變棉子酚

仪器信息网變棉子酚专题为您提供2024年最新變棉子酚价格报价、厂家品牌的相关信息, 包括變棉子酚参数、型号等,不管是国产,还是进口品牌的變棉子酚您都可以在这里找到。 除此之外,仪器信息网还免费为您整合變棉子酚相关的耗材配件、试剂标物,还有變棉子酚相关的最新资讯、资料,以及變棉子酚相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

變棉子酚相关的资料

變棉子酚相关的论坛

  • 包饺子用到的面粉普遍是精白面粉

    包饺子用到的面粉普遍是精白面粉,这类面粉升糖速度快,饱腹感低。建议包饺子时搭配一些富含矿物质、B族维生素和膳食纤维的粗粮粉或豆粉,营养成分更多,且可以达到互补的作用,提高蛋白质吸收利用率,还有利于稳定血糖,减少肥胖的发生。

  • 如何辨别瓜子中是否含有滑石粉

    如何辨别瓜子中是否含有滑石粉

    瓜子一直是老百姓逢年过节的必备佳品。有媒体报道不法商家在瓜子加工过程中为了使炒制出来的瓜子更加美观、表面更光滑,向瓜子中添加滑石粉。 滑石粉的主要成分是含结晶水的硅酸镁,人体如果长期大剂量服用硅酸镁会发生肾硅酸盐结石,肾功能不全患者可能出现眩晕、昏厥、心率失常以及异常疲乏无力等现象。  根据GB2760-2014《食品安全国家标准 食品添加剂使用标准》,滑石粉只能在凉果类、话化类食品生产过程中使用,不得在炒货制品(如炒瓜子)中添加。  那么如何辨别瓜子是否经过滑石粉的处理呢?我们可以采用以下两种方式进行辨别。第一,消费者可以用直接观察的方法进行大致判断,具体操作见表1。http://ng1.17img.cn/bbsfiles/images/2015/10/201510292202_571656_2989862_3.jpg第二,消费者或流通环节经销商可将可疑样品送到专业的检验机构进行检测。   目前,食品中滑石粉的检测方法为GB/T21913-2008《食品中滑石粉的测定》。滑石粉主要成分是天然的水和硅酸镁,不溶于混合酸(硝酸+高氯酸),可与氢氟酸反应生成溶于水的镁盐。样品用混合酸消化完全后、过滤,将其他含镁物质分离除去;然后用混合酸加氢氟酸消化滑石粉,再利用火焰原子吸收光谱法测定试液中的镁含量。根据镁含量,计算试样中滑石粉含量。这样,如果添加了滑石粉的瓜子,通过专业检测就无所遁形了。

  • 如何辨别瓜子中是否含有滑石粉

    如何辨别瓜子中是否含有滑石粉

    瓜子一直是老百姓逢年过节的必备佳品。有媒体报道不法商家在瓜子加工过程中为了使炒制出来的瓜子更加美观、表面更光滑,向瓜子中添加滑石粉。 滑石粉的主要成分是含结晶水的硅酸镁,人体如果长期大剂量服用硅酸镁会发生肾硅酸盐结石,肾功能不全患者可能出现眩晕、昏厥、心率失常以及异常疲乏无力等现象。  根据GB2760-2014《食品安全国家标准 食品添加剂使用标准》,滑石粉只能在凉果类、话化类食品生产过程中使用,不得在炒货制品(如炒瓜子)中添加。 那么如何辨别瓜子是否经过滑石粉的处理呢?我们可以采用以下两种方式进行辨别。  第一,消费者可以用直接观察的方法进行大致判断,具体操作见表1。http://ng1.17img.cn/bbsfiles/images/2015/11/201511121100_573220_1947624_3.jpg第二,消费者或流通环节经销商可将可疑样品送到专业的检验机构进行检测。  目前,食品中滑石粉的检测方法为GB/T21913-2008《食品中滑石粉的测定》。滑石粉主要成分是天然的水和硅酸镁,不溶于混合酸(硝酸+高氯酸),可与氢氟酸反应生成溶于水的镁盐。样品用混合酸消化完全后、过滤,将其他含镁物质分离除去;然后用混合酸加氢氟酸消化滑石粉,再利用火焰原子吸收光谱法测定试液中的镁含量。根据镁含量,计算试样中滑石粉含量。这样,如果添加了滑石粉的瓜子,通过专业检测就无所遁形了。

變棉子酚相关的方案

變棉子酚相关的资讯

  • AFM vs. STM 分子级别分辨率成像技术
    如果你已经看过我上一篇介绍低电流STM成像的短文[i],那么那些HOPG上钴和镍八乙基卟啉(CoOEP 和NiOEP)自组装二维晶格子的高分辨STM图像一定会令你印象深刻。Roger也是一样,在看到那些图片之后,他向我建议可以尝试使用Cypher AFM的轻敲模式(调幅AC模式)来代替STM观察CoOEP的 晶格,因为我们知道Cypher AFM在空气中的成像质量相当稳定。当我把这个想法告诉Kerry Hipps教授时,他第一反应是“这不可能!”。我接着跟他说: “我非常确定这个是可行的。” 好吧,我承认我的倔强和执着,所以无论如何,我都要尝试一下这个“疯狂”的想法。我选择了一个尖锐,敏捷,硬度中等,悬臂为硅材料的镀金探针(FS-1500AuD探针)。 它的针尖半径为Rtip = 10± 2 nm,空气中的共振频率为fair≈1.5MHz,弹性系数为k≈6N / m。您也可以在我们的探针库找到它.当我将针尖接近样品表面时,样品表面的苯基辛烷薄层会立即吸附在探针悬臂上(见图1)。在这样一种气相-液相混合振荡介质中,针尖的共振频率会立即降到0.66 MHz。这种情况下的溶液需要大约10分钟之后才达到平衡,而在此之后,即使探针在表面移动也不会再次影响到溶液的稳定性。图1. 苯基辛烷/ HOPG界面处干涉条纹的时间序列图像。这些图像是通过Cypher ES顶视光学系统捕获的。当溶液吸附到AFM悬臂上时,苯基辛烷弯月面起到衍射器的作用而产生出干涉条纹。由于BlueDrive出色的光热激发稳定性,在平衡溶液中调谐悬臂后,我能够将自由驱动振幅和设定点分别稳定在~1.44 nm(90 mV)和~0.34 nm(21 mV)[iii] 。瞧瞧图2中的图像,CoOEP晶格渐渐在视野中显现出来,这里观察到的的~1.4 nm的晶格的分子间距和预期的理论值一摸一样!我向 Hipps教授展示了这组图片,他不得不惊叹地说一句 “Wow!”图2. 低振幅轻敲模式下CoOEP的分子晶格分辨率图像。 (A)扫描边长为100 nm。 (B)沿(A)中的白线的截面,从中可以清楚的观察到CoOEP分子有规则间隔。 (C)扫描边长为100nm 的3D图像。将图2继续放大后(见图3),我确信自己可以在一部分相位图中看到卟啉环结构。您可能会注意到的是,相比上一篇短文中的STM图像,这里的测量结果似乎对样品表面的污染更加敏感。我们可以看到样品表面上有一些无定形的团聚物,这些污染物会和扫描过程中的针尖相互作用,使扫描的图像发生了一些变化。这意味着在AFM测量之前,您务必对样品表面,探针和探针支架进行全方位的清洁。图3.在轻敲模式下CoOEP晶格的AFM放大图像。 (A)扫描边长为20纳米的形貌图。 (B)扫描边长为20纳米的相位图。注意卟啉环结构在图像的上部清晰可见。这些数据让我想起了纽卡斯尔大学的Rob Atkin教授,诺丁汉大学的Peter Beton教授和南京大学的王欣然教授曾经发表的一些关于使用Cypher 在大气环境下进行的AFM的研究 [iv-vi]。这里我来具体介绍一下这些研究的成果。第一项研究[iv]阐明了在恒电位控制偏压下石墨(HOPG)表面的离子液体(EMIm + TFSI-)的纳米结构(见图4A)。此外,施加的偏压在开路电位附近有规律地变化,同时分子Stern层作为偏压的函数(以及离子组分的函数,例如Li +和Cl-)进行了重新整合。第二项研究[v]主要集中在观察吸附在六方氮化硼(hBN)和其他样品表面上的5,10,15,20-四(4-羧基苯基)卟啉(TCPP)的超分子结构,及分析该吸附现象对TCPP分子的光电子特性的影响。图4B显示了hBN上TCPP的正方晶格结构。第三项研究[vi]探讨了HOPG和hBN上高流动性的二辛基苯并噻吩并苯并噻吩(C8-BTBT)的少层二维分子晶体的范德瓦尔外延结构,这种材料可用于实现有机场效晶体管。图4C显示了在hBN上生长的C8-BTBT晶格的高分辨率形貌。图4. 2D分子晶格的AFM成像。 (A)吸附在HOPG基片上的纯EMIm + TFSI-Stern层的相位图 扫描边长为30nm,在块体EMIm + TFSI-离子液体中成像(参见参考文献[iv])。 (B)组装在hBN基片上的TCPP的正方晶格的形貌图像 扫描边长为50nm,在空气中成像(参见参考文献[v])。 (C)在hBN基片上生长的C8-BTBT晶格的形貌图像 扫描边长为10nm,在空气中成像(参见参考文献[vi])。References[i] April Current Amplifiers Bring May Ultra-Low-Current STM[ii] Learn more about Cypher here: https://www.oxford-instruments.com/products/atomic-force-microscopy-systems-afm/asylum-research/highresolution-fast-scanning-afm.[iii] (a) Learn more about blueDrive at https://afm.oxinst.com/bluedrive and athttps://pdfs.semanticscholar.org/e807/9171fb282e6340f6813a0f6b8cee8b4bae74.pdf. (b) A. Labuda, K. Kobayashi,Y. Miyahara, and P. Grütter, Retrofitting an atomic force microscope withphotothermal excitation for a clean cantilever response in low Qenvironments, Review of Scientific Instruments, 2012 83, 053703.https://aip.scitation.org/doi/abs/10.1063/1.4712286.[iv] A. Elbourne, S. McDonald, K. Vo?chovsky, F. Endres, G. G. Warr, and R.Atkin, Nanostructure of the Ionic Liquid–Graphite Stern Layer, ACS Nano,2015, 9(7), 7608–7620. https://pubs.acs.org/doi/abs/10.1021/acsnano.5b02921.[v] V. V. Korolkov, S. A. Svatek, A. Summerfield, J. Kerfoot, L. Yang, T. Taniguchi,K. Watanabe, N. R. Champness, N. A. Besley, and P. H. Beton, van der Waals-Induced Chromatic Shifts in Hydrogen-Bonded Two-Dimensional PorphyrinArrays on Boron Nitride, ACS Nano, 2015, 9(10), 10347–10355.https://pubs.acs.org/doi/10.1021/acsnano.5b04443.[vi] D. He, Y. Zhang, Q. Wu, R. Xu, H. Nan, J. Liu, J. Yao, Z. Wang, S. Yuan, Y. Li, Y.Shi, J. Wang, Z. Ni, L. He, F. Miao, F. Song, H. Xu, K. Watanabe, T. Taniguchi, J.-B.Xu & X. Wang, Two-dimensional quasi-freestanding molecular crystals forhigh-performance organic field-effect transistors, Nature Communications,2014, 5:5162, 1–7. https://www.nature.com/articles/ncomms6162.*转载文章前请与牛津仪器联系,未获许可谢绝转载,谢谢。
  • 中科大实现世界最高分辨率单分子拉曼成像
    在绿色入射激光的激发下,处于STM纳腔中的卟啉分子受到高度局域且增强的等离激元光的强烈影响,使得分子的振动指纹信息可以通过拉曼散射光进行高分辨成像。   记者从中国科学技术大学了解到,该校的科学家们在国际上首次实现亚纳米分辨的单分子光学拉曼成像,将具有化学识别能力的空间成像分辨率提高到前所未有的0.5纳米。国际权威学术期刊《自然》杂志于6月6日在线发表了这项成果。世界著名纳米光子学专家Atkin教授和Raschke教授在同期杂志的《新闻与观点》栏目以《光学光谱探测挺进分子内部》为题撰文评述了这一研究成果。《自然》三位审稿人盛赞这项工作&ldquo 打破了所有的纪录,是该领域创建以来的最大进展&rdquo ,&ldquo 是该领域迄今质量最高的顶级工作,开辟了该领域的一片新天地&rdquo ,&ldquo 是一项设计精妙的实验观测与理论模拟相结合的意义重大的工作&rdquo 。   这一成果是由该校微尺度物质科学国家实验室侯建国院士领衔的单分子科学团队董振超研究小组完成的,博士生张瑞、张尧为论文共同第一作者。   光的频率在散射后会发生变化,而频率的变化情况取决于散射物质的特性,这是物理学上获得诺贝尔奖的著名的&ldquo 拉曼散射&rdquo 。&ldquo 拉曼散射光中包含了丰富的分子振动结构的信息,不同分子的拉曼光谱的谱形特征各不相同,因此,正如通过人的指纹可以识别人的身份一样,拉曼光谱的谱形也就成为科技工作者识别不同分子的&lsquo 指纹&rsquo 光谱。&rdquo 论文通讯作者之一的董振超教授介绍说,拉曼光谱已经成为物理、化学、材料、生物等领域研究分子结构的重要手段。   上世纪70年代以来,随着表面增强拉曼散射技术,特别是针尖增强拉曼散射(TERS)技术的发展,光谱探测的灵敏度以及拉曼成像的分辨率都有了极大提高。&ldquo 迄今,科学家们已将TERS测量的最佳空间成像分辨率发展到几个纳米的水平,但这显然还不适合于对单个分子进行化学识别成像。&rdquo 董振超说。   微尺度实验室单分子科学团队多年来一直致力于自主研制科研装备,发展了将高分辨扫描隧道显微技术与高灵敏光学检测技术融为一体的联用系统。他们利用针尖与衬底之间形成的纳腔等离激元&ldquo 天线&rdquo 的宽频、局域与增强特性,通过与入射光激发和分子拉曼光子发射发生双重共振的频谱匹配调控,实现了亚纳米分辨的单个卟啉分子的拉曼光谱成像,使化学识别的分辨率达到前所未有的0.5纳米,可识别分子内部的结构和分子在表面上的吸附构型。   &ldquo 可以说,在任何需要在分子尺度上对材料的成分和结构进行识别的领域,该项研究成果都有很大的用途。&rdquo 董振超说,这项研究对了解微观世界,特别是微观催化反应机制、分子纳米器件的微观构造和包括DNA测序在内的高分辨生物分子成像,具有极其重要的科学意义和实用价值,也为研究单分子非线性光学和光化学过程开辟了新的途径。
  • 利用荧光DNA探测分子 单个碱基突变也能被发现
    DNA序列中最轻微的变异也会影响深远,无论对研究还是医学应用,可靠识别这些序列都非常重要。据物理学家组织网近日报道,美国华盛顿大学和莱斯大学研究人员合作,开发出一种荧光DNA探测分子,能检查出一段目标DNA链中单个碱基的变化。而这些微小突变可能是造成某些疾病的根源,或耐抗生素细菌的原因。这一成果有助于诊断和治疗像癌症、肺结核这样的疾病。相关论文发表于7月28日的《自然· 化学》杂志网站上。   不同的DNA序列为不同生物设定了独特的基因标记。现代基因组学研究表明,仅一个碱基对的变化都足以引发严重的生物后果,可能决定了一种疾病能否被治愈,也解释了疾病的突发或某些疾病对常规抗生素治疗无效的原因。论文领导作者、华盛顿大学电力工程和计算机科学与工程副教授乔治· 塞利格说,比如造成肺结核的细菌有很强的耐药性,这种能力通常来自其基因序列中的少量突变。现在,人们已能预先查出这种突变。   &ldquo 我们真正改进了以往的方法。&rdquo 塞利格说,&ldquo 新方法不需要任何复杂的反应或添加酶,就只用DNA。这意味着无论温度及其他环境变量怎样变化,该方法都是稳定的,所以很适合用于低资源设置中的诊断。&rdquo   这种探测分子经过专门设计,采用了新的编程机制,能与一个可疑的DNA序列结合,对其双螺旋链生成互补的DNA序列。把含有两种序列的分子在盐水试管中混合,如果两条链的碱基对都是完好的,它们自然地匹配在了一起,探测分子会发出荧光 如果不发光,则意味着上面有碱基对发生了突变。与以往技术不同的是,探测分子会检查目标DNA双螺旋的两条链是否发生了突变,而不是一条,这使检验更加全面具体。   此外,探测分子由许多寡核苷酸构成,克服了合成上的局限,可以探测更长的DNA序列中更详细的变异信息,达到200个碱基对,而现有探测突变的方法只能检查20个。   目前,研究人员与华盛顿大学商业化中心一起对该技术提出了专利申请,他们希望把这种技术和诊断试纸结合用于疾病测试。

變棉子酚相关的仪器

  • 赛默飞世尔科技红外/拉曼光谱 Nicolet产品,是世界上最大的傅立叶红外光谱仪(FT-IR)和拉曼光谱仪(Raman)的专业生产厂家。几十年来其以精湛的技术、卓越的产品和优质全面的服务居于世界红外及拉曼领域的前列,并在全球范围内具有最大的市场占有率。 主要产品:电子背散射衍射系统(EBSD)折光仪(折射仪)X光电子能谱仪(XPS/ESCA)激光共聚焦显微镜红外显微镜核磁共振(NMR)近红外光谱(NIR)荧光分光光度计(分子荧光)紫外、紫外分光光度计、紫外可见分光光度计、UV激光拉曼光谱(RAMAN)红外光谱(IR、傅立叶) 更多信息:请访问赛默飞世尔科技分子光谱与表面分析的展台,展位号:SH100328。或使用简易域名登陆:http://molecular.instrument.com.cn。
    留言咨询
  • Creoptix总部位于瑞士。拥有基于光栅耦合干涉技术(Grating-Coupled Interferometry ,GCI)的光学生物传感器专利,以及外置的微流控的设计和Google公司研发的自动化软件。Creoptix致力于提供高质量的动力学数据,拥有业内高度灵敏准确的WAVE 系统,使全球生物科学研究者可以做以前不可能做的事情,看到以前看不见的数据。避开了SPR的限制,突破无标记技术的局限。Creoptix公司于2022年1月被马尔文帕纳科公司收购。WAVE分析互作仪 创新的无标记检测技术配合防堵塞微流控芯片和自动化检测软件,为您提供高质量的结合动力学数据,并适用于多种样品类型。高信噪比&灵敏度专利的光栅耦合干涉(Grating-Coupled Interferometry,GCI)技术,赋予WAVE系统超越传统SPR技术的检测灵敏度和时间分辨率。不同于SPR技术,Creoptix WAVE GCI产生的消逝波(evanescent field)仅在芯片表面与样品溶液接触,并且延长了其与样品相互作用的长度,以确保更低的信噪比(0.015pg/mm2)。凭借WAVE分子相互作用仪的低检测限,可轻松获取无标记互作分子高精度的动力学速率,亲和常数及浓度数据。即使检测丰度较低的样品,仍可确保数据不失真。创新型微流控芯片防堵塞设计微流控芯片适用于多种不同类型样品,确保样品活性和生物学特性,节约了纯化步骤所需时间以其他设备脱机、堵塞等问题可能耗费的时间。高时间分辨率准确的表征解离速率大于10s-1的分子间相互作用的动力学。灵活的组合兼容48,96,384板任意组合,120h无人值守运行。智能软件从方案建立,数据分析到报告生成的每一步均可利用向导设计来简化,让您工作更加轻松高效。应用范围 分析领域:分子相互作用模式的研究;动力学常数的测定;亲和常数测定,浓度的测量及构象变化的速率等。 生命科学研究领域:蛋白质组学研究、癌症研究、新药研发、信号传递、分子识别、热力学分析、免疫调节、免疫测定、疫苗开发、瞬时结合、配体垂钓、结合特异性、结构与功能的关系及酶反应等。 分析样品类型:小分子化合物、多肽、蛋白质、寡核苷酸、寡聚糖到类脂、脂质体,噬菌体、病毒样颗粒和细胞等。
    留言咨询
  • 3D超分辨成像系统-单分子荧光成像,-单分子定位荧光显微镜是一种功能强大的技术,它可以对细胞内的特定生物分子进行定位和可视化。然而,传统的光学显微镜在横向尺寸(x-y)和横向尺寸(x-y)上受到光的衍射约为200纳米的限制最近超分辨率成像技术的出现使研究人员能够“打破”衍射屏障,将远低于200纳米极限的亚细胞结构可视化。高分辨率的方法是一系列被称为单分子定位显微镜(SMLM)1的技术。虽然SMLM能够在横向尺寸上精确成像10- 20nm,但它通常缺乏轴向分辨率,尤其是近焦分辨率。双螺旋主轴结合我们的3DTRAXTM软件,使成像超越衍射极限与扩展的3D detail3。它是基于专利双螺旋光工程™ method4,5设计的模块化附加工具。该方法的工作原理是在SPINDLETM模块中插入一个双螺旋相位掩模,该掩模从掩模库中选择,并根据不同的轴向范围、发射光谱和信噪比进行优化。主轴™ 为精密光学从头开始设计,与大多数商业上可用的科学显微镜、EMCCD和sCMOS相机一起工作,并提供了前所未有的横向(x-y)和轴向(z)精密成像的组合。双螺旋光工程™ 将单个分子发出的光分裂成两个叶瓣。两个叶瓣的中心对应发射体的横向位置,它们之间的角度编码发射体的z位置。这些额外的信息有助于在非常高的精度( 30nm)下进行横向和轴向尺寸的超分辨率重建。此外,重要的是,双螺旋结构还扩展了分子可以定位的场的深度。这种亚衍射光学成像与先进的三维信息的结合为生命和材料科学的研究人员带来了大量的可能性无与伦比的精度和深度三维成像和跟踪 双螺旋光学主轴使研究人员能够很容易地捕捉和分析细胞结构的三维图像到单个分子水平。 Current Light EngineeringTM Applications超分辨率:重建三维超分辨率图像的zui佳精度-深度组合和无轴向拼接。用于轴向和横向定位的纳米级精度.三维单粒子跟踪:延长的深度使捕获更长的粒子轨迹和更快的捕获兼容荧光珠,染料和光激活蛋白。主轴采用双螺旋光学专利光学工程技术为基础,可方便地安装在现有显微镜上,实现先进的三维成像和跟踪,具有超高分辨率的能力。内置旁路模式允许轻松返回到非3d实验。? 设计克服了传统的限制,使三维成像具有无与伦比的深度和轴向精度? 优化为您的三维实验所需的发射波长。? 与各种显微镜、物镜和照相机兼容即使在空间有限的环境中,占用空间小也可以方便地安装 输入和输出C-mount适配器为商用和定制的显微镜和相机提供了方便的支持。 高度可靠的系统,没有移动部件。可切换相位掩模墨盒,和辅助发射滤波器支架,以zui大限度地提高实验灵活性。模块化设计将您现有的系统发展成具有超分辨率功能的先进3D成像和跟踪系统。自定义设计的光学精密成像和跟踪? 转化率 95%? 内置校正光学,确保瞳孔平面对准您的显微镜和物镜? 易于安装,相位掩模在中继光瞳平面上的x、y和z位置保持稳定对齐 ? 3DTRAX™ Software, a FIJI plugin provides3d超分辨成像系统,3D单分子荧光成像系统,单分子定位- 3D 定位分子- 3D 渲染- 偏移- 追踪- 具象化
    留言咨询

變棉子酚相关的耗材

  • 欧罗拉自动化粪便/唾液/拭子样品DNA纯化系统试剂盒
    MagPure纯化技术介绍MagPure(磁珠法)纯化技术是专门为自动化核核酸提取设计的。该技术采用超顺磁性粒子为基质, 在其表面包被硅醇基或羧基基团,使得微粒与核酸发生特异性的吸附作用,从而达到纯化核酸的目的。 MagPure技术配合自动化核酸提取工作站,可将核酸分离纯化,从手工变成机械自动化操作,可大大 提高实验的准确度和通量,并减少操作人员接触危险样品的机会。MagPure Stool/Saliva/Swab DNA Kit (自动化粪便/唾液/拭子样品DNA纯化系统)从粪便/唾液/拭子样品中提取高纯度的总DNA可兼容液体处理系统VERSA 10 PCR/NAP 自动化核酸提取-PCR建立工作站VERSA HT 高通量自动化液体处理工作站VERSA 1100 NGLP 下一代测序工作组VERSA 1100 4ch Independent 独立四通道液体处理工作站VERSA 1100 PCR/NAP 自动化核酸提取-PCR建立工作站Aurora在核酸分离纯化领域拥有完整和先进的技术,MagPure试 剂盒为不同样品提供不同粒径或不同官能基团的磁性粒子,以达到 最佳的纯化效果。在满足产品精确性及可重现性的要求,实现高通 量自动化核酸纯化的同时 保证产品绝对的兼容性。
  • 变角镜面反射附件
    变角镜面反射附件是一款适合各种镜面反射分析的变角镜面反射附件,变角镜面反射附件是分析透明薄膜的一种主要技术, 使用常见的透射光谱技术测量透明薄膜,透明薄膜常常发出微弱的光谱。变角镜面反射附件功能特点主要应用是反射衬底上的表面镀膜,薄膜厚度测量,反射系数测量。实际应用决定入射角的选择,30度的入射角用于测量比较常见的样品,而且这些样品的薄膜厚度在微米量级。对于纳米厚度量级的薄膜,80度的入射角比较合理。如果待测薄膜的厚度未知,那么比较适合选用变角镜面反射附件VEEMAXII,它的可变角度范围为30-85度,适合全部镜面反射的分析。配有自动化附件,这些自动化的附件可以协助用户同时或单独编程控制地高精度选择入射角,并配有控制软件采集数据。具有30-85度的可变角度范围, 30度和80度固定角度的附件可以一起订购。变角镜面反射附件可选项变角镜面反射附件反射组件 (PartNo. #9000 )该反射组件包括镜ATR附件、镜面反射和漫反射所有组件, 用于FTIR光谱仪的反射配件.组成如下:货号1075水平ATR系统配备45度ZnSe顶板,顶板夹,挥发物盖子和粉末压片.货号6000高性能漫反射系统带有大小品杯、KBr粉末、样品漏洞、玛瑙砂浆/碓、骆驼毛画笔等.货号7200 30度镜面反射系统.变角镜面反射附件组合型HATR Part No #9110 组合化学已经成为制药,生物科技,高分子科学和有机合成的必备技术. 傅立叶变换红外光谱仪FTIR由于可以给出固态反应衬底的结构性信息而成为分析过程的重要工具.我们推出的MIRacle 组合型水平ATR可以让用户免于样品准备的繁琐而在一秒钟之内获得结果. 单反射附件提供了一个1.6mm的样品接口,配备了专门设计的组合秘诀珠,冠和别针专门装备的组合珠冠和别针.
  • 粪便菌群样本采集盒
    样本类型人类粪便样本产品优势适用于微生物样本的保存采集耗材均为无菌产品样本在保存液中常温(25℃)存储可长达30天 保存液有效防止样本中微生物发生改变采样管配有取样勺,操作简单便捷配有一次性集便器,满足医院、家庭的坐便器、蹲便器等场景产品构成采样拭子×1采样管5ml(含保存液)×1一次性粪便收集盒×1自封袋×1一次性手套×1采样指南×1应用场景实验室、医院和科研院所等人类肠道微生物的检测及研究
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制