS/MS和指示铂化位点的关键碎片离子的质谱图IM−MS分离铂化肽异构体如图4所示,通过nano-LC−IM−MS/MS成功分离了低丰度蛋白组分中FETUA的铂化肽异构体。同分异构体a和b是典型的铂化肽,由质谱图的同位素模式显示,它们被很好地分离。它们的MS/MS不同,根据关键碎片离子,异构体a和b的铂化位点分别被划分为M和H/T。这个例子显示了IM−MS对复杂样品的分辨能力。图4 用nanoLC−IM−MS/MS分离的低丰度蛋白组分中FETUA的铂化肽异构体。(A)m/z=764.67提取离子色谱和异构体a、b的质谱,理论质谱见中间;(B)异构体的MS/MS和关键碎片离子的质谱图结合蛋白的铂化位点在本文的两项研究中,His 和 Met 是首选的铂结合位点。此外,D、E、S和Y也被发现是铂结合位点。这也是合理的,因为血清蛋白的供氧氨基酸已被证明是顺铂的动力学首选结合位点。很少有Cys残基被鉴定为结合位点,这可能是由于没有还原和烷基化。肽的半胱氨酸常形成二硫键,不经还原和烷基化就无法识别,因此,序列覆盖率会很低。在未来的研究中,应使用替代还原剂来提高肽序列覆盖率。生物信息学分析 为了揭示铂化蛋白质的定位、功能和途径,将从高丰度和低丰度部分中鉴定的蛋白质组合起来并通过生物信息学工具进行分析。如图5A所示,GO分析表明大部分结合蛋白位于细胞外区域,发挥蛋白结合、金属离子结合、酶抑制剂等功能;因此,镀铂蛋白的定位证实了鉴定的可靠性。此外,这些蛋白质参与内肽酶活性、免疫系统过程、补体激活、炎症反应和凝血的负调节。为了阐明所涉及的途径,对鉴定的蛋白质进行了KEGG途径富集分析,结果表明最显着的富集途径是补体和凝血级联途径(图5B)。补体和凝血级联途径已被证明在造血干/祖细胞的动员中发挥关键作用,这对造血具有重要意义。顺铂的血液学毒性与其在补体和凝血级联途径中与血液蛋白的结合之间的相关性值得进一步研究。图5 (A)通过GO 分析确定的铂化蛋白的定位、分子功能和生物学过程;(B)铂化蛋白的富集途径血液蛋白与顺铂的结合率 由于未检测到一些铂化肽的游离形式,因此仅使用高丰度组分中的13种肽进行亲和力研究。可靠地计算了属于五种蛋白质的六种铂化肽的结合率。PRM分析中这些肽的信息见表S5,定量结果见图6。其中,富含组氨酸的糖蛋白的一种肽与顺铂的结合率最高,这可能是由于顺铂对含组氨酸和带负电荷的生物分子的高亲和力。Apoa1 蛋白的一个肽与顺铂的结合率最低。在本研究中可以确定结合率的铂化肽数量较少,这主要是由于某些肽的质谱响应低以及某些肽存在氧化形式。因此,这些肽的结合比率不能通过 PRM 方法确定。然而,与以往的研究相比,根据属于同一蛋白质的肽的质谱计数粗略估计某种蛋白质的丰度,这种方法可以更准确地确定高丰度肽与铂的结合率。图6 根据PRM分析多肽与顺铂的结合亲和力顺铂与血液蛋白的结合与其药代动力学、活性、毒性和副作用密切相关。然而,血液蛋白质组的复杂性限制了低丰度结合蛋白的鉴定。在本研究中,基于亲和色谱和nanoLC-IM-MS/MS 的 4D 蛋白质组学方法被用于分离低丰度和高丰度蛋白质并分析这两个部分。基于铂化肽的特征同位素分布和相似性算法,排除了假阳性鉴定。结果,共有 39 种蛋白质被鉴定为铂化蛋白质,这比之前研究中的数量要高得多。随后的生物信息学分析表明,这些结合蛋白位于细胞外区域,主要参与内肽酶活性、免疫系统过程、补体激活、炎症反应和凝血的负调控。最显着的富集途径是补体和凝血级联,这可能与顺铂的血液学毒性有关。高丰度部分的 PRM 分析表明,富含组氨酸的糖蛋白中的肽与高丰度组分中的顺铂的结合率最高。综上所述,本研究揭示了人类血液中与顺铂结合的蛋白质组,并计算了顺铂与血液蛋白的结合率。这种方法虽然在数据分析方面比较耗时,但它可以识别复杂系统中金属药物的低丰度结合蛋白,并且可以准确测量药物与血液蛋白的结合率。
  • 蛋白质表征和鉴定市场容量2019将达26亿美元
    市场调研机构Research and Markets发布报告称:全球蛋白质表征和鉴定的市场容量在2014年达到了15.69亿美元,预计年复合年增长率为10.63%,到2019年将达到26.0028亿美元。该市场容量的计算包含了色谱、电泳、质谱仪器,及相关的耗材和服务。   蛋白质鉴定仪器和耗材在生命科学、临床诊断、药物发现和开发等多个领域都有应用,它们广泛的用于生物标记物的鉴定和生物药品的表征。其中药物发现和开发是2014年蛋白质鉴定仪器和耗材最大的应用市场之一。   蛋白质表征和鉴定仪器的终端用户主要集中于学术研究所、生物技术和制药公司、科技开发服务企业。   蛋白质表征和鉴定仪器、耗材的重要供应商有:安捷伦、伯乐、布鲁克、丹纳赫、GE医疗、珀金埃尔默、岛津、西格玛奥德里奇、赛默飞、沃特世等。

蛋白质鉴定相关的方案

  • 重组蛋白表征——完整蛋白质的鉴定、纯度和杂质分析
    尽管蛋白质生物制品总体来说是相对稳定的分子,但是在生产、制剂和储存过程中,还是会发生一些化学修饰和降解反应。许多蛋白质在纯化过程中可能发生水解断裂,而断裂形成的片段污染物可能会导致患者免疫反应的不良后果。由于存在化学修饰和降解反应,因此需要可靠而且灵敏的方法来评价研发和生产过程中蛋白质的纯度和结构完整性。 完整蛋白质、完整亚基或结构域的精确质量测定对于蛋白质序列组成的快速确认和翻译后修饰、降解和样品处理引起的分子变异的鉴定非常有帮助。电泳、色谱和质谱 (MS) 技术是完整蛋白质及其降解物分子量测定的最常用技术。其中一种最常用的分析是体积排阻色谱 (SEC),它用于测定蛋白质是否为单体结构,并且在生产和制剂过程中是否始终保持这一结构。
  • 使用ProSightPD进行top-down蛋白质鉴定
    使用ProSightPD可对复杂蛋白质混合物进行自动化的高通量top-down蛋白质组学研究。仅用5 µ g蛋白,即可鉴定到大肠杆菌核糖体蛋白复合物中超过90%的组成蛋白。得益于Orbitrap质谱的高分辨率和高质量串联谱图,ProSightPD可精准测定蛋白质序列、蛋白翻译后修饰类型及位点。这一工作流程可用于蛋白复合物的组成研究和翻译后修饰研究等,与bottom-up和native MS等蛋白质组学技术互为补充,提供更加全面的蛋白质结构信息。
  • 一小时蛋白质组:基于Q-OT-qIT质谱系统的蛋白组学快速鉴定
    随着“一小时酵母蛋白质组”的实现, 短梯度下实现蛋白质组深度覆盖成为可能.本文利用全新 Q-OT-qIT 三合一质谱系统进行“一小时蛋白质组”分析与优化. 50 min 有效梯度, 单次实验分别从1 μ g和50 ngHeLa全蛋白中鉴定到20860和14100条肽段, 对应到3865和 2877 个非冗余蛋白, 而目前的文献报道至少需要 2~3 h. 同时, 本文考察了 Q-OT-qIT 碎裂模式、检测方法、最大注入时间和自动增益控制等参数对蛋白质组快速分析的影响, 证明了不同采集方法间的互补性, 阐述了不同扫描参数对鉴定结果的影响. 此外, 还讨论了Q-OT-qIT 的并列运行原理和扫描组合模式, 为不同实验目的和样本类型的蛋白质组快速分析奠定了基础.

蛋白质鉴定相关的论坛

  • 蛋白质组鉴定技术简述

    如果目前分离蛋白质组的最好技术是2-DE,那么随之而来的挑战是数百数千个蛋白如何被鉴定。在这里,我们不考虑传统的蛋白鉴定方法,如免疫印迹法、内肽的化学测序、已知或未知蛋白的comigration分析,或者在一个有机体中有意义的基因的过表达。并不是因为这些方法无效,而是因为它们通常耗时、耗力,不适合高流通量的筛选。目前,所选用的技术包括对于蛋白鉴定的图象分析、微量测序;进一步对肽片段进行鉴定的氨基酸组分分析和与质谱相关的技术。(1) 图象分析技术(Image analysis)。“满天星”式的2-DE图谱分析不能依靠本能的直觉,每一个图象上斑点的上调、下调及出现、消失,都可能在生理和病理状态下产生,必须依靠计算机为基础的数据处理,进行定量分析。在一系列高质量的2-DE凝胶产生(低背景染色,高度的重复性)的前提下,图象分析包括斑点检测、背景消减、斑点配比和数据库构建。首先,采集图象通常所用的系统是电荷耦合CCD(charge coupled device)照相机;激光密度仪(laser densitometers)和Phospho或Fluoro?imagers,对图象进行数字化。并成为以象素(pixels)为基础的空间和网格。其次,在图象灰度水平上过滤和变形,进行图象加工,以进行斑点检测。利用Laplacian,Gaussian,DOG(difference of Gaussians) opreator使有意义的区域与背景分离,精确限定斑点的强度、面积、周长和方向。图象分析检测的斑点须与肉眼观测的斑点一致。在这一原则下,多数系统以控制斑点的重心或最高峰来分析,边缘检测的软件可精确描述斑点外观,并进行边缘检测和邻近分析,以增加精确度。通过阈值分析、边缘检测、销蚀和扩大斑点检测的基本工具还可恢复共迁移的斑点边界。以PC机为基础的软件Phoretix-2D正挑战古老的Unix为基础的2-D分析软件包。第三,一旦2-DE图象上的斑点被检测,许多图象需要分析比较、增加、消减或均值化。由于在2-DE中出现100%的重复性是很困难的,由此凝胶间的蛋白质的配比对于图象分析系统是一个挑战。IPG技术的出现已使斑点配比变得容易。因此,较大程度的相似性可通过斑点配比向量算法在长度和平行度观测。用来配比的著名软件系统包括Quest,Lips,Hermes,Gemini等,计算机方法如相似性、聚类分析、等级分类和主要因素分析已被采用,而神经网络、子波变换和实用分析在未来可被采用。配比通常由一个人操作,其手工设定大约50个突出的斑点作为“路标”,进行交叉配比。之后,扩展至整个胶。例如:精确的PI和MW(分子量)的估计通过参考图上20个或更多的已知蛋白所组成的标准曲线来计算未知蛋白的PI和MW。在凝胶图象分析系统依据已知蛋白质的pI值产生PI网络,使得凝胶上其它蛋白的PI按此分配。所估计的精确度大大依赖于所建网格的结构及标本的类型。已知的未被修饰的大蛋白应该作为标志,变性的修饰的蛋白的PI估计约在±0.25个单位。同理,已知蛋白的理论分子量可以从数据库中计算,利用产生的表观分子量的网格来估计蛋白的分子量。未被修饰的小蛋白的错误率大约30%,而翻译后蛋白的出入更大。故需联合其他的技术完成鉴定?(2) 微量测序(microsequencing)。蛋白质的微量测序已成为蛋白质分析和鉴定的基石,可以提供足够的信息。尽管氨基酸组分分析和肽质指纹谱(PMF)可鉴定由2-DE分离的蛋白,但最普通的N-末端Edman降解仍然是进行鉴定的主要技术。目前已实现蛋白质微量测序的自动化。首先使经凝胶分离的蛋白质直接印迹在PVDF膜或玻璃纤维膜上,染色、切割,然后直接置于测序仪中,可用于subpicomole水平的蛋白质的鉴定。但有几点需注意:Edman降解很缓慢,序列以每40 min 1个氨基酸的速率产生;与质谱相比,Edman降解消耗大;试剂昂贵,每个氨基酸花费3~4$。这都说明泛化的Edman降解蛋白质不适合分析成百上千的蛋白质。然而,如果在一个凝胶上仅有几个有意义的蛋白质,或者如果其他技术无法测定而克隆其基因是必需的,则需要进行泛化的Edman降解测序。近来,应用自动化的Edman降解可产生短的N-末端序列标签,这是将质谱的序列标签概念用于Edman降解,业已成为一种强有力的蛋白质鉴定。当对Edman的硬件进行简单改进,以迅速产生N-末端序列标签达10~20个/d,序列检签将适于在较小的蛋白质组中进行鉴定.若联合其他的蛋白质属性,如氨基酸组分分析、肽质质量、表现蛋白质分子量、等电点,可以更加可信地鉴定蛋白质。选择BLAST程序,可与数据库相配比。目前,采用一种Tagldent的检索程序,还可以进行种间比较鉴定,又提高了其在蛋白质组研究中的作用。(3) 与质谱(mass spectrometry)相关的技术。质谱已成为连接蛋白质与基因的重要技术,开启了大规模自动化的蛋白质鉴定之门。用来分析蛋白质或多肽的质谱有两个主要的部分,1)样品入机的离子源,2)测量被介入离子的分子量的装置。首先是基质辅助激光解吸附电离飞行时间质谱(MALDI-TOF)为一脉冲式的离子化技术。它从固相标本中产生离子,并在飞行管中测其分子量。其次是电喷雾质谱(ESI-MS),是一连续离子化的方法,从液相中产生离子,联合四极质谱或在飞行时间检测器中测其分子量。近年来,质谱的装置和技术有了长足的进展。在MALDI-TOF中,最重要的进步是离子反射器(ion reflectron)和延迟提取(delayed ion extraction),可达相当精确的分子量。在ESI-MS中,纳米级电雾源(nano-electrospray source)的出现使得微升级的样品在30~40 min内分析成为可能。将反相液相色谱和串联质谱(tandem MS)联用,可在数十个picomole的水平检测;若利用毛细管色谱与串联质谱联用,则可在低picomole到高femtomole水平检测;当利用毛细管电泳与串联质谱连用时,可在小于femtomole的水平检测。甚至可在attomole水平进行。目前多为酶解、液相色谱分离、串联质谱及计算机算法的联合应用鉴定蛋白质。下面以肽质指纹术和肽片段的测序来说明怎样通过质谱来鉴定蛋白质。1)肽质指纹术(peptide mass fingerprint, PMF)是由Henzel等人于1993年提出。用酶(最常用的是胰酶)对由2-DE分离的蛋白在胶上或在膜上于精氨酸或赖氨酸的C-末端处进行断裂,断裂所产生的精确的分子量通过质谱来测量(MALDI-TOF-MS,或为ESI-MS),这一技术能够完成的肽质量可精确到0.1个分子量单位。所有的肽质量最后与数据库中理论肽质量相配比(理论肽是由实验所用的酶来“断裂”蛋白所产生的)。配比的结果是按照数据库中肽片段与未知蛋白共有的肽片段数目作一排行榜,“冠军”肽片段可能代表一个未知蛋白.若冠亚军之间的肽片段存在较大差异,且这个蛋白可与实验所示的肽片段覆盖良好,则说明正确鉴定的可能性较大。2)肽片段(peptide fragment)的部分测序。肽质指纹术对其自身而言,不能揭示所衍生的肽片段或蛋白质。为进一步鉴定蛋白质,出现了一系列的质谱方法用来描述肽片段。用酶或化学方法从N-或C-末端按顺序除去氨基酸,形成梯形肽片段(ladder peptide)。首先以一种可控制的化学模式从N-末端降解,可产生大小不同的一系列的梯形肽片段,所得一定数目的肽质量由MALDI-TOF-MS测量。另一种方法涉及羧基肽酶的应用,从C-末端除去不同数目的氨基酸形成肽片段。化学法和酶法可产生相对较长的序列,其分子量精确至以区别赖氨酸(128.09)和谷氨酰胺(128.06)。或者,在质谱仪内应用源后衰变(post-source decay, PSD)和碰撞诱导解离(collision-induced dissociation, CID),目的是产生包含有仅异于一个氨基酸残基质量的一系列肽峰的质谱。因此,允许推断肽片段序列。肽片段PSD的分析在MALDI反应器上能产生部分序列信息。首先进行肽质指纹鉴定。之后,一个有意义的肽片段在质谱仪被选作“母离子”,在飞行至离子反应器的过程中降解为“子离子”。在反应器中,用逐渐降低的电压可测量至检测器的不同大小的片段。但经常产生不完全的片段。现在用肽片段来测序的方法始于70年代末的CID,可以一个三联四极质谱ESI-MS或MALDI-TOF-MS联合碰撞器内来完成。在ESI-MS中,由电雾源产生的肽离子在质谱仪的第一个四极质谱中测量,有意义的肽片段被送至第二个四极质谱中,惰性气体轰击使其成为碎片,所得产物在第三个四极质谱中测量。与MALDI-PSD相比,CID稳定、强健、普遍,肽离子片段基本沿着酰胺键的主架被轰击产生梯形序列。连续的片段间差异决定此序列在那一点的氨基酸的质量。由此,序列可被推测。由CID图谱还可获得的几个序列的残基,叫做“肽序列标签”。这样,联合肽片段母离子的分子量和肽片段距N-、C?端的距离将足以鉴定一个蛋白质。(4) 氨基酸组分分析。1977年首次作为鉴定蛋白质的一种工具,是一种独特的“脚印”技术。利用蛋白质异质性的氨基酸组分特征,成为一种独立于序列的属性,不同于肽质量或序列标签。Latter首次表明氨基酸组分的数据能用于从2-DE凝胶上鉴定蛋白质。通过放射标记的氨基酸来测定蛋白质的组分,或者将蛋白质印迹到PVDF膜上,在155℃进行酸性水解1 h,通过这

  • 蛋白修饰与蛋白质鉴定

    现在,在实验研究基础上,借助多方面的生物信息学方法,可以快速高通量的预测和进行蛋白质鉴定蛋白翻译后修饰。分泌蛋白和膜相关蛋白附着于细胞膜上的或将被排泄出去的蛋白质是由细胞内质网膜上附着的核糖体合成。附着有核糖体的内质网被称为糙面型内质网。这类蛋白质都含有一个N-末端(或氨基端),我们称之为信号序列或信号肽。这个信号肽通常情况下含有13-36个主要疏水性残基,同时它含有多蛋白复合物,我们称之为信号识别粒子(SRP)。这种信号肽在通过内质网膜之后会被去除。信号肽的去除过程是在信号肽酶催化作用下完成的。含有一个信号肽的蛋白质被称为前蛋白,有别于原蛋白。然而,某些用于分泌的蛋白在分泌之后会进一步被蛋白水解,因此包含有原蛋白的序列。这类蛋白质被称为前原蛋白。蛋白水解性裂解许多蛋白质在翻译之后会经历水解性裂解过程。其中最为简单的形式是去除起始蛋氨酸。许多蛋白质合成了不活跃的前体细胞,这些细胞只能在合适的生理条件下通过限制性蛋白水解过程产生活性。在凝血过程中使用到的胰腺酶和酶类就是后者的例证。多肽去除时产生活性的不活跃的前体蛋白,我们称之为原蛋白。前原蛋白的翻译后加工过程的一个复杂的例子就是脑垂体分泌合成的前阿黑皮素原的裂解过程(有关前阿黑皮素原的讨论,见肽类激素页)。这类前原蛋白经过复杂的裂解,根据合成的前阿黑皮素原的细胞定位而不同,其路径也有所不同。另一个前原蛋白的例子就是胰岛素。由于胰岛素是由胰腺分泌的,因此它有一个前肽。随着含24个氨基酸的信号肽的裂解,这类蛋白也折叠成了胰岛素原。胰岛素原进一步分裂,产生活跃的胰岛素,它包含两个肽链,由二硫键进行连接。但仍有其他的蛋白(酶类)被合成为非活跃的前体细胞,被称为酶原。酶原在蛋白水解性裂解时会产生活性,在凝血串联蛋白质链的若干蛋白质中都会发生这种现象。甲基化作用蛋白翻译后的甲基化过程主要发生在氮原子和氧原子上。活性甲基供体是活性腺苷甲硫胺酸(SAM)。最常见的甲基化作用发生在赖氨酸残基的ε-amine上。脱氧核糖核酸组蛋白中赖氨酸残基的甲基化作用可调节核染色质结构,因此可调节其转录活性。赖氨酸原本被认为是一种常设共价标记,可提供长期信号,甚至包括转录记忆时的组蛋白依赖机制。然而,最近的临床研究表明赖氨酸甲基化作用与其他共价修饰体相似,作用时间短,并能通过反脱甲基化活动进行动态调节。最近的组学研究发现表明,赖氨酸残基的甲基化作用不仅发生在核染色质层面,而且还通过修订转录因子影响基因表达。组氨酸的咪唑环,精氨酸的胍基部分以及谷氨酸盐和天冬氨酸盐的R组酰胺(R-group amides )上,都发现了额外的氮甲基化作用。谷氨酸盐和天冬氨酸盐的R组羧化物也会发生氧甲基化作用并形成甲基酯。蛋白可能在半胱氨酸的R[

蛋白质鉴定相关的资料

蛋白质鉴定相关的仪器

  • 仪器简介:作为全球最大的实验室过滤及超滤产品供应商,Millipore 可为您提供l. 0.5mL至1000L处理量的实验室除菌过滤装置,可用于血 清、组织培养基及其他溶液的除菌过滤。高通量,低吸附的除菌滤膜,使蛋白质损失最少。可选择即用式过滤器或可更换膜的过滤装置。2. 0.5mL至3000mL处理量的实验室超滤装置,用于蛋白质,核酸的分离、纯化、浓缩和脱盐,专利 的结构设计和新型的超滤膜,使超滤速度更快,产物回收率更高。单片超滤膜和膜包可清洗并反复使用。3. 高通量纯化系统,特别适合大规模样品纯化实验室的应用,可快速有效地同时处理多达96个样品,大大减轻了实验室的负担。主要产品包括:* Amicon 系列超滤离心装置: 浓缩,脱盐一部到位,* DNA Extraction Kit: 从琼脂糖凝胶中回收DNA,只需10分钟即可回收100bp-10,000kb DNA* Micropure -EZ:从DNA中去除常用的42种限制性内切酶,可与Amicon超滤离心装置连用,一步离心即可完成去酶,浓缩及脱盐。* Immobilon 系列转印膜: Ny+ 用于Southern和Northern Blotting PVDF 用于Western Blotting* ZipTip 微量固相萃取吸嘴:只需数秒即可纯化fmol至pmol的蛋白质样品,提高质谱分析的灵敏度* Montage Plasmid kit:用于质粒DNA纯化2 Montage BAC kit:用于BAC DNA纯化2 Montage SEQ kit:用于测序反应后PCR纯化* Montage In-Gel Digest Kit: 同时处理96个1-D或2-D胶中的蛋白质样品* Millex GP33: 超大面积,超高流速的针头式除菌过滤器。技术参数:1.96孔PCR 纯化板---纯化96个样品只需10分钟2.无须离心,只需真空抽干3.不需要使用任何有机试剂及任何盐溶液,也无须洗涤步骤4.纯化后的PCR样品回收率90%(500bp以上)5.纯化后的DNA纯度极佳--Primer的去除率98%主要特点:1.Albumin Deplete Kit--有效去除人血清中65%以上的白蛋2.预装好亲和层析小柱,只需15分钟离心,洗脱操作3.非特异性蛋白吸附极低4.提高低峰度蛋白质在电泳,层析及质谱分析中的解析度5.此Kit同样可适合于其他多种哺乳动物
    留言咨询
  • 最新款 Qubit Flex 八通道核酸/蛋白定量荧光计 已上市!Qubit 4 荧光计采用专门研制的荧光检测技术和Invitrogen™ Molecular Probes™ 染料。这些染料荧光只有与特异性的靶分子结合时,才能发射荧光信号,即使有游离核苷酸或降解核酸存在,这些染料仍能发挥作用。Qubit 4 荧光定量即便在低浓度下亦具有目前最高的DNA 和RNA 定量特异性和灵敏度。? 选择性 — Qubit 荧光定量采用Qubit 分析试剂盒,其包括专利的染料,只有与DNA、RNA或蛋白质结合时方可发出荧光。由于Qubit 技术只报告靶分子( 而不是杂质) 的浓度,因此这种特异性可以使您获得十分精确的结果? 灵敏性 — 最低仅需1 uL 样品,能精确可靠地定量浓度仅为10pg/L 的DNA 和12.5μg/mL 的蛋白质样本? 简单直观 — 反应灵敏的5.7 英寸彩色触摸屏,直观的导航按钮? 迅速 — 全新的双核处理器,5 秒内快速计算样品浓度,最多存储1000 个结果? 个性化 — 个性化设置常规应用,可通过MyQubit 软件和网络工具创建个性化assay,六国操作语言可供选择上市12 年来,Qubit 荧光计一直以其极高的准确度和灵敏性,受到全球上万个实验室的青睐。迄今为止,已经有17,500 篇有关Qubit 的文献引述。最新推出的Qubit 4 荧光计秉承上一代仪器的高准确性,不仅仅可精确测量样品DNA,RNA 和蛋白质含量,还拥有全新的功能,包括:? 适用全新RNA IQ assay — 快速可靠地检测RNA 完整性和质量? 数据导出 — 除U 盘和USB 连接电脑导出数据,还拥有WiFi 功能? 内置试剂计算器 — 快速计算配置工作溶液所需的染料和缓冲液Qubit 操作简单直观ubit RNA IQ Assay快速、准确地检测RNA 完整性和质量RNA 样品的质量评估对于下游的实验的成功尤为重要。全新上市的InvitrogenTM Qubit RNA IQ(Integrity & Quality )试剂盒和Qubit 4 荧光计配套使用,只需两步就可以准确区分完整和降解RNA,快速评估RNA 质量或降解程度。无需特殊的处理步骤,繁杂的样本制备或漫长的等待过程——最少仅需1 uL,浓度为0.5-1.5 ug/uL 的待测样品,即可在4 秒内获得RNA IQ 结果。Qubit RNA IQ 试剂盒采用两种独特的荧光染料——一种与大RNA,完整和/ 或结构RNA 结合,另一种选择性地结合较小、降解的RNA(图5),两种染料结合使用,可快速地评估RNA样品的完整性和质量。使用时,您只需将样本加入RNA IQ 工作液,然后在Qubit 4 荧光计上完成检测。检测结果会提供RNA 样品完整性和质量的总数值或RNA IQ#,以及样本中大小RNA 的百分比值(图6)。与其他RNA 质量分数类似,RNAIQ# 评分范围为1 到10,数值越大,说明RNA 的质量越高,完整性越好。 与电泳法相比,RNA IQ 检测法有何优势?Qubit RNA IQ 为检测RNA 样本是否降解提供一种快速简单的方法。与基于微流体芯片法比较,RNA IQ 法需要的设备便宜,操作简单,更重要的是检测所需的时间大大缩短。通常来说,完成12 个样品的检测,RNA IQ 法约需要10 分钟,而使用微流体法,约需要75 分钟。如果您只是需要简单评估RNA 样品是否降解,可以使用RNA IQ 法快速完成检测,但如果您需要获取具体的RNA 片段大小及分布信息,我们依然推荐您使用基于凝胶或微流体的电泳方法。RNA IQ 检测结果反映样本中大RNA 和/ 或结构RNA 和小RNA的百分比,其数值与电泳法结果正相关(图7)。然而,需要注意的是IQ# 值反映的是样本中大小RNA 的比值,由于计算原理不同,IQ# 值与其他质量评估方法得到的结果之间存在一些差异(图8)。对特定样本或下游应用,我们推荐您最开始同时使用RNA IQ 试剂盒和传统电泳法来确定测量值的相关性。官方渠道购买 — 品质保证,售后无忧从现在起,通过赛默飞世尔科技官方渠道购买全新Qubit 4 荧光计,即享三年免费退换。
    留言咨询
  • 蛋白质测序仪 400-860-5168转2831
    单分子蛋白质测序仪蛋白质组的复杂和动态性质使得敏感和高通量的蛋白质测序具有挑战性。研究人员位于总部位于美国的生命科学研究公司QuantumSis已经开发出一种用于高通量单分子蛋白质的实时方法测序。蛋白质测序仪方法涉及在半导体器件上的纳米级反应室中固定肽。染料标记的氨基当肽经历逐步切割时,氨基酸识别受体和氨基肽酶进行N-末端氨基酸的检测。蛋白质测序仪方法将半导体芯片和小型台式设备相结合,可进行高度并行的单分子荧光测量。&bull 蛋白质测序仪消除了波长相关的严格滤波和染料辨别,从而降低了尺寸、成本和复杂性&bull 集成在仪器中的激光模块和信号处理计算&bull 生产芯片有2M个活动阱,一条生产线可扩展到1000万个蛋白质测序仪轻松获取蛋白质测序数据云软件可轻松与 Platinum 仪器集成,因此您可以在单个直观的软件环境中计划、设置和分析测序运行。每次运行期间生成的数据可以自动上传到云端,无需生物信息学专业知识即可识别蛋白质。云软件可从任何计算机安全访问,支持从任何位置进行分析。文库制备和测序试剂盒包含所有你需要的试剂,包括消化和功能化蛋白质和固定在半导体芯片上的肽,以及氨基肽酶和识别器开始测序。铂序列通过捕获每个n端氨基酸(NAA)结合事件的荧光信号来测序单个多肽。氨基肽酶切割每个NAA,暴露下一个NAA进行识别,这个过程重复,直到整个肽被测序。每次运行期间生成的数据都会自动上传到云计算中。我们的蛋白质测序仪基于云的数据分析软件提供关于您的蛋白质的单分子水平的信息,使蛋白质识别易于解释,而不需要生物信息学的专业知识。复杂的生物样本含有多种蛋白质,了解它们的存在和相对丰度对于揭示与人类健康和疾病相关的潜在生物过程至关重要。然而,需要抗体或靶向试剂的传统蛋白质检测方法在鉴定具有变异肽序列的蛋白质时往往面临局限性。Quantum-Si 的铂金&trade 仪器通过直接对蛋白质进行测序提供了一种创新的解决方案,无需基于抗体的检测。在本应用纪要中,我们展示了在铂混合物中成功鉴定五种重组蛋白,展示了在不受抗体特异性限制的情况下检测多种蛋白质的可行性。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
    留言咨询

蛋白质鉴定相关的耗材

  • 安捷伦蛋白质分级分离系统
    安捷伦蛋白质分级分离系统和蛋白质组学试剂 生物样品的LC/MS 分析 电泳分析的准备 生物标志物研究的样品制备 仪器和工作流程验证 经济实惠的免疫去除 样品脱盐、浓缩和分馏为了更方便地对生物样品(如血清、血浆和脑脊液(CSF))中的蛋白质进行分离和鉴定,安捷伦的多重亲和去除系统(MARS)用色谱方法去除生物样品中存在的干扰性高丰度蛋白。这些高丰度蛋白的去除,改善了后续对样品进行的液/质分析和电泳分析,有效地扩展了动态范围。针对样品的馏分和脱盐,安捷伦设计了mRP-C18 高回收率蛋白柱,可以用一个简单的步骤同时完成脱盐、浓缩和分馏,极高的样品回收率可以与常规RP HPLC 柱媲美,后者与LC/MS 分析完全兼容。另外,安捷伦还提供生物标志物研究中样品制备和其它蛋白质组学应用的验证试剂,包括复杂标准品和蛋白质组学级胰蛋白酶。为便于使用,这些试剂均与安捷伦LC/MS 方法完全兼容,无需任何额外的样品预处理。我们的定制配置还可以满足您的大体积进样需求和定制其他色谱柱规格。多重亲和去除系统用安捷伦的多重亲和去除系统可以对血清、血浆和其它体液中高价值的低丰度蛋白和生物标志物进行鉴定和表征。多重亲和去除系统能够可重现地、特异地去除人的生理体液中多达14 种高丰度蛋白,和小鼠生理体液中3 种高丰度蛋白。多重亲和去除系统可以使用各种液相柱规格和离心小柱。安捷伦多重亲和去除系统与安捷伦优化的缓冲液、方便的离心过滤膜和浓缩器结合在一起,形成了一个自动化的一体式蛋白去除解决方案,可以与大多数液相色谱仪(色谱柱)和台式离心机(离心小柱)兼容。用多重亲和去除系统净化的样品适用于下游的各种分析,如二维凝胶电泳、LC/MS 和其它分析技术。订货信息:
  • 蛋白质组学级胰蛋白酶
    用于LC/MS 分析的蛋白质组学试剂安捷伦复杂的蛋白质组学标准品是含有1500 种蛋白的Pfu 蛋白提取物。与我们的TPCK-处理的蛋白质组学级胰蛋白酶一起使用,为LC/MS 生物标志物发现和其它蛋白质组学研究提供了理想的工作流程验证组合。订货信息:
  • 安捷伦蛋白质 230 试剂
    使用 2100 生物分析仪系统进行蛋白质电泳是快速、自动进行蛋白质和肽谱表征、质量控制和杂质检测的一种客观、灵活的解决方案。Agilent Protein 80 和 Protein 230 分析可提供与考马斯亮蓝染色法相当的灵敏度。该系统无需 SDS-PAGE 平板凝胶处理、染色或成像步骤,使工作流程更加高效。使用生物分析仪系统评估的样品类型包括蛋白质裂解物、纯化蛋白质和多肽、还原态和非还原态抗体以及蛋白质的稳定性检测。 可根据分子量测定范围灵活选择合适的试剂盒。样品消耗量极少,仅需 4 µL 样品即可完成准确分析。可在约 30 分钟内自动分析 10 个样品,快速得到分析结果。可在一次分析中进行完整的数据分析,提供分子量、定量和纯度信息。可在整个宽线性动态范围内提供与考马斯亮蓝染色法相当的灵敏度。可利用安全包满足 GMP 和 GLP 要求,安全包是一款可选的附带软件,满足 21 CFR Part 11 法规认证的要求。

蛋白质鉴定相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制