单液滴微萃取

仪器信息网单液滴微萃取专题为您整合单液滴微萃取相关的最新文章,在单液滴微萃取专题,您不仅可以免费浏览单液滴微萃取的资讯, 同时您还可以浏览单液滴微萃取的相关资料、解决方案,参与社区单液滴微萃取话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

单液滴微萃取相关的资讯

  • 悬“珠”济世——单液滴微萃取(SDME)的妙用
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。 第一讲:傅若农讲述气相色谱技术发展历史及趋势 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 第四讲:傅若农:气相色谱固定液的前世今生 第五讲:傅若农:气-固色谱的魅力 第六讲:傅若农:PLOT气相色谱柱的诱惑力 第七讲:傅若农:酒驾判官&mdash 顶空气相色谱的前世今生 第八讲:傅若农:一扫而光&mdash &mdash 吹扫捕集-气相色谱的发展 第九讲:傅若农:凌空一瞥洞察一切&mdash &mdash 神通广大的固相微萃取(SPME) 单液滴微萃取(single drop microextraction,SDME)类似于SPME,只是把萃取丝换成一滴有机溶剂液滴(悬于注射针头或毛细管口)。用单滴溶剂作为用液体吸着分析物在分析化学中的应用可以追溯到上世纪90年代中期的Dasgupta的工作,Dasgupta 研究组在1995年首次开发了用单滴液体作为吸着气体的界面来萃取空气中的氨和二氧化硫等气体( Anal Chem 1996,68:1817-1882),用石英毛细管口的水滴作吸着剂来收集被分析物,然后用在线光度法进行测定。1996年们又用滴中滴(水滴包围有机溶剂液滴)小型化溶剂萃取系统,他们把十二烷基硫酸钠和亚甲基蓝作为离子对萃取到氯仿液滴中,如图1所示 。他们利用一个蠕动泵把萃取后的液滴排除,用光纤检测器进行光度分析。 图 1 滴中滴液-液微萃取 ( Anal Chem 1996,68:1817-1882)   Cantwell 研究组首次把单滴溶剂微萃取技术直接与色谱分析相结合(Jeannot M A , Cantwell F F, Anal Chem,1996,68:2236),他们在一只聚四氟乙烯棒底端做成一个窝,其中可容纳8&mu L辛烷液滴,把液滴浸入要萃取的水溶液中,搅拌水溶液进行萃取,他们把这一过程叫做&ldquo 溶剂微萃取&rdquo (&ldquo solvent microextraction&rdquo ,SME),见图 2 ,萃取之后用注射器抽取一部分辛烷液滴用气相色谱进行分析。 图 2 &ldquo 溶剂微萃取&rdquo 示意图 ( Anal Chem 1996,68:2236)   1997年Jeannot和 Cantwell 首次使用注射器针头的有机溶剂液滴浸入水相进行液-液微萃取,然后把注射器进样到气相色谱仪中进行分析。 图 3 &ldquo 用注射器针头下液滴进行溶剂微萃取&rdquo 示意图 (M A Jeannot, F F Cantwell, Anal Chem,1997,69 :235-239)   进入新世纪之初,把SDME 延伸到顶空(HS)分析,是由Przyjazny、Jeannot、和Vickackaite研究组分别各自进行的( Przyjazny A, Kokosa J M, J Chromatogr A,2002 ,977:143   Theis A L, Waldack A J, Hansen S M, Jeannot M A, Anal Chem,2001,73 :5651) Tankeviciute A, Kazlauskas R, Vickackaite V, Analyst,2001, 126 :1674)。SDME 顶空(HS)分析如图 4所示 图4 顶空溶剂微萃取示意图   通常用高沸点有机溶剂如1-辛醇或正十六烷作萃取溶剂,适合于测定挥发或半挥发性分析物, HS-SDME 可以得到较大液滴的稳定性,避免液滴被污染,不会由于样品基体&ldquo 脏&rdquo 而受到影响,与浸入法相比有些情况下会得到更快的萃取速度。   SDME 和SPME类似,快速、简单可以自动化,但是它很便宜,无需什么设备。通过选择适当的萃取溶剂改变其选择性,从而可以降低检测限。与常规的液-液萃取(LLE)不同的是只需要极少量溶剂,由于每次都使用新鲜的溶剂(每次更新溶剂)不会有携留问题。也不像SPME每次都要脱附。在SPME情况下,吸着剂涂渍在萃取丝的表面上,被分析物的吸着主要是吸附,在某些应用中全部被分析物能被吸附的很有限。在SDME中液滴不仅可以吸附还可以吸收,所以它的吸着容量要大于SPME。 1、SDME 的模式   到目前SDME有7种模式,可以分为双相和三相微萃取,决定于相平衡中共存的相数。双相模式有直接浸入(DI)式,连续流动(CF)式,液滴到液滴(DD) 式,和直接悬浮(DSD)式。而三相模式有顶空(HS),液-液-液(LLL)式和LLL 与 DSD结合的模式。见图 5 单滴微萃取(SDME) 双相 三相 直接浸入 (DI) 连续流动 (CF) 液滴-液滴 (DD) 直接悬浮 (DSD) 顶空 (HS) 液-液-液 (LLL) 液-液-液+直接悬浮 (LLL + DSD) 图 5 SDME的7种模式   SDME 各种模式的使用频率如图 6所示,双相萃取占52%,三相萃取占48%。 图 6 SDME各种模式的使用频率   到目前为止,在SDME各种模式中使用最多的是顶空SDME,占到全部SDME的41%,其次是直接浸入SDME,占38%。所以如此是由于这两种模式简单,所需设备便宜,但也是由于他们是文献中第一个溶剂微萃取方法,其他5种模式使用不多,可能是由于要使用附加的设备如泵(CF),或者由于应用于分析物的范围小(如LLLME大多用于可离子化的化合物)。   为了改善传质速率,顶空SDME和直接浸入SDME可以使用动态模式,在动态模式下不仅供给相(样品),而且接受相(萃取溶剂)都可以流动。动态SDME可以使用两种方法:暴露液滴和不暴露液滴,在不暴露液滴(或者在注射器中)方法中,溶剂连同样品1&ndash 3 &mu L液体或顶空液滴一起抽吸到注射器中,保持一定时间(停留时间),然后把样品排出,把这一过程循环30-90次,分析萃取出来的样品。在暴露液滴方法中进行萃取的注射器针头下的溶剂液滴是暴露于被萃取样品的,在液滴周围的样品持续一定的时间后被吸入注射器中,停留一段时间后,再把液滴推出针头,但是样品没有排除注射器。不暴露液滴法是He和Lee首先开发出来,他们是以手动操纵注射器活塞完成推出和吸入操作的。此后有人使用重复性更好的注射泵完成注射器活塞的推出和吸入操作(Anal Chem 1997,69:4634)) 。He和Lee比较了静态和动态SDME方法的效果。   静态方法的操作:(1) 用10&mu L 注射器吸取1&mu L甲苯,(2)把注射器针头插入4 mL样品瓶中的样品溶液里,(3) 推动活塞形成1&mu L甲苯液滴到样品溶液里,在甲苯和样品之间平衡15min, (4) 把甲苯液滴抽回到注射器中并从样品瓶中拔出注射器,(5) 把注射器针插入气相色谱仪进样口进行分析。   动态方法的操作:(1) 用10&mu L 注射器吸取1&mu L甲苯,(2) 把注射器针头插入4 mL样品瓶中的样品溶液里,(3) 在大约2 s 时间内抽取3&mu L样品水溶液到注射器中,滞留约3 s的时间,然后在大约2 s 时间内再推出3&mu L样品水溶液,等待3 s ,这样的操作,约3 min 重复一次,进行20次。最后把样品溶液推出注射器,留下1&mu L甲苯,(4) 把注射器 从样品瓶中拔出, (5) 把注射器针插入气相色谱仪进样口进行分析。   暴露液滴法和不暴露液滴法的全盘自动化是由中山大学的欧阳钢锋等完成的( Ouyang G,.Zhao W, Pawliszyn J, J Chromatogr A ,2007,1138: 47),使用商品计算机与自动进样器连接来控制溶剂吸取、活塞速度、停留时间和注射器进样等动作。   两种使用最多的模式&mdash &mdash 直接浸入和顶空溶剂微萃取&mdash &mdash 具有一些不同的应用领域(尽管有一些分析物可以使用任何这两种样品制备方法),因为直接浸入SDME法的萃取溶剂要和水溶液样品直接接触,所用溶剂必须和水溶液不能混溶,即要使用非极性或弱极性溶剂,所以这一方法适合于从干净样品(如自来水或地下水)中分离和富集非极性或中等极性的挥发和半挥发物质。因为挥发性化合物最好使用顶空SDME,而直接浸入SDME最好用于半挥发性分析物,如有机氯农药、邻苯二甲酸酯类、或药物。   一般讲直接浸入SDME 萃取溶剂应该是挥发性溶剂,如己烷或甲苯,它们可以和气相色谱配合。因此气相色谱曾经是与直接浸入SDME 萃取相结合的主要方式,在文献中有超过62%是直接浸入SDME和气相色谱进行配合的。和其他分析方法配合的有液相色谱(超过21% 的 DI-SDME是和HPLC一起使用的),使用HPLC可以分析极性半挥发性物质如苯酚类化合物,但是在此情况下萃取溶剂一定要更换,包括把原来的萃取溶剂慢慢蒸发掉,再用可以与HPLC 流动相兼容的溶剂,或者HPLC 流动相溶解蒸发后的残留样品。   除去HPLC之外,可以用DI-SDME把样品处理之后进行分析的方法有:大气压基质辅助激光解析/电离质谱(AP-MALDI-MS),这一方法使用者日益增加。如果使用DI-SDME进行无机组分的分离/浓缩(如金属离子),那么在进行衍生化之后就可以用原子吸收光谱或诱导耦合等离子质谱进行分析。   DI-SDME的最大优点是使用的设备简单(至少在静态模式下是这样)费用低,在最简单的情况下,只用一个萃取样品瓶和一个隔垫盖,一只搅拌棒和电磁搅拌器,一支微量注射器,以及少许溶剂即可。DI-SDME的缺点是-在萃取过程中液滴容易从针头处脱落,这样就限制了样品溶液的搅拌速度,以及样品要相对干净一些(没有固体颗粒),典型的搅拌速度最大到1700 rpm。在液-液萃取系统中由于扩散系数小,传质速度慢,所以就需要激烈搅拌,或者使用动态模式,这样也就造成DI-SDME模式要比其他SDME模式要用较长的萃取时间。   顶空SDME 是萃取挥发和半挥发化合物样品的选项,无论是极性还是非极性都可以,样品复杂也好、脏也好都可以,含有固体颗粒也可以适应,除去液体样品之外,固体或气体也可以使用这一模式进行萃取。   在最简单的条件下,使用手动HS-SDME,通常用一只注射器抽取1 到 3 &mu L溶剂,较大的溶剂体积可以提高检测灵敏度,但是有使液滴从针头脱落的危险,一些实验人员建议把针头弄粗糙一些,这样有助于保留住液滴。样品可以使用20 mL大小的顶空瓶,用水浴加热20 到 30 min,并进行搅拌。萃取之后把液滴吸入针头内,注射到气相色谱仪中进行分析。   HS-SDME 可适应各种各样分析物,因为它对萃取溶剂除去挥发性之外没有什么限制,经常使用HS-SDME 萃取的样品例子如三卤甲烷、BTEX烃类、挥发性有机化合物、无机和金属有机化合物(萃取前要进行衍生化)。HS-SDME常常用于萃取极性挥发物如醛类化合物,之后或者同时进行衍生化,例如 Stalikas 等(Anal Chim Acta, 2007,599:76&ndash 83)就是用2&mu L正辛醇液滴(含有4.0× 10&minus 6M 浓度的正十五烷和2.0× 10&minus 3M浓度的 2,4,6-三氯苯肼)进行萃取并衍生化醛类,之后进行色谱分析。HS-SDME 也可用于萃取半挥发性化合物,如多环芳烃、多氯联苯、酚类和氯代酚。萃取溶剂可以使用非极性的或极性的,后者包括离子液体、水溶液甚至纯水。在HS-SDME中使用水基溶液很有意思,因为它完全回避了使用有机溶剂。例如Yi He(Anal Chim Acta, 2007,589:225)使用磷酸水溶液液滴萃取尿液中的甲基苯丙胺和苯丙胺。   在HS-SDME中普遍使用的萃取溶剂是1-辛醇、十六烷、十二烷和十烷,因为这一模式是三相系统,其平衡时间要比直接浸入两相平衡模式长,但是 HS-SDME可以通过增加顶空的容量即增加在顶空中被萃取物的量来提高效率,顶空容量等于顶空(空气)体积Va,和空气-水之间的分配系数Kaw,只要增加Va或Kaw,或二者都增加就会大大提高顶空容量,如果被分析物萃取到有机溶剂中的量小于顶空容量(小于5%),那么从顶空中萃取分析物就几乎不可能了。这样在快速萃取中只要几分钟就可以完成,因为在气相中的扩散系数要比在液相中扩散大得多(约4个数量级)。要提高传质速率提高样品温度是最简单的办法,这样可以使样品中的被测组分更多地蒸发到顶空中,但是提高温度又会降低溶剂液滴-顶空之间的分配系数,降低测试的灵敏度,如果把液滴温度降低就可以避免灵敏度的降低。如图7是华南理工大学杭义萍等在分析水溶液中的氟化物时,用冰袋冷却注射器,从而使萃取液滴得到降温。 图 7 把液滴温度降低的设备图 1&mdash 电磁搅拌器 2&mdash 水 3--电磁搅拌棒 4&mdash 样品溶液 5&mdash 液滴 6&mdash 冰袋 7&mdash 微量注射器 8&mdash 聚四氟乙烯喇叭口 (Anal Chim Acta,2010,661:161)   图 7的方法简单,但是温度不能正确控制,中科院大连化学物理研究所关亚风研究组设计的冷却方法可以精确控制冷却温度。他们的方法是在萃取瓶上的特殊瓶盖(图8中的a),盖顶端有一个直径为3mm 的洞,洞中可以容纳40&mu L溶剂而不会流出,用它做萃取溶剂液滴窝,在进行萃取时先用注射器往液滴窝中注入20&mu L溶剂(实验证明20&mu L溶剂萃取效果最好)(图中 b),把瓶盖拧到萃取瓶上(图中e),然后把冷却用热电冷却器装在瓶盖上(图中f),萃取溶剂的冷却。 图8 用热电冷却器冷却萃取溶剂 (J Chromatogr A,2010,1217:5883) 2、SDME 与分析仪器的配合   与HS-SDME配合进行最后分析的技术主要是气相色谱仪,占到到过75%,而使用HPLC配合HS-SDME的只有不到10%,原子吸收光度分析的占5%,用毛细管电泳分析的占3.5%。   各种模式SDME 的配合所占比例见图 8 图 8 SDME 与分析仪器的配合的比例   国内外期刊近几年有关用一滴溶剂微萃取进行分析的文献 1 SDME 结合GC-FPD分析水中6种有机磷农药 在5&mu L注射器针头装一个2mm 长的锥形物,抽取3.5&mu L萃取溶剂在水样中进行萃取 Tian F,Liu W,Fang H ,et al,Chromatographia,2014,77:487&ndash 492(暨南大学) 2 通过衍生化SDME分析复杂体系中测定短链脂肪酸的有效预处理方法 用BF3-乙醇衍生化短链脂肪酸经SDME萃取,1.0 &mu L邻苯二甲酸二丁酯做萃取溶剂,萃取20min Chen Y, Li Y,Xiong Y,et al,J Chromatogr A,2014,1325:49&ndash 55(中科院地球化学所) 3 用全自动裸露和注射器内动态单滴微萃取在线搅动测定珠江口和南中国海表面水中多环麝香 在优化条件下浓缩比达110-182,回收率为84.9 - 119.5%, Wang X,Yuan K,Liu H,et al, J Sep Sci,2014, 37: 1842&ndash 1849(中山大学) 4 动态超声雾化萃取结合顶空离子液体单滴液体微萃取分析连翘中的精油 3 &mu L离子液体( 1-甲基-3-辛基咪唑六氟磷酸盐)作萃取液滴,50mg 样品萃取13min Yang J, Wei H, Teng X,et al, Phytochem. Anal. 2014, 25:178&ndash 184(吉林大学) 5 新的纳米纤维-碳纳米管-离子液体三元萃取剂进行单滴微萃取 使用三元萃取剂可以有效地萃取烧烤食品中的2-氨基-3,8-二甲基咪唑并 [4,5-f] 喹喔啉 Ruiz-Palomero, C,LauraSoriano M, Valcá rcel M,Talanta,2014,125:72&ndash 77(西班牙科尔多瓦大学) 6 单滴微萃取-液相色谱-质谱快速分析主流烟草烟雾中六种有毒酚类化合物 用1-十二醇作萃取液滴,萃取12min.六种酚类为苯酚、邻苯二酚、间苯二酚、对苯二酚、邻甲酚、和对甲酚 Saha S, Mistri R,Ray B C,Anal Bioanal Chem, 2013,405:9265&ndash 9272(印度贾达普大学) 7 用自动注射器中单滴溶剂顶空萃取测定白酒中的乙醇 注射器中液滴为8 mol /L硫酸中3 mmol/ L重铬酸钾,使乙醇还原后进行光度分析,测定乙醇含量 &Scaron rá mková I, Horstkotte B , Solich P, et al, Anal Chim Acta 2014,828:53&ndash 60(捷克查尔斯大学) 8 单滴微萃取-气相色谱测定水样中的吡氟草胺,灭派林,氟虫腈,丙草胺 1&mu L庚烷液滴浸入4.0 mL样品中,在室温下以500rpm搅拌30min进行萃取 Araujo L, Troconis M E, Cubillá n D,et al, Environ Monit Assess, 2013,185:10225&ndash 102339 用Fe2O3磁性微珠微波蒸馏和单滴溶剂顶空萃取测定花椒中的精油 2.0 &mu L十二烷液滴作萃取剂,在微波炉中蒸发精油被液滴吸收 Ye Q,J Sep Sci, 2013, 36: 2028&ndash 2034(上饶师范大学) 10 用香豆素作荧光开关以单滴微萃取分析化妆品中残留的丙酮 2.5&mu L水溶液液滴,含有3 x10-4mol/L 7-羟基-4-甲基香豆素或6 x10-6mol/L 7-二甲基胺-4-甲基香豆素(40%乙醇溶液),在4 ℃下萃取3min Cabaleiro N,Calle I De la,Bendicho C,et al,Talanta,2014,129:113-118(西班牙维戈大学) 11 以单滴微萃取GC-MS分析细辛中的挥发物 正-十三烷:乙酸丁酯(1:1)作萃取液滴,10 lL在70℃下萃取15min Wang G, Qi M,Chinese Chemical Letters,2013, 24:542&ndash 544(北京理工大学) 12 微波蒸馏顶空单滴微萃取-GC-MS分析具刺杜氏木属植物DC中的挥发物 10 &mu L注射器取2.5 &mu L正-十七烷溶剂液滴,萃取微波加热蒸馏出来的被测组分 Gholivand M B, Abolghasemi M M , Piryaei M, et al, Food Chemistry, 2013,138:251&ndash 255(伊朗Razi大学) 13 表面活化剂辅助直接悬浮单液滴微萃取浓缩气相色谱分析生物样品中的曲马朵的多变量优化 把有机溶剂液滴用注射器注入含有Triton X-100和 曲马朵的水性样品中,在搅拌样品溶液条件下进行萃取,之后再用注射器把有机溶剂抽出进行色谱分析 Ebrahimzadeh H,Mollazadeh N, Asgharinezhad A A,et al, J Sep Sci,2013, 36:3783&ndash 3790 14 用离子液体辅助微波蒸馏单液滴微萃取及GC&ndash MS快速分析香鳞毛蕨精油 1-乙基-3-甲基咪唑乙酸盐离子液体用作样品细胞破坏剂进行微波蒸馏,2 &mu L正-十七烷溶剂作萃取液滴 Jiao J ,Gai Q Y,Wang W,et al, J Sep Sci,2013, 36:3799&ndash 3806 (东北林业大学) 15 农田土壤中阿特拉津和甲氨基粉的快速测定&mdash 使用单液滴中鼓泡微萃取浓缩GC-MS分析 往注射器中吸入1 &mu L萃取溶剂,之后再吸入0.5 &mu L空气,满满地把溶剂和空气泡注入被萃取的水溶液中,让空气在溶剂中形成一个气泡,萃取20min 后把溶剂吸入注射器,用GC-MS分析 Williams D B G,George M J, Marjanovic L,J Agric Food Chem. 2014, 62:7676&minus 7681 16 用SDME/GC&ndash MS测定椰子水中19种农药残留(有机磷、有机氯、拟除虫菊酯、氨基甲酸酯、硫代氨基甲酸酯、嗜球果伞素) 10 mL样品用甲苯作萃取剂,液滴1.0 &mu L,样品用HCl酸化,不加盐,200 rpm搅拌下萃取30 min dos Anjos P J, de Andrade J B, Microchem J,2014,112 :119&ndash 126 17 动态超声雾化萃取结合顶空离子液体单滴液体微萃取分析果汁中的风味化合物 1-羟基-3-咪唑四氟硼酸盐离子液体作萃取液滴,萃取液体12.5 mL,萃取5min,萃取温度80 ℃ 萃取时间主要是为了最高的分析物信号,并保证得到满意的准确和再现的结果,传质速度决定时间的长短,一般来讲萃取时间增加会增加萃取量,然而时间太长液滴会变得不稳定,并增加整个分析时间,一般提高搅拌速度会缩短萃取时间,但是搅拌太快会使液滴从注射器针头脱落。   (4)样品溶液离子强度的影响   往样品溶液中加入盐广泛地用于液-液萃取中,水分子在盐离子周围形成一个水化的球,所以溶解萃取物的水量就相对降低,从而降低了萃取物在水中的溶解度,所以加入盐可以提高萃取效率,但是也有报告证明加入盐有相反的作用,其解释是盐的分子与被萃取物分子间的相互作用,或者说是改变了Nernst扩散层的物理性质,所以盐的加入要考虑萃取物的性质和盐的加入量。这一矛盾现象迫使人们在确定萃取条件时要考虑这一因素。   (5)搅拌萃取溶液速度的影响   在萃取过程中进行搅拌可以提高水相的传质速度,这样在水相和顶空气相或者说在水相和有机溶剂液滴之间的平衡加快了,所以在萃取过程中都要进行搅拌,可以提高样品的萃取效率,缩短萃取的时间,当然也不能搅拌太快,否则液滴会脱落。   小结:   一滴溶剂微萃取是一种简便易行的样品处理技术,可以和多种分析仪结合使用,简化了样品处理的时间和步骤,是固相微萃取的一个很好的补充,是液-液萃取技术的一次跃升,所以这一技术还在进一步研究和改进中。   下一讲和大家讨论&ldquo 扭转乾坤&mdash 神奇的反应顶空分析&rdquo
  • 液滴萃取表面分析LESA讲座将召开
    液滴萃取表面分析:新颖的质谱分析工具   演讲人: 美国 Advion 公司产品经理 Daniel Eikel 博士   时 间: 2014年5月13日 星期二 上午 09:30&ndash 11:30   地 点: 北京市西城区南纬路甲2号,药物研究所东楼5层会议室   联系人: 王争 01064399978-0   摘要   液滴萃取表面分析(LESA)为最新的、全自动的、基于芯片的多通道纳升电喷雾离子化质谱分析法(Chip-based nanoESI-MS)。它的出现为运用灵敏度和选择性高但耗时、难重现及低通量的传统nanoLC-nanoESI-MS法进行简单、快捷的表面(例如组织切片、MALDI 点样板、干血斑)分析成为可能。Eikel博士将首先对LESA-MS 如何补充并提高业界多年以来所沿用的黄金标准般的 nanoLC-MS技术和其他质谱方法如MALDI-MSI 质谱成像技术、充分发挥现代高端质谱仪的潜能展开讨论。同时,他将说明如何通过 LESA-MS 研究药物在组织内的分布和代谢,以获取比 MALDI-MSI 技术提供的更加有效和更加丰富的信息。此外,他还将对开发并应用包含高分辨&ldquo shotgun&rdquo 质谱法、&ldquo 靶标&rdquo 串联质谱分析法、结合特定官能团化学修饰和实时液滴萃取细胞培养液样品等组合方案来完整鉴定、表征和定量各种细胞株中多种脂质类物质加以详细的介绍。最后,他将阐明如何运用新开发的 Chip-Mate nanoESI 解决方案来获得稳定的纳升电喷雾,以减少 nanoLC-MS 样品分析中的失败几率。   专访 Jack Henion 教授,点击观看详细内容   质谱NanoMate离子源:市场需求永无止境   演讲人简介   Daniel Eikel 博士为美国 Advion 公司质谱离子源产品经理,有着18年的质谱应用、研发和管理经历,在液质联用尤其是离子源和质谱仪的创新、制造和市场化方面有着丰富的知识和经验。Daniel 毕业于德国 University of Hanover 和 Veterinary Medical University (VMU)获分析化学和毒理学博士学位和博士后。本科和硕士毕业于德国 Philipps-University Marburg 化学系。   2000-2002 于德国 Justus-Liebig 大学研究1&mu m以下空间高分辨 MALDI 成像技术和利用 FT-ICR 对 MHC class II 多肽进行解序。2005-2007 任美 NIH 糖尿病、消化、肾脏疾病研究所蛋白质组学与质谱核心设施研究员,研究无阻流电泳 (FFE)、蛋白质去除、和糖蛋白的高分辨 FTMS 质谱分析。   2007年加入 Advion,历任应用科学家、高级应用科学家和产品经理,负责nanoLC-nanoESI 产品的研发、应用与市场推广,推出了 RePlay、单杆小型化质谱 CMS、干血斑 LESA-MS、以及于2012年美国ASMS质谱年会期间刚刚发布的新型封闭式芯片纳喷离子源 - ChipMate。Eikel 博士已发表论文18篇,出席过54个学术研讨会和大型会议并发言,并拥有2项专利。 讲座报名回执 姓名 手机 电子邮箱 座机 传真 单位部门 单位地址 其他人员 □ 同单位同部门 □ 同单位不同部门 □ 不同单位 姓名 手机 电子邮箱 座机 传真 单位部门 单位地址
  • 美国Advion公司液滴萃取表面分析技术交流会将举办
    The Liquid Extraction Surface Analysis (LESA): A Novel Tool in Mass Spectrometry 液滴萃取表面分析:新颖的质谱分析工具   演讲人: Dr. Mark Baumert ,美国Advion公司技术支持经理   时间: 2013年9月27日星期五上午 9:00 - 11:30   地点: 北京北三环东路18号中国计量科学研究院化学所17号楼6楼会议室   交通:地铁5号线和平西桥站或乘坐367、601、718、运通104等公交车在和平西桥站   联系人:王争女士 010-6439 9978 (华质泰科公司)   宋德伟博士 010-6452 4789 (中国计量科学研究院)   摘要   液滴萃取表面分析(LESA)为最新的、全自动的、基于芯片的多通道纳升电喷雾离子化质谱分析法(Chip-based nanoESI-MS)。它的出现为运用灵敏度和选择性高但耗时、难重现及低通量的传统nanoLC-nanoESI-MS法进行简单、快捷的表面(例如组织切片、MALDI点样板、干血斑)分析成为可能。 Mark Baumert 将首先对LESA-MS 如何补充并提高商业界多年以来所沿用的黄金标准般的 nanoLC-MS 技术和其他质谱方法如 MALDI-MSI 质谱成像技术、充分发挥现代高端质谱仪的潜能展开讨论。同时,他将说明如何通过 LESA-MS 研究药物在组织内的分布和代谢,以获取比 MALDI-MSI 技术提供的更加有效和更加丰富的信息。此外,他还将对开发并应用包含高分辨&ldquo shotgun&rdquo 质谱法、&ldquo 靶标&rdquo 串联质谱分析法、结合特定官能团化学修饰和实时液滴萃取细胞培养液样品等组合方案来完整鉴定、表征和定量各种细胞株中多种脂质类物质加以详细的介绍。最后,他将阐明如何运用新开发的 Chip-Mate nanoESI 解决方案来获得稳定的纳升电喷雾,以减少 nanoLC-MS 样品分析中的失败几率。   演讲人简介   Baumert 为美国 Advion 公司质谱离子源欧洲技术支持经理,有着25年的液质联用、基质辅助激光解吸电离质谱、纳升液相色谱、DNA测序及合成、肽合成及氨基酸分析经验 10年的脂质组学、蛋白质组学、代谢产物结构鉴定、临床及药物等方面的质谱应用研发和管理经历,在液质联用尤其是离子源和质谱仪的应用和支持方面有着丰富的知识和经验。

单液滴微萃取相关的方案

单液滴微萃取相关的论坛

  • 单滴微萃取操作

    各位网友:有做过单滴萃取吗?(SDME)比如做水样中SVOC的滴萃取,就是最简单最普通的那种,首次尝试,发现针尖的单滴非常不好控制,比如想用二氯甲烷,因为它萃取效果具有一定的广谱性,但却与水是微溶的,所以肉眼观察,刚从针尖冒出来小液滴,一会儿就消失了,估计是与水样溶解了;用正己烷呢,这种汽油组份,比水轻,比重0.7多一点,稍控制不好,就会从针尖脱离浮向水面。同时,当针尖刚挤出溶剂的液滴,都不太敢振动,因为怕稍有波动,无论是针尖本身,还是水样波动,都易导致针尖处的溶剂液滴与针尖脱离开。所以,想请问大家在这些操作细节上有否小的窍门,小的技巧分享,非常感谢!

  • 单滴微萃取操作细节。

    各位网友:有做过单滴萃取吗?(SDME)比如做水样中SVOC的滴萃取,就是最简单最普通的那种,首次尝试,发现针尖的单滴非常不好控制,比如想用二氯甲烷,因为它萃取效果具有一定的广谱性,但却与水是微溶的,所以肉眼观察,刚从针尖冒出来小液滴,一会儿就消失了,估计是与水样溶解了;用正己烷呢,这种汽油组份,比水轻,比重0.7多一点,稍控制不好,就会从针尖脱离浮向水面。同时,当针尖刚挤出溶剂的液滴,都不太敢振动,因为怕稍有波动,无论是针尖本身,还是水样波动,都易导致针尖处的溶剂液滴与针尖脱离开。所以,想请问大家在这些操作细节上有否小的窍门,小的技巧分享,非常感谢!

  • 傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用

    [color=#0000ff]编者注:[color=#000000]傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势,以飨读者。[/color][/color][color=#0000ff][color=#000000][url=http://www.instrument.com.cn/news/20140623/134647.shtml][color=#0000ff]第一讲:傅若农讲述[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]技术发展历史及趋势[/color][color=#0000ff][/color][/url][/color][/color][color=#0000ff][color=#000000][url=http://www.instrument.com.cn/news/20140714/136528.shtml][color=#0000ff]第二讲:傅若农:从三家公司GC产品更迭看[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]技术发展[/color][/url][/color][/color][color=#0000ff][color=#000000][url=http://www.instrument.com.cn/news/20140811/138629.shtml][color=#0000ff]第三讲:傅若农:从国产[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]产品看国内[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]发展脉络及现状[/color][color=#0000ff][/color][/url][/color][/color][color=#0000ff][color=#000000][url=http://www.instrument.com.cn/news/20140902/140376.shtml][color=#0000ff]第四讲:傅若农:[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定液的前世今生[/color][/url][/color][/color][color=#0000ff][color=#000000][url=http://www.instrument.com.cn/news/20141009/143041.shtml][color=#0000ff]第五讲:傅若农:气-固色谱的魅力[/color][color=#0000ff][/color][/url][/color][/color][color=#0000ff][color=#000000][url=http://www.instrument.com.cn/news/20141104/145381.shtml][color=#0000cd]第六讲:傅若农:PLOT[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]柱的诱惑力[/color][/url][/color][/color][color=#0000ff][color=#000000][url=http://www.instrument.com.cn/news/20141205/147891.shtml][color=#0000cd]第七讲:[/color][/url][url=http://www.instrument.com.cn/news/20141205/147891.shtml][color=#0000cd]傅若农:酒驾判官—顶空[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的前世今生[/color][/url][/color][/color][color=#0000ff][color=#000000][url=http://www.instrument.com.cn/news/20150106/150406.shtml][color=#0000ff]第八讲:傅若农:一扫而光——吹扫捕集-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的发展[/color][/url][/color][/color][url=http://www.instrument.com.cn/news/20150211/153795.shtml][color=#0000ff]第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)[/color][/url] 单液滴微萃取(single drop microextraction,SDME)类似于SPME,只是把萃取丝换成一滴有机溶剂液滴(悬于注射针头或毛细管口)。用单滴溶剂作为用液体吸着分析物在分析化学中的应用可以追溯到上世纪90年代中期的Dasgupta的工作,Dasgupta 研究组在1995年首次开发了用单滴液体作为吸着气体的界面来萃取空气中的氨和二氧化硫等气体( Anal Chem 1996,68:1817-1882),用石英毛细管口的水滴作吸着剂来收集被分析物,然后用在线光度法进行测定。1996年们又用滴中滴(水滴包围有机溶剂液滴)小型化溶剂萃取系统,他们把十二烷基硫酸钠和亚甲基蓝作为离子对萃取到氯仿液滴中,如图1所示 。他们利用一个蠕动泵把萃取后的液滴排除,用光纤检测器进行光度分析。[align=center][img=,436,605]http://img1.17img.cn/17img/old/NewsImags/images/2015312161820.png[/img][/align][align=center]图 1 滴中滴液-液微萃取[/align][align=center]( Anal Chem 1996,68:1817-1882)[/align]  Cantwell 研究组首次把单滴溶剂微萃取技术直接与色谱分析相结合(Jeannot M A , Cantwell F F, Anal Chem,1996,68:2236),他们在一只聚四氟乙烯棒底端做成一个窝,其中可容纳8μL辛烷液滴,把液滴浸入要萃取的水溶液中,搅拌水溶液进行萃取,他们把这一过程叫做“溶剂微萃取”(“solvent microextraction” ,SME),见图 2 ,萃取之后用注射器抽取一部分辛烷液滴用[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进行分析。[align=center][img=,364,363]http://img1.17img.cn/17img/old/NewsImags/images/2015312161916.png[/img][/align][align=center]图 2 “溶剂微萃取”示意图[/align][align=center]( Anal Chem 1996,68:2236)[/align]  1997年Jeannot和 Cantwell 首次使用注射器针头的有机溶剂液滴浸入水相进行液-液微萃取,然后把注射器进样到[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]中进行分析。[align=center][img=,588,470]http://img1.17img.cn/17img/old/NewsImags/images/2015312162056.png[/img][/align][align=center]图 3 “用注射器针头下液滴进行溶剂微萃取”示意图[/align][align=center](M A Jeannot, F F Cantwell, Anal Chem,1997,69 :235-239)[/align]  进入新世纪之初,把SDME 延伸到顶空(HS)分析,是由Przyjazny、Jeannot、和Vickackaite研究组分别各自进行的( Przyjazny A, Kokosa J M, J Chromatogr A,2002 ,977:143   Theis A L, Waldack A J, Hansen S M, Jeannot M A, Anal Chem,2001,73 :5651) Tankeviciute A, Kazlauskas R, Vickackaite V, Analyst,2001, 126 :1674)。SDME 顶空(HS)分析如图 4所示[align=center][img=,186,246]http://img1.17img.cn/17img/old/NewsImags/images/2015312162155.png[/img][/align][align=center]图4 顶空溶剂微萃取示意图[/align]  通常用高沸点有机溶剂如1-辛醇或正十六烷作萃取溶剂,适合于测定挥发或半挥发性分析物, HS-SDME 可以得到较大液滴的稳定性,避免液滴被污染,不会由于样品基体“脏”而受到影响,与浸入法相比有些情况下会得到更快的萃取速度。  SDME 和SPME类似,快速、简单可以自动化,但是它很便宜,无需什么设备。通过选择适当的萃取溶剂改变其选择性,从而可以降低检测限。与常规的液-液萃取(LLE)不同的是只需要极少量溶剂,由于每次都使用新鲜的溶剂(每次更新溶剂)不会有携留问题。也不像SPME每次都要脱附。在SPME情况下,吸着剂涂渍在萃取丝的表面上,被分析物的吸着主要是吸附,在某些应用中全部被分析物能被吸附的很有限。在SDME中液滴不仅可以吸附还可以吸收,所以它的吸着容量要大于SPME。1、SDME 的模式  到目前SDME有7种模式,可以分为双相和三相微萃取,决定于相平衡中共存的相数。双相模式有直接浸入(DI)式,连续流动(CF)式,液滴到液滴(DD) 式,和直接悬浮(DSD)式。而三相模式有顶空(HS),液-液-液(LLL)式和LLL 与 DSD结合的模式。见图 5[table=584][tr][td=7,1] 单滴微萃取(SDME)[/td][/tr][tr][td=4,1] 双相[/td][td=3,1] 三相[/td][/tr][tr][td]直接浸入 (DI)[/td][td]连续流动(CF)[/td][td]液滴-液滴 (DD)[/td][td]直接悬浮(DSD)[/td][td]顶空(HS)[/td][td]液-液-液(LLL)[/td][td]液-液-液+直接悬浮(LLL + DSD)[/td][/tr][/table][align=center]图 5 SDME的7种模式[/align]  SDME 各种模式的使用频率如图 6所示,双相萃取占52%,三相萃取占48%。[align=center][img=,327,304]http://img1.17img.cn/17img/old/NewsImags/images/2015312162858.png[/img][/align][align=center]图 6 SDME各种模式的使用频率[/align]  到目前为止,在SDME各种模式中使用最多的是顶空SDME,占到全部SDME的41%,其次是直接浸入SDME,占38%。所以如此是由于这两种模式简单,所需设备便宜,但也是由于他们是文献中第一个溶剂微萃取方法,其他5种模式使用不多,可能是由于要使用附加的设备如泵(CF),或者由于应用于分析物的范围小(如LLLME大多用于可离子化的化合物)。  为了改善传质速率,顶空SDME和直接浸入SDME可以使用动态模式,在动态模式下不仅供给相(样品),而且接受相(萃取溶剂)都可以流动。动态SDME可以使用两种方法:暴露液滴和不暴露液滴,在不暴露液滴(或者在注射器中)方法中,溶剂连同样品1-3 μL液体或顶空液滴一起抽吸到注射器中,保持一定时间(停留时间),然后把样品排出,把这一过程循环30-90次,分析萃取出来的样品。在暴露液滴方法中进行萃取的注射器针头下的溶剂液滴是暴露于被萃取样品的,在液滴周围的样品持续一定的时间后被吸入注射器中,停留一段时间后,再把液滴推出针头,但是样品没有排除注射器。不暴露液滴法是He和Lee首先开发出来,他们是以手动操纵注射器活塞完成推出和吸入操作的。此后有人使用重复性更好的注射泵完成注射器活塞的推出和吸入操作(Anal Chem 1997,69:4634)) 。He和Lee比较了静态和动态SDME方法的效果。  静态方法的操作:(1) 用10μL 注射器吸取1μL甲苯,(2)把注射器针头插入4 mL样品瓶中的样品溶液里,(3) 推动活塞形成1μL甲苯液滴到样品溶液里,在甲苯和样品之间平衡15min, (4) 把甲苯液滴抽回到注射器中并从样品瓶中拔出注射器,(5) 把注射器针插入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进样口进行分析。  动态方法的操作:(1) 用10μL 注射器吸取1μL甲苯,(2) 把注射器针头插入4 mL样品瓶中的样品溶液里,(3) 在大约2 s 时间内抽取3μL样品水溶液到注射器中,滞留约3 s的时间,然后在大约2 s 时间内再推出3μL样品水溶液,等待3 s ,这样的操作,约3 min 重复一次,进行20次。最后把样品溶液推出注射器,留下1μL甲苯,(4) 把注射器 从样品瓶中拔出, (5) 把注射器针插入[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]进样口进行分析。  暴露液滴法和不暴露液滴法的全盘自动化是由中山大学的欧阳钢锋等完成的( Ouyang G,.Zhao W, Pawliszyn J, J Chromatogr A ,2007,1138: 47),使用商品计算机与自动进样器连接来控制溶剂吸取、活塞速度、停留时间和注射器进样等动作。  两种使用最多的模式——直接浸入和顶空溶剂微萃取——具有一些不同的应用领域(尽管有一些分析物可以使用任何这两种样品制备方法),因为直接浸入SDME法的萃取溶剂要和水溶液样品直接接触,所用溶剂必须和水溶液不能混溶,即要使用非极性或弱极性溶剂,所以这一方法适合于从干净样品(如自来水或地下水)中分离和富集非极性或中等极性的挥发和半挥发物质。因为挥发性化合物最好使用顶空SDME,而直接浸入SDME最好用于半挥发性分析物,如有机氯农药、邻苯二甲酸酯类、或药物。  一般讲直接浸入SDME 萃取溶剂应该是挥发性溶剂,如己烷或甲苯,它们可以和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]配合。因此[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]曾经是与直接浸入SDME 萃取相结合的主要方式,在文献中有超过62%是直接浸入SDME和[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]进行配合的。和其他分析方法配合的有液相色谱(超过21% 的 DI-SDME是和HPLC一起使用的),使用HPLC可以分析极性半挥发性物质如苯酚类化合物,但是在此情况下萃取溶剂一定要更换,包括把原来的萃取溶剂慢慢蒸发掉,再用可以与HPLC 流动相兼容的溶剂,或者HPLC 流动相溶解蒸发后的残留样品。  除去HPLC之外,可以用DI-SDME把样品处理之后进行分析的方法有:大气压基质辅助激光解析/电离质谱(AP-MALDI-MS),这一方法使用者日益增加。如果使用DI-SDME进行无机组分的分离/浓缩(如金属离子),那么在进行衍生化之后就可以用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收光谱[/color][/url]或诱导耦合等离子质谱进行分析。  DI-SDME的最大优点是使用的设备简单(至少在静态模式下是这样)费用低,在最简单的情况下,只用一个萃取样品瓶和一个隔垫盖,一只搅拌棒和电磁搅拌器,一支微量注射器,以及少许溶剂即可。DI-SDME的缺点是-在萃取过程中液滴容易从针头处脱落,这样就限制了样品溶液的搅拌速度,以及样品要相对干净一些(没有固体颗粒),典型的搅拌速度最大到1700 rpm。在液-液萃取系统中由于扩散系数小,传质速度慢,所以就需要激烈搅拌,或者使用动态模式,这样也就造成DI-SDME模式要比其他SDME模式要用较长的萃取时间。  顶空SDME 是萃取挥发和半挥发化合物样品的选项,无论是极性还是非极性都可以,样品复杂也好、脏也好都可以,含有固体颗粒也可以适应,除去液体样品之外,固体或气体也可以使用这一模式进行萃取。  在最简单的条件下,使用手动HS-SDME,通常用一只注射器抽取1 到 3 μL溶剂,较大的溶剂体积可以提高检测灵敏度,但是有使液滴从针头脱落的危险,一些实验人员建议把针头弄粗糙一些,这样有助于保留住液滴。样品可以使用20 mL大小的顶空瓶,用水浴加热20 到 30 min,并进行搅拌。萃取之后把液滴吸入针头内,注射到[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]中进行分析。  HS-SDME 可适应各种各样分析物,因为它对萃取溶剂除去挥发性之外没有什么限制,经常使用HS-SDME 萃取的样品例子如三卤甲烷、BTEX烃类、挥发性有机化合物、无机和金属有机化合物(萃取前要进行衍生化)。HS-SDME常常用于萃取极性挥发物如醛类化合物,之后或者同时进行衍生化,例如 Stalikas 等(Anal Chim Acta, 2007,599:76-83)就是用2μL正辛醇液滴(含有4.0×10-6M 浓度的正十五烷和2.0×10-3M浓度的 2,4,6-三氯苯肼)进行萃取并衍生化醛类,之后进行色谱分析。HS-SDME 也可用于萃取半挥发性化合物,如多环芳烃、多氯联苯、酚类和氯代酚。萃取溶剂可以使用非极性的或极性的,后者包括离子液体、水溶液甚至纯水。在HS-SDME中使用水基溶液很有意思,因为它完全回避了使用有机溶剂。例如Yi He(Anal Chim Acta, 2007,589:225)使用磷酸水溶液液滴萃取尿液中的甲基苯丙胺和苯丙胺。  在HS-SDME中普遍使用的萃取溶剂是1-辛醇、十六烷、十二烷和十烷,因为这一模式是三相系统,其平衡时间要比直接浸入两相平衡模式长,但是 HS-SDME可以通过增加顶空的容量即增加在顶空中被萃取物的量来提高效率,顶空容量等于顶空(空气)体积Va,和空气-水之间的分配系数Kaw,只要增加Va或Kaw,或二者都增加就会大大提高顶空容量,如果被分析物萃取到有机溶剂中的量小于顶空容量(小于5%),那么从顶空中萃取分析物就几乎不可能了。这样在快速萃取中只要几分钟就可以完成,因为在[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中的扩散系数要比在液相中扩散大得多(约4个数量级)。要提高传质速率提高样品温度是最简单的办法,这样可以使样品中的被测组分更多地蒸发到顶空中,但是提高温度又会降低溶剂液滴-顶空之间的分配系数,降低测试的灵敏度,如果把液滴温度降低就可以避免灵敏度的降低。如图7是华南理工大学杭义萍等在分析水溶液中的氟化物时,用冰袋冷却注射器,从而使萃取液滴得到降温。[align=center][img=,412,412]http://img1.17img.cn/17img/old/NewsImags/images/2015312163227.png[/img][/align][align=center]图 7 把液滴温度降低的设备图[/align][align=center]1— 电磁搅拌器 2—水 3--电磁搅拌棒 4—样品溶液 5—液滴[/align][align=center]6—冰袋 7—微量注射器 8—聚四氟乙烯喇叭口[/align][align=center](Anal Chim Acta,2010,661:161)[/align]  图 7的方法简单,但是温度不能正确控制,中科院大连化学物理研究所关亚风研究组设计的冷却方法可以精确控制冷却温度。他们的方法是在萃取瓶上的特殊瓶盖(图8中的a),盖顶端有一个直径为3mm 的洞,洞中可以容纳40μL溶剂而不会流出,用它做萃取溶剂液滴窝,在进行萃取时先用注射器往液滴窝中注入20μL溶剂(实验证明20μL溶剂萃取效果最好)(图中 b),把瓶盖拧到萃取瓶上(图中e),然后把冷却用热电冷却器装在瓶盖上(图中f),萃取溶剂的冷却。[align=center][img=,1092,226]http://img1.17img.cn/17img/old/NewsImags/images/2015312162440.png[/img][/align][align=center][img=,440,710]http://img1.17img.cn/17img/old/NewsImags/images/2015312162519.png[/img][/align][align=center]图8 用热电冷却器冷却萃取溶剂[/align][align=center](J Chromatogr A,2010,1217:5883)[/align]2、SDME 与分析仪器的配合  与HS-SDME配合进行最后分析的技术主要是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],占到到过75%,而使用HPLC配合HS-SDME的只有不到10%,[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]光度分析的占5%,用毛细管电泳分析的占3.5%。  各种模式SDME 的配合所占比例见图 8[align=center][img=,484,379]http://img1.17img.cn/17img/old/NewsImags/images/2015312163438.png[/img][/align][align=center]图 8 SDME 与分析仪器的配合的比例[/align]  国内外期刊近几年有关用一滴溶剂微萃取进行分析的文献[table][tr][td] [/td][td] [/td][td] [/td][td] [/td][/tr][tr][td]1[/td][td]SDME 结合GC-FPD分析水中6种有机磷农药[/td][td]在5μL注射器针头装一个2mm 长的锥形物,抽取3.5μL萃取溶剂在水样中进行萃取[/td][td]Tian F,Liu W,Fang H ,et al,Chromatographia,2014,77:487-492(暨南大学)[/td][/tr][tr][td]2[/td][td]通过衍生化SDME分析复杂体系中测定短链脂肪酸的有效预处理方法[/td][td]用BF3-乙醇衍生化短链脂肪酸经SDME萃取,1.0 μL邻苯二甲酸二丁酯做萃取溶剂,萃取20min[/td][td]Chen Y, Li Y,Xiong Y,et al,J Chromatogr A,2014,1325:49- 55(中科院地球化学所)[/td][/tr][tr][td]3[/td][td]用全自动裸露和注射器内动态单滴微萃取在线搅动测定珠江口和南中国海表面水中多环麝香[/td][td]在优化条件下浓缩比达110-182,回收率为84.9 - 119.5%,[/td][td]Wang X,Yuan K,Liu H,et al, J Sep Sci,2014, 37: 1842-1849(中山大学)[/td][/tr][tr][td]4[/td][td]动态超声雾化萃取结合顶空离子液体单滴液体微萃取分析连翘中的精油[/td][td]3 μL离子液体( 1-甲基-3-辛基咪唑六氟磷酸盐)作萃取液滴,50mg 样品萃取13min[/td][td]Yang J, Wei H, Teng X,et al, Phytochem. Anal. 2014, 25:178-184(吉林大学)[/td][/tr][tr][td]5[/td][td]新的纳米纤维-碳纳米管-离子液体三元萃取剂进行单滴微萃取[/td][td]使用三元萃取剂可以有效地萃取烧烤食品中的2-氨基-3,8-二甲基咪唑并 喹喔啉[/td][td]Ruiz-Palomero, C,LauraSoriano M, Valcárcel M,Talanta,2014,125:72-77(西班牙科尔多瓦大学)[/td][/tr][tr][td]6[/td][td]单滴微萃取-液相色谱-质谱快速分析主流烟草烟雾中六种有毒酚类化合物[/td][td]用1-十二醇作萃取液滴,萃取12min.六种酚类为苯酚、邻苯二酚、间苯二酚、对苯二酚、邻甲酚、和对甲酚[/td][td]Saha S, Mistri R,Ray B C,Anal Bioanal Chem, 2013,405:9265-9272(印度贾达普大学)[/td][/tr][tr][td]7[/td][td]用自动注射器中单滴溶剂顶空萃取测定白酒中的乙醇[/td][td]注射器中液滴为8 mol /L硫酸中3 mmol/ L重铬酸钾,使乙醇还原后进行光度分析,测定乙醇含量[/td][td]?rámková I, Horstkotte B , Solich P, et al, Anal Chim Acta 2014,828:53-60(捷克查尔斯大学)[/td][/tr][tr][td]8[/td][td]单滴微萃取-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]测定水样中的吡氟草胺,灭派林,氟虫腈,丙草胺[/td][td]1μL庚烷液滴浸入4.0 mL样品中,在室温下以500rpm搅拌30min进行萃取[/td][td]Araujo L, Troconis M E, Cubillán D,et al, Environ Monit Assess, 2013,185:10225-10233[/td][/tr][tr][td]9[/td][td]用Fe[sub]2[/sub]O[sub]3[/sub]磁性微珠微波蒸馏和单滴溶剂顶空萃取测定花椒中的精油[/td][td]2.0 μL十二烷液滴作萃取剂,在微波炉中蒸发精油被液滴吸收[/td][td]Ye Q,J Sep Sci, 2013, 36: 2028-2034(上饶师范大学)[/td][/tr][tr][td]10[/td][td]用香豆素作荧光开关以单滴微萃取分析化妆品中残留的丙酮[/td][td] 2.5μL水溶液液滴,含有3 x10[sup]-4[/sup]mol/L 7-羟基-4-甲基香豆素或6 x10[sup]-6[/sup]mol/L 7-二甲基胺-4-甲基香豆素(40%乙醇溶液),在4 ℃下萃取3min[/td][td]Cabaleiro N,Calle I De la,Bendicho C,et al,Talanta,2014,129:113-118(西班牙维戈大学)[/td][/tr][tr][td]11[/td][td]以单滴微萃取GC-MS分析细辛中的挥发物[/td][td]正-十三烷:乙酸丁酯(1:1)作萃取液滴,10 lL在70℃下萃取15min[/td][td] Wang G, Qi M,Chinese Chemical Letters,2013, 24:542-544(北京理工大学)[/td][/tr][tr][td]12[/td][td]微波蒸馏顶空单滴微萃取-GC-MS分析具刺杜氏木属植物DC中的挥发物[/td][td]10 μL注射器取2.5 μL正-十七烷溶剂液滴,萃取微波加热蒸馏出来的被测组分[/td][td]Gholivand M B, Abolghasemi M M , Piryaei M, et al, Food Chemistry, 2013,138:251-255(伊朗Razi大学)[/td][/tr][tr][td]13[/td][td]表面活化剂辅助直接悬浮单液滴微萃取浓缩[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析生物样品中的曲马朵的多变量优化[/td][td]把有机溶剂液滴用注射器注入含有Triton X-100和 曲马朵的水性样品中,在搅拌样品溶液条件下进行萃取,之后再用注射器把有机溶剂抽出进行色谱分析[/td][td]Ebrahimzadeh H,Mollazadeh N,Asgharinezhad A A,et al, J Sep Sci,2013, 36:3783-3790[/td][/tr][tr][td]14[/td][td]用离子液体辅助微波蒸馏单液滴微萃取及GC-MS快速分析香鳞毛蕨精油[/td][td]1-乙基-3-甲基咪唑乙酸盐离子液体用作样品细胞破坏剂进行微波蒸馏,2 μL正-十七烷溶剂作萃取液滴[/td][td] Jiao J ,Gai Q Y,Wang W,et al, J Sep Sci,2013, 36:3799-3806(东北林业大学)[/td][/tr][tr][td]15[/td][td]农田土壤中阿特拉津和甲氨基粉的快速测定—使用单液滴中鼓泡微萃取浓缩GC-MS分析[/td][td]往注射器中吸入1 μL萃取溶剂,之后再吸入0.5 μL空气,满满地把溶剂和空气泡注入被萃取的水溶液中,让空气在溶剂中形成一个气泡,萃取20min 后把溶剂吸入注射器,用GC-MS分析[/td][td]Williams D B G,George M J, Marjanovic L,J Agric Food Chem. 2014, 62:7676-7681[/td][/tr][tr][td]16[/td][td]用SDME/GC-MS测定椰子水中19种农药残留(有机磷、有机氯、拟除虫菊酯、氨基甲酸酯、硫代氨基甲酸酯、嗜球果伞素)[/td][td]10 mL样品用甲苯作萃取剂,液滴1.0 μL,样品用HCl酸化,不加盐,200 rpm搅拌下萃取30 min[/td][td]dos Anjos P J, de Andrade J B,Microchem J,2014,112 :119-126[/td][/tr][tr][td]17[/td][td]动态超声雾化萃取结合顶空离子液体单滴液体微萃取分析果汁中的风味化合物[/td][td]1-羟基-3-咪唑四氟硼酸盐离子液体作萃取液滴,萃取液体12.5 mL,萃取5min,萃取温度80 ℃[/td][td] Jiang C, Wei S , Li X,et al, Talanta, 2013,106:237-242(吉林大学)[/td][/tr][tr][td]18[/td][td]用顶空单滴液体微萃取光度法自动分析混凝土中的氨[/td][td]用0.1 М H3PO4作液滴吸收样品释放出来的人氨气,自动进行光度测定。[/td][td]Timofeeva I, Khubaibullin I, Kamencev M,et al, Talanta,2015,133:34-37[/td][/tr][tr][td]19[/td][td]高效单滴液体微萃取-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]新策略[/td][td]毛细管上安装一个漏斗状顶盖,用以悬挂有机萃取液滴,液滴中引入一定体积的空气泡,用1 μL氯苯液滴和1 μL空气进行萃取,以700 rpm进行搅拌,在3.4 min时间里可浓缩农药70 到 135倍[/td][td]Xie H Y, Yan J, Jahan S,et al,Analyst, 2014, 139: 2545-2550[/td][/tr][tr][td]20[/td][td]用离子液体辅助微波蒸馏单液滴微萃取及GC-MS快速分析连翘精油[/td][td]1-乙基-3-甲基咪唑乙酸盐离子液体用作样品细胞破坏剂进行微波蒸馏,2 μL正-十七烷溶剂作萃取液滴[/td][td]Jiao J ,Ma D H,Gai Q Y, et al, Anal Chim Acta,2013, 804:143- 150(东北林业大学)[/td][/tr][tr][td]21[/td][td]自动顶空单滴液体微萃取和顶空固相微萃取进行快速分析食用油中No. 6溶剂残留的比较[/td][td]用2μL正十一烷作萃取溶剂,30 ℃萃取3 min[/td][td] Ke Y, Li W, Wang Y,et al, Microchem J, 2014, 117:187-193(贵阳医学院)[/td][/tr][tr][td]22[/td][td]用离子对单滴液体微萃取分析水中化学战剂降解产物[/td][td]分析物在水相形成离子对,萃取液滴中含有N-(特丁基二甲基硅烷基)-N-甲基三氟乙酰胺衍生化试剂[/td][td]Park Y K , Chung W Y, Kim B,Chromatographia,2013,76:679-685[/td][/tr][tr][td]23[/td][td]液相微萃取-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]法测定水中硝基苯的含量[/td][td]lμL甲苯作萃取剂,,萃取15min,进行GC-MS中分析[/td][td]耿飞,青年科学,2014,(6):208[/td][/tr][tr][td]24[/td][td]离子液体顶空单滴微萃取分析中药中的高沸点挥发性成分[/td][td]采用微量进样器下端的塑料套管烧制成一端凸起的圆饼状(3.5mm o.d),以增大悬挂的离子液体与套管的接触面积,用2 5μL微量进样器精密吸取12μL离子液体轻轻推出,使其在距液面1cm处形成液滴,顶空萃取30min,萃取后直接将液滴吸回,进样HPLC分析检测。[/td][td]李梅,科学与财富,2013,(12):265[/td][/tr][tr][td]25[/td][td]顶空单滴液相微萃取与GC—MS联用测定易挥发溶剂[/td][td]了十二烷和正癸烷 作萃取溶剂,0.5μ L萃取溶剂,萃取10 min[/td][td]徐庆娟, 冯宇辉, 吴学,延边大学学报(自然科学版),2011,37(2):144-147[/td][/tr][tr][td]26[/td][td]单液滴微萃取一[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]/质谱法检测水中多环芳烃[/td][td]萃取溶剂1.0μL、萃取时间20 min,萃取温度室温[/td][td]常薇,郁翠华,周娟,环境污染与防治,2009,31(5)-:54-56,82[/td][/tr][tr][td]27[/td][td]单滴液相微萃取-[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用[/color][/url]在香精分析中的运用[/td][td]正戊醇作萃取溶剂2.0μL ,萃取温度 30 ℃,萃取时间35 min[/td][td]徐青,何洛强,梁健林等,2013中国上海第三届全国香料香精化妆品专题学术论坛,163页[/td][/tr][tr][td]28[/td][td]单滴微萃取.[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-质谱联用测定水中的硝基咪唑类药物[/td][td]。用5μL迸样器吸取有机溶剂,将针尖浸入到待测溶液中,挤出进样器中的有机溶剂,在针尖形成一个小液滴。在50℃,600 rpm搅拌速度下,萃取20 min[/td][td]王金玲,李义坤,赵京杨等,分析试验室,2010,29(1):107-110[/td][/tr][tr][td]29[/td][td]单滴微萃取.[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法分析海水中的四种苯胺推荐一个环保的综合化学实验[/td][td]将微量进样器吸 0.7O uL的甲苯使之在针尖形成稳定的液滴。在500 r/min 搅拌下,萃取l 5 min[/td][td]曾景斌,崔炳文,冯锡兰等,广东化工,2011,38(10): 215-216[/td][/tr][tr][td]30[/td][td]单滴微萃取-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定塑料食品包装浸出液中邻苯二甲酸酯类物质[/td][td]1.4μL二甲苯为萃取剂,萃取时间为20 min,萃取温度为40℃,搅拌速度为200 r/min[/td][td]张聪敏,食品与生物技术学报,2011,30 (6):863-867[/td][/tr][tr][td]31[/td][td]单滴微萃取技术测定饲料中硝基咪唑类药物残留研究[/td][td]溶剂为2.5 μL正辛醇,温度为50℃,搅拌速度为600 r/min。时间为20rain。萃取后,微液滴于70℃衍生45min[/td][td]刘登才,赵京杨,王金玲等,湖北农业科学2010,49 (7):1703-1706[/td][/tr][tr][td]32[/td][td]超声雾化一顶空单滴微萃取[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]质谱联用检测八角茴香中挥发油成分[/td][td]3μL 悬滴溶剂正十六烷悬在提取液的顶空,富集15 mim。富集后将正十六烷抽回微量进样器进入GC-MS系统分析[/td][td]王璐,张慧慧,李雪源等,分析化学学,2009,37(增刊)D071[/td][/tr][tr][td]33[/td][td]不同品种荔枝对荔枝蒂蛀虫引诱活性成分的研究[/td][td]将摘取的荔枝幼果,马上放进顶空样品瓶中(样品体积占顶空体积的一半),盖紧。室温下平衡l h后,插人已吸取3止正丁醇的微量进样针直至针尖距样品上表面约l cm,顶空萃取30 min进行分析[/td][td]郭育晖,叶慧娟,方炜等,天然产物研究与开发, 2013.25:1218-1221[/td][/tr][tr][td]34[/td][td]TG-SDME-GC/MS 联用法研究叶黄素在空气氛围中的热解行为[/td][td]乙醇作为萃取溶剂,液滴体积保持约为10 μL[/td][td]吴亿勤,杨柳,秦云华等,烟草化学 ,2014 (10):61-66[/td][/tr][/table]3、SDME 参数对萃取的影响 (1) 萃取溶剂的影响(J. Sep. Sci. 2013, 36:3758-3768)  在单滴溶剂选择适当的溶剂是很重要的,影响这一方法的灵敏度、选择性、准确度和精密度,萃取溶剂需满足一下要求:  【1】 它应该能完全萃取所要分析的对象。  【2】 它应该有比较高的沸点、较低的挥发性和较低的蒸汽压,以便在萃取过程中不至于挥发掉。  【3】 它应该有较高的粘度,以便形成较大稳定的液滴。  【4】 它应该不能与水混溶。  【5】 它应该与以后分析仪器所用溶剂相适应。  如果需要,一滴溶剂中应该含有内标物、衍生化试剂或螯合试剂。  有人用水作一滴溶剂,用于分析一些无机物,把这一方法叫做“顶空水基液相微萃取”,是一种不用有机溶剂的绿色方法。含有纳米微粒的一滴溶剂用于生物大分子如肽和蛋白质的萃取, 金或银纳米微粒溶于甲苯中,用来预浓缩分析物,之后直接把液滴点到MALDI-MS的目标靶上进行分析。量子点分散到微滴有机溶剂中用于顶空-一滴液体挥发性有机物的分析中。近年把离子液体用于一滴液体微萃取分析中(Trends in Analytical Chemistry 61 (2014) 54-66)。  (2) 萃取温度的影响  一滴溶剂萃取过程的温度很重要,因为既要考虑萃取物从基体中挥发又要考虑在液滴和[url=https://insevent.instrument.com.cn/t/Mp]气相[/url](液相)之间的平衡,提高温度可以让分析物更多地蒸发到空间,增加[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]中分析物的浓度,但是增加温度也是萃取液滴的温度提高,这样会降低萃取效率,因为液滴萃取溶解分析物是一个放热过程,温度增加就会降低萃取效率,另外萃取温度度提高会使萃取液滴溶剂蒸发。所以就出现了冷却萃取液滴的办法和装置(图 7)。  (3)萃取时间的影响  研究萃取时间主要是为了最高的分析物信号,并保证得到满意的准确和再现的结果,传质速度决定时间的长短,一般来讲萃取时间增加会增加萃取量,然而时间太长液滴会变得不稳定,并增加整个分析时间,一般提高搅拌速度会缩短萃取时间,但是搅拌太快会使液滴从注射器针头脱落。  (4)样品溶液离子强度的影响  往样品溶液中加入盐广泛地用于液-液萃取中,水分子在盐离子周围形成一个水化的球,所以溶解萃取物的水量就相对降低,从而降低了萃取物在水中的溶解度,所以加入盐可以提高萃取效率,但是也有报告证明加入盐有相反的作用,其解释是盐的分子与被萃取物分子间的相互作用,或者说是改变了Nernst扩散层的物理性质,所以盐的加入要考虑萃取物的性质和盐的加入量。这一矛盾现象迫使人们在确定萃取条件时要考虑这一因素。  (5)搅拌萃取溶液速度的影响  在萃取过程中进行搅拌可以提高水相的传质速度,这样在水相和顶空[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]或者说在水相和有机溶剂液滴之间的平衡加快了,所以在萃取过程中都要进行搅拌,可以提高样品的萃取效率,缩短萃取的时间,当然也不能搅拌太快,否则液滴会脱落。  小结:  一滴溶剂微萃取是一种简便易行的样品处理技术,可以和多种分析仪结合使用,简化了样品处理的时间和步骤,是固相微萃取的一个很好的补充,是液-液萃取技术的一次跃升,所以这一技术还在进一步研究和改进中。  下一讲和大家讨论“扭转乾坤—神奇的反应顶空分析”

单液滴微萃取相关的资料

单液滴微萃取相关的仪器

  • Advion 公司通过将 LESA 与此前在欧美生物质谱学界久负盛名的软电离&ldquo 纳喷机器人离子源(TriVersa NanoMate® )&rdquo 完美结合,实现了生物样品的原位、灵敏、直接、和高通量分析。利用&ldquo LESA 纳喷机器人离子源&rdquo 五位一体的功能,寻求突破目前在生物质谱技术领域面临的原位采样代表性低、纳喷离子化重现性低、和样品分析通量低等几大难题,冀已帮助解决围绕蛋白质科学、脂质组、抗体、代谢组、非共价键相互作用、生物器官药物小分子质谱成像、生物能源技术等有关的生命科学中的问题。TriVersa NanoMate (TVNM,芯片多通道纳喷源)是基于芯片的多通道纳升电喷雾离子化(Chip-based nanoESI)技术,与串联质谱或高分辨质谱联用,集成了芯片纳升注射(Chip-based Infusion)、在线纳升液相(nanoLC)- 质谱联机、馏分收集(Fraction Collection)在线分析、和可能的液体萃取表面分析(LESA)等优势于一身的新颖的高端质谱产品。不同于传统的单一模式的液质(LC-MS)联用分析,TVNM 作为新型的质谱进样系统,更适用于通量分析复杂的生物基质样品,能充分发挥高端质谱仪尤其是高分辨质谱和串联质谱的强大功能,既可以在有限的时间内提高样品分析通量和重现性,又可以在充裕的时间内诠析复杂样品,发掘生物基质中更加丰富的化学和生物学信息。液体萃取表面分析(LESA)由美国橡树岭国家实验室(ORNL)的 Vilmos Kertesz 和 Gary J. Van Berkel 于2009年发明并申请专利。该技术随后被授权给美国 Advion BioSystems, Inc. (Advion) 公司,由 Advion 对其进行了技术改进和一体化、自动化设计,于2010年3月份完成了商品化,推向全球市场。 LESA 纳喷机器人离子源的原理是,通过成像技术和数码控制,精确定位样品采样点,用一滴溶剂对样品或组织进行表面微萃取,萃取液经由基于芯片的纳升电喷雾离子化(Chip‐based ESI),进行串联质谱分析。“TVNM多通道纳喷离子源”用于极小量样品的多次重复测量,保障高准确度和高重复性。无需样品前处理直接分析固相或凝固相样品,进行高敏分析或轮廓分析,实现生物样品如体液、萃取液、组织切片、食药、材料、细菌表面等的原位、灵敏、直接、和高通量定性和定量。解决围绕在药物发现、蛋白质组学、脂质组学、代谢组学、微生物组学、植物次生代谢研究、和安全检测领域中的蛋白质、脂质、抗体、ADCs、代谢物、药物、毒物等物质的分析鉴定和分布或成像问题。 LESA-MS/MS 以及芯片多通道纳喷离子源(TriVersa NanoMate, TVNM)技术已经在 600 多个全球顶尖的实验室安装使用,这些实验室包括美国 FDA、出入境检验检疫、NIH等政府实验室;知名大学和研究机构如 FTMS 质谱发明人Alan G. Marshall 实验室、Max-Plank 研究所、脂质组学大师 MPI 的 Andrej Shevchenko 实验室、伯明翰大学、ETH、宾州大学、斯坦福大学、英国皇家学院、慕尼黑大学、剑桥大学、nanoESI 发明人 Mann Mathias 实验室、UC 戴维斯、波士顿大学、协和医科大学、中科院等;跨国公司如 Amgen、诺华、Roche、Merck、GSK、BMS、杜邦、等等。应用范围包括药物的组织成像分析、脂质分析、蛋白分析、食品分析、干血斑分析、薄层斑点分析、MALDI 板再分析、等等。五种功能模式详解:(1)芯片纳升注射分析:全自动纳升电喷雾直接进样系统,无需清洗,连续、自动分析达几百个样品。样品间无信号残留。适于组学、抗体药、PTM、蛋白质、ADCs 抗体药物偶联体、临床研究等需要大量样本验证的分析课题。(2)馏分收集: 在线同步馏分收集,即,常规LC分流,以纳升流速在线检测,同时收集馏分,随后以纳升电喷雾注射分析馏分,以信号累加(灵敏度及信噪比约为累加次数的平方根倍)方式鉴定复杂基质中的痕量未知物如低丰度蛋白、多肽或小分子代谢物。(3)nanoESI:作为纳升电喷雾在线接口,直接将 nanoLC 和质谱相连,组成 nanoLC-MS 在线分析无缝联接系统,不需任何工具,死体积极小,避免组学分析中的峰展宽现象。同时,喷雾感应功能,感应堵塞,3秒内自动移换喷头,实现无人值守的连续分析,保障复杂样品体系的超长时间分析的连贯性。用于代谢、核心蛋白质组学或临床蛋白组学分析。(4)LESA:可升级实施液滴萃取表面分析(LESA),通过吸头以微量溶剂在样品或组织表面特定位置进行微萃取,将萃取液再以纳升注射来分析。或进行代谢物分布研究、或成像或轮廓分析;兼容亲脂性表面(如中药切片、生物体组织、皮肤、反相薄层)或亲水性表面(如纸质干血斑、正相薄层、MALDI 板)。(5)LESA Plus:可升级实施液滴萃取表面分析接后续分离(LESA Plus),即,实施 LESA 液滴萃取后,通过六通阀切换萃取液至纳升柱或微升柱,进一步线上分离,在线质谱检测。适于复杂体系的分布分析或轮廓研究。设备用途:TVNM/LESA 与主流质谱兼容,应用范围包括药物的组织成像分析、脂质分析、蛋白分析、食品分析、干血斑分析、薄层斑点分析、MALDI 板再分析等等,为食品、药物、环境及医学研究提供了一种优异的分析手段。 “液体萃取表面分析 – 串联质谱系统”五合一功能,自动样品分析模式选择灵活。其多通道 nanoESI 芯片含有 400 个纳喷喷嘴,加工工艺高度重现,保障纳升级电喷雾 nanoESI 品质高度一致。品牌与型号:品牌:LESA(液滴萃取表面分析) 和 TriVersa NanoMate(多通道纳喷源) 的生产商为 Advion Inc(美国);大中华区代理为华质泰科生物技术(北京)有限公司。型号: TriVersa NanoMate、LESA
    留言咨询
  • 上海那艾实验仪器设备[那艾仪器厂家]网站 全国送货厂家一手货! 品质保证!实验仪器非电子产品,使用效率和售后服务很重要。我们同品质比价格,同价格比效率,同效率比售后。设备仪器属于精密设备 客户订单录档案 免费1年质量保质,任何问题提供配件保养维护上海那艾仪器专注以实验仪器设计、研发,生产,销售为核心的仪器企业,目前热卖销售生产有一体化蒸馏仪,中药二氧化硫蒸馏仪,COD消解仪,高氯COD消解仪,硫化物酸化吹气仪,全自动液液萃取仪,挥发油测定仪等等。智能液液萃取仪主要用于代替液-液萃取中的手摇式萃取,优化液-液萃取过程的仪器。本仪器彻底代替了人工摇晃,采用半封闭式空气气流内循环震荡,其原理是利用气压将水样和萃取剂充分结合并激烈碰撞,以达到完全萃取的目的,减轻了实验人员非必要的烦杂劳动,保护操作人员的身体健康,提高了萃取效率,使分析结果稳定更可靠。适用于水质监测中的水中石油类等需要液液萃取的场合,也可用于水中的挥发酚、阴离子表面活性剂自动液液萃取。主要特征1、整机采用PLC控制系统,7寸触控屏能实现自动加注试剂,自动萃取、自动排气、自动清洗、自动排废等全智能化控制。2、由六套带聚四氟乙烯阀门的萃取瓶组成,可一次性萃取1至6个样品,萃取瓶标配500ml或1000ml容量;3、每一路萃取瓶均有独立插入萃取瓶底部的玻璃导气管(可根据客户的需求更换为聚四氟吹气塞和聚四氟乙烯导气管);☆4、采用半封闭式气流振荡原理通过内置气泵连续鼓气的工作方式实现震荡萃取,萃取强度可以由弱到强进行调节;☆5、反应过程中产生废气,自动统一排废处理,无需手动放气,同时又避免了全封闭式的萃取瓶易爆裂风险;☆6、萃取瓶均有特制的玻璃喷洒式清洗塞,采用定压散射式广角清洗技术,全面覆盖整个分液漏斗内壁,双通道自动吸入洗涤剂或纯水,实现萃取瓶的自动冲洗;7、清洗后的废液通过可推拉的废液收集槽排入到主机内的废水箱中,废液箱设有液位装置,到达预设水位后自动启动废液排放程序,经由活性炭过滤部分有毒有害物质后统一排废。8、系统内自带说明书和服务中心二维码,手机扫码自动查看电子说明书和一键连接服务中心。适用标准HJ 637-2018 水质石油类和动植物油类的测定 红外分光光度法HJ 970-2018 水质石油类的测定 紫外分光光度法HJ 503-2009 水质 挥发酚的测定 4-氨基安替比林分光光度法HJ 478-2009 水质 多环芳烃的测定 液液萃取和固相萃取高效液相色谱法HJ 591-2010 水质 五氯酚的测定 气相色谱法HJ 648-2013 水质 硝基苯类化合物的测定 液液萃取/固相萃取-气相色谱法HJ 676-2013 水质 酚类化合物的测定 液液萃取 气相色谱法HJ 744-2015 水质 酚类化合物的测定 气相色谱-质谱法HJ 753-2015 水质 百菌清及拟除虫菊酯类农药的测定 气相色谱-质谱法HJ 699-2014 水质 有机氯农药和氯苯类化合物的测定 气相色谱-质谱法GB/T 5750.4-2006 生活饮用水标准检验方法 感官性状和物理指标GB/T 5750.5-2006 生活饮用水标准检验方法 无机非金属指标GB/T 5750.6-2006 生活饮用水标准检验方法 金属指标GB/T 5750.7-2006 生活饮用水标准检验方法 有机物综合指标GB/T 5750.8-2006 生活饮用水标准检验方法 有机物指标GB/T 5750.9-2006 生活饮用水标准检验方法 农药指标GB 8538-2016 食品安全国家标准 饮用天然矿泉水检验方法GB/T 7494-1987 水质 阴离子表面活性剂的测定 亚甲蓝分光光度法GB 5009.26-2016 食品安全国家标准 食品中N-亚硝胺类化合物的测定GB 5009.82-2016 食品安全国家标准 食品中维生素A、D、E的测定GB/T 5009.20-2003 食品中有机磷农药残留量的测定GB/T 5009.102-2003 植物性食品中辛硫磷农药残留量的测定GB/T 5009.218-2008 水果和蔬菜中多种农药残留量的测定GB/T 20771-2008 蜂蜜中486种农药及相关化学品残留量的测定 液相色谱-串联质谱法SN/T 1739-2006 进出口粮谷和油籽中多种有机磷农药残留量的检测方法 气相色谱串联质谱法SN/T 2158-2008 进出口食品中毒死蜱残留量检测方法产品参数名称智能液液萃取仪型号NAI-CQY4S 控制方式 PLC控制+7寸触控屏萃取样品数量 标配6个500ml或1000ml萃取瓶试剂添加方式手动添加萃取方式半封闭式空气循环震荡,单独控制自动萃取萃取强度可调,由弱到强萃取时间及方式 0~999秒之间可调,0~99次萃取后处理 静置分层,手工放液清洗时间及方式双通道自动吸入洗涤剂或纯水,自动冲洗废气处理自动放气,操作过程中无需手动放,废气由过滤储罐过滤吸附后集中收集处理废液处理自动排废液,废液经由活性炭储罐过滤吸附后集中处理萃取瓶样品架配套:6位萃取瓶样品架一个
    留言咨询
  • 全自动液液萃取仪CYCQ-6 六联单孔单控萃取分层设备 石油类测定器主要特征:1、7英寸大液晶触摸屏,一键操作系统,显示屏固定机器正前方,方便实验人员操作,可自主设定各项仪器参数;2、支持多种规格的萃取瓶使用,气路阀门均为四氟材质;3、6位操作系统,可独立完成6组样品的萃取工作,一键萃取震荡,自动静置分层,每个样品可单独控制;4、萃取时间,萃取速率、间歇时间,萃取周期都可以任意独立设定调节,伴有蜂鸣提醒功能;5、自动萃取,自动放气,自动收集,自动排液,自动清洗等功能;6、自带不锈钢伸缩废液槽,适合各种试剂的使用需求,自带抽滤系统,无需手动排液;7、自带废液活性炭过滤净化功能,减少对环境污染;8、不同于其他仪器的简易冲洗功能,该仪器采用定压散射式广角清洗,覆盖整个分液漏斗内壁,清洗效果更为可靠;9、整机具有漏电保护,过压过流等保护装置,内置6套独立稳压系统,提高机器萃取效率的一致性。10、萃取功率可通过旋钮任意调节。11、有不同规格萃取瓶的支架,卡扣式设计,更换简洁方便。12、可远程手机端操作机器,且有短信提醒功能(可升级)。13、采用高精度计量泵自动精准进试剂和萃取剂,无需手动加,快捷方便。全自动液液萃取仪CYCQ-6 六联单孔单控萃取分层设备 石油类测定器技术参数: 型号:CYCQ-61、萃取(1)时间设置:0-999s; (2)萃取次数:0-99 次; (3)萃取间隔时间0-999秒;(4)萃取强度:强弱可任意调节;(5)分层方式:自动萃取程序运行,自动静置分层,手工放液;2、清洗(1)时间设置:0-999s; (2)清洗次数:0-99 次;(3)清洗间隔时间0-999秒; (4)清洗方式:压散射式广角清洗;3、加样:高精度计量泵自动精准进进试剂和萃取剂4、废液处理:废液由活性炭储罐过滤吸附后集中收集处理,适用于不同样品的萃取实验;5、废气处理:自动排气,废气由过滤储罐过滤吸附后集中收集处理。6、操作模式:7寸彩色触摸屏7、样品数量:6位,标配6个250ml或500ml或1000ml或2000ml萃取瓶(标配1000ml)8、额定功率:400W 9、额定电压:220V±22v 智能全自动液液萃取仪采用垂直振荡萃取方式,萃取过程自动放气,气源集中收集经由保护芯统一处理。一键启动、自动进样、静音振荡萃取,废气统一收集经滤芯过滤后自动排放,实现整个萃取实验的智能化、自动化。本仪器自动化程度高,在提高萃取效率的同时,有效地避液液萃取仪免了人与有毒易挥发气体的接触以及废气直接排放所造成的二次污染。  智能全自动液液萃取仪维护  1、请保持环境的整洁,灰尘过多、高温高湿环境会影响本机使用寿命;  2、油脂、非极性溶剂等可能对数控泵管造成损害,应避免其接触;  3、请定期检查数控泵管是否出现粘连的情况及磨损程度,特别是在液体过柱流速下降的时候。当数控泵管出现粘连或明显磨损时,需要及时更换新的数控泵管。  4、清洁本机前,请从交流电源插座上拔下电源插头。请使用略湿的抹布清洁本机。清洁液液萃取仪时勿使用液体清洁剂或喷雾清洁剂。本机在洁净、阴凉、干燥的环境下使用可延长使用寿命;  5、请把本机放置在水平的实验台上或通风橱内使用,请勿让本机接近热源,不要让物品遮盖正面板和底板的通风孔;  6、智能全自动液液萃取仪停用时间较长时,请拔掉电源线,并把机箱内泵头管夹上的压管竿向下扳,放松数控泵管,避免管的粘连;重新使用时请检查数控泵管是否老化,必要时需要更换。
    留言咨询

单液滴微萃取相关的耗材

  • 偶氮萃取柱
    产品介绍: 偶氮萃取柱(液液萃取柱)成功地解决了传统液液萃取技术存在的问题。它以纯净的硅藻土为填料,将一定体积的含水样品加入柱中,然后用与水互不相溶的有机溶剂洗脱,洗脱液依靠重力作用从柱中流出,整个处理过程耗时小于20 min。该产品简化了液液萃取步骤,有效地避免了乳化现象和溶剂浪费,并能取得更佳的回收率和重现性。偶氮萃取柱优势:1、不存在乳化现象;2、简化萃取过程;3、减少玻璃器皿的使用;4、节约前处理时间;5、提高分析结果的重现性;6、可进行批量处理。偶氮萃取柱产品应用范围纺织品种偶氮染料释放的芳香胺分析;适合水溶性的液态物质、饮料、植物(水果和蔬菜)匀浆液、工业和生活废水、动物组织、谷物和饲料等多种样品。
  • Mediwax 12管固相萃取装置/ Mediwax 12管固相萃取装置 美国 配废液槽
    固相萃取(Solid-Phase Extraction 简称SPE)是近年发展起来一种样品预处理技术, 由液固萃取和柱液相色谱技术结合发展而来 , 主要用于样品的分离、纯化和浓缩,与传统的液液萃取法相比较可以提高分析物的回收率、更有效的将分析物与干扰组分分离减少样品预处理过程,操作简单,省时,省力。广泛的应用在医药、食品、环保、商检、农药残留等领域. 原理:固相萃取是一个包括液相和固相的物理萃取过程。在固相萃取过程中,固相对分析物的吸附力大于样品母液,当样品通过固相萃取柱时,分析物被吸附在固体表面,其他组分则随样品母液通过柱子,最后用适当的溶剂将分析物脱下来 固相萃取操作步骤: I 柱的预处理  为了获得高的回收率和良好的重现性,固相萃取柱在使用之前必须用适当的溶剂进行预处理,预处理除去填料中可能存在的杂质,另一个目的是使填料溶剂化,提高固相萃取的重现性 II 样品的添加  预处理后,试样溶液被加至并以一定的流速通过柱子。在该步骤分析物被保留在吸附剂上。 III 柱的洗涤   在样品通过萃取柱时,不仅分析物被吸附在柱子上,一些杂质也同时被吸附,选择适当的溶剂,将干扰组分洗脱下来,同时保持分析物仍留在柱上 IV 分析物的洗脱  用洗脱剂将分析物洗脱在收集管中,为了提高分析物的浓度或为以后分析调整溶剂杂质,可以把收集到的分析物积分用氮气吹干,再溶于小体积适当的溶剂中。 Mediwax固相萃取装置(SPE Manifolds)有12管固相萃取装置、24管固相萃取装置两种型号可供选择。采用经典的耐化学腐蚀、真空安全的方型玻璃缸;标配StopCock阀,精确控制流速;试管架高度可调,适合于各种收集器使用;压力表放空阀侧面设计,使用方便;设计合理,性价比极高。 Mediwax 12/24管真空固相萃取装置的主要特点: -经典的12、24管真空固相萃取装置 -标配的StopCock阀,精确控制流速 -试管架高度可调,满足不同需要 -压力表放空阀侧面设计,使用方便 -设计紧凑、经久耐用-性能价格比极高 Mediwax固相萃取装置及配件订货信息: 产品编号 产品描述 备注 81201 Mediwax 12-ports Vacuum SPE mainfold ( 12位固相萃取装置) 1 82401 Mediwax 24-ports Vacuum SPE mainfold ( 24位固相萃取装置) 1 81202 Glass chamber ( 玻璃缸 ) 标配 81213 12 stopcocks(流速调节阀,12只/24只) 标配 81214 Waste Container ( 废液池) 标配 81207 Plate-13mm 样品支架 标配 81208 Plate-16mm test tube样品支架 标配 81209 Plate-volumetric flask样品支架 标配 82111 大容量采样器 选配 001012 SPE转接头,12只/24只 选配 GM-0.33A 无油隔膜真空泵,20L/min 选配 DOA-P504-BN 美国Gast进口无油隔膜真空泵 选配
  • 固相微萃取-液相色谱萃取探针 57281-U
    固相微萃取-液相色谱萃取探针该固相微萃取-液相色谱萃取探针作为一次性设备用于在溶剂解吸和液相色谱分析之前从液体中萃取小分子。订货信息:固相微萃取-液相色谱萃取探针货号包装57281-U5 ea
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制