形态观察实验

仪器信息网形态观察实验专题为您整合形态观察实验相关的最新文章,在形态观察实验专题,您不仅可以免费浏览形态观察实验的资讯, 同时您还可以浏览形态观察实验的相关资料、解决方案,参与社区形态观察实验话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

形态观察实验相关的耗材

  • 培养皿观察台(观察支架)
    培养皿定位观察台Petri Orienter and Stand是经常培养皿观察计数者的福音!原始的以点数记忆法计数培养皿中的细菌菌落数,既不准确,又增加菌落重复数的可能性,造成误差的机会较大。我们推出这款简介方便的培养皿定位观察台,可减少菌落重复数造成的误差。 l 针对固体培养基l 防疲劳设计:30度倾角l 抽拉槽设计:定位板随意更换l 准确l 清晰可见订购信息:货号产品描述规格70498-01PetriDish Stand, 88mm diameter,观察台个70498-02PetriDish Stand, 100mm diameter,观察台个70498-03PetriOrienter, 32-square grid,定位片片70498-04PetriOrienter, 50-square grid,定位片片70498-07PetriOrienter, 6-sector pie,定位片片70498-08PetriOrienter, 8-sector pie,定位片片70498-09PetriOrienter, 12-sector pie,定位片片70498-10PetriOrienter, 16-sector pie,定位片片
  • THGA仪器观察镜
    THGA仪器观察镜用于优化干燥温度和时间。THGA仪器观察镜产品描述部件编号THGA仪器观察镜B0851900
  • 底片观察灯
    主要用于观察TEM底片。底片在均匀柔和的灯箱背景下,图片清晰,衬度适宜。同时,对视力保护也有很好的作用,是从事电镜工作者的必备工具。

形态观察实验相关的仪器

  • 工作原理工作原理细胞工厂作为贴壁细胞培养量产化装置,可用于疫苗、单克隆抗体、基因重组药物、生物细胞培养等生物相关行业研究与大规模生产。BCM200 细胞工厂原位观察系统,采用光机电算集成创新设计理念,光学系统采用无穷远折转超平场显微成像设计,搭载进口彩色高分辨率 CMOS 相机,闭环自动化控制,机械系统封闭便捷,软件系统设有三级权限与数据追踪功能,21英寸屏幕显示,整机材质不锈钢、耐氧化、防污染。实现十层以内细胞工厂细胞形态和数量实时动态监测,呈现底部三层和顶部两层全场景观测。为生物制药行业细胞工厂反应器培养提供实时质量监测装备。技术参数细胞工厂10层以内原位实时观察,细胞数量根据客户需要选择计数功能;三级权限,像与视频可以溯源,数据完整可追踪;底三层顶部两层观察;每层观测面积≥80%,放大倍率10× LED 冷光源照明;人机交互界面完成自动控制,全自动监测。观察倍率可根据用户需求定制;整机一体,防尘防水,304不锈钢结构,满足GMP车间要求;设备整体尺寸544mm×605mm×670mm, 外部采用镜面304不锈钢材质,整体外部结构,符合使用需求;根据用户需求,定制和升级。
    留言咨询
  • 紫外观察箱;紫外线老化观察箱;UV紫外观察箱技术参数:1、温度范围:RT常温~+70℃2、湿度范围:大于或等于90%RH3、温度均匀度:±1℃4、温度波动度:±0.5℃5、灯管内中心距离:70mm6、测试品与灯管的中心距离:50mm±3mm7、辐照度:1.0W/m2内可调8、光照、冷凝、喷淋试验周期可调9、灯管:L=1200/40W, 8支(UVA/UVB使用寿命1600h以上)10、控制仪:彩色触摸屏韩国(TEMI880)或RKC智能控制仪。11、控温方式:PID自整SSR控制12、标准试件尺寸:75X290mm(特殊规格需说明)13、水槽水深:25mm自动控制14、有效辐照区域:900210mm15、紫外线波长:UVA范围为315~400nm UVB范围为280~15nm16、试验时间:0~999H(可调)17、辐照黑板温度:+50℃~+70℃℃18、标准样品架:24组19、机组具有自动喷淋功能紫外观察箱;紫外线老化观察箱;UV紫外观察箱可以模拟由阳光、雨水和露水造成的危害,AP-UV利用荧光紫外(UV)灯模拟阳光照射的效果,利用冷凝气模拟雨水和露水,被测试材料放至一定温度下的光照和潮气交替的循环程序中进行测试。AP-UV用数天或数周的时间即可重现户外数月至数年出的危害。危害类型包含:褪色、失光、粉光、开裂、浑浊、气泡、脆变、强度、衰退和氧化。AP-UV试验数据可以帮助您选择新材料,以及评估配方的变化如何影响新产品的耐久性。在材料置于户外时的变化趋势上,AP-UV可以给出极佳的相关预测结果。国产紫外线老化试验箱有哪些? 紫外线老化试验箱深圳权威机构直销光源:光源采用8支额定功率为40W的进口亚太拉斯品牌紫外线荧光灯作发光源。紫外线荧光灯管,分布在机器的上侧,共8支或6支可选。有UVA-340和UVB-313光源供用户选择配置。
    留言咨询
  • 斑马鱼行为观察箱 原产地:丹麦品牌:Loligo systems型号:Lolitrack-Box 简介:斑马鱼行为观察箱主要针对于斑马鱼仔鱼等幼鱼的行为学观察研究而设计,系统由观察箱、24(96)微孔板、红外光源、高速工业相机、高清镜头、行为分析软件组成,可以在黑暗条件下分别对多个斑马鱼仔鱼进行运动轨迹计算、活动性评估等等行为学计算。软件通过形态逻辑、色差逻辑对孔板内的研究目标进行视觉抓取,从而进行一系列行为学专业分析,数据可通过excel表格输出。 系统研究范围: 斑马鱼幼鱼的活动和运动轨迹测量可应用于许多领域的研究,研究目标不局限于斑马鱼,包括如虹鳟、鲦鱼等幼鱼的癫痫行为研究,药物开发,胚胎发育,水生物毒理学,基因敲除研究,昼夜节律,运动控制,运动障碍,神经发育等。 系统特点: ①能够同时追踪、量化每一格孔板里多达96只斑马鱼幼鱼的运动量、活动轨迹和活跃性。②使用红外(IR)背光灯提供红外照明,结合红外感应摄像机,您可以在黑暗中进行轨迹行为跟踪③观察箱独特设计隔绝外部噪声④内嵌高清工业相机⑤观察箱防震设计,隔绝外部刺激 可计算的行为学参数: 1、可计算活跃时间(活动性)2、可计算平均速度3、可计算加速度4、移动方向5、计算行进距离(运动量)6、方向7、旋转角速度8、生物在限定区域中的时间9、计算在限定区域中的访问次数10、计算在兴趣点的接触次数11、计算个体间距(最多三个目标)(社交行为)12:最大跟踪目标数:96个13:可输出excel数据文档14:输出目标物的三维轨迹运动数据,与其他可视化软件兼容(三维轨迹绘制)15:可识别动物头尾部及重心,可计算摆尾次数,身体震动频率等 参数:视频输出信号为黑白/彩色图像,分辨率不低于1280X1040,最小可追踪摄像区域1/200的动物帧数:不小于80FPS接口:USB3.0防水等级优于或等于IP30镜头:6mm 设备规格(外部): 宽度:309mm长度:435mm 高度:= 33 mm 内部: 宽度 = 279mm长度 = 205mm高度 = 315mm
    留言咨询

形态观察实验相关的方案

形态观察实验相关的论坛

  • 用TEM观察细菌形态

    我正在改一篇论文。需要TEM观察细菌形态的步骤。因为我不是这个专业的,所以当时做电镜的时候是请人做的。现在需要步骤,所以想请教一下大家。细菌就是一株纯菌,观察它的形态。具体步骤应该是怎样的?

  • 请教一个利用双束条件观察位错形态的问题。

    我们如果想利用双束条件显示出一个密排面的位错形态,应该采用什么方法呢? 传统的双束条件下,位错是在滑移面上的,如果我们对这个面进行双束条件下的暗场,那么位错和g矢量实际是垂直的状态,按理说就会消光了,反而观察不到这个面上的位错形态。请教一下老师们的看法?谢谢

形态观察实验相关的资料

形态观察实验相关的资讯

  • 关于使用偏光显微镜观察聚合物结晶形态
    聚合物作为一种重要的材料在工业、生活中得到了广泛的应用。而聚合物的结晶形态对其性能有着至关重要的影响,如何使用偏光显微镜观察聚合物结晶形态呢?用偏光显微镜研究聚合物的结晶形态是目前在实验室中较为简便而实用的方法,结晶条件的不同聚合物的结晶可以具有不同的形态,如单晶、球晶、纤维晶及伸直链晶体等。使用偏光显微镜的主要原理是利用光学现象中的偏振现象来观察样品,结晶聚合物的实际使用性能与材料内部的结晶形态、晶粒大小及完善程度有密切关系,如:光学透明性、冲击强度等。在偏光显微镜下观察聚合物结晶可以得到更为清晰、详细的结晶形态信息。对于聚合物结晶形态的研究具有重要的理论和实际意义。使用偏光显微镜观察聚合物结晶的步骤如下:第一步,制备好样品。将聚合物样品制成薄片,并保持其在室温下的结晶状态。如果需要观察样品在不同温度下的结晶形态,可以通过加热或冷却的方式来控制温度。第二步,将样品放置在偏光显微镜的样品台上,调整偏光器和偏振镜的方向,使其符合要求。第三步,通过调节偏光显微镜的焦距和放大倍数,将聚合物结晶的形态清晰地展现出来。通过偏光显微镜观察聚合物结晶形态,可以快速得到非常精确的结晶信息。例如聚合物结晶的晶体方向、晶粒大小、晶界等细节信息。同时,偏光显微镜还可以观察到聚合物的各种缺陷,如晶格缺陷、晶体缺陷等,从而提高对聚合物结晶的理解和认识。偏光显微镜是一种非常重要的观察聚合物结晶形态的工具。通过偏光显微镜的使用,可以得到更为准确、详细的结晶信息,从而帮助研究人员更好地理解和应用聚合物材料。以下是使用偏光显微镜观察的实拍效果图:深圳偏光显微镜、偏光显微镜价格、矿相偏光显微镜、偏光显微镜供应、偏光显微镜成像单偏光镜下观察,左侧是没加偏光,右侧是加偏光的偏光显微镜型号:NP900系列(科研级可定制型)MHPL1500(可选透射照明,落射照明或者透反射照明)MHPL3200(透/反射偏光)MHPL3230(透反射偏光)如果您需要研究与检验地质、化工、医疗、药品等领域,进行液态高分子材料,生物聚合物及液晶材料的晶相观察,我们为您提供一整套显微系统方案,可连接数码相机构成数码偏光显微镜,通过计算机屏幕显示测量电脑来观察图片,对图片进行保存、编辑和打印。
  • 观察者---显微镜下的空间与时间
    从古至今,人类一直在追寻更高更远的真相,从远洋航行到太空探索,人们不断征服一个个宏伟的目标,但是人们肉眼所见的宏观世界不是世界的全部,还有人眼无法看清的微观世界,它同样也吸引着无数人去探索和追寻。无论宏观还是微观事物,我们的观测都是基于三维空间的属性,即XYZ三维,而对事物形态变化的观察则需要再引入一个衡量因素--时间T,因此对事物观察的最完备方式一定是XYZT的同时记录,即形态+时间的长时间摄影,这也是显微镜的终极功能。经过三百多年的发展,现代显微镜提出分辨率、景深、视野等概念,并不断提出解决方案,显微镜已经初步满足我们对微观世界观察的需求,帮助我们记录下微观世界的空间和时间。微观世界观察最重要的是细节的分辨,分辨率的概念便由此诞生,分辨率是指人眼可以区分的两个点之间的最小距离,只在XY维度有效,根据瑞利判据,Rayleigh Criterion,正常人能分辨的极限是明视距离25cm处0.2mm的两个点,当我们使用显微镜后,我们可以看清更小距离的两个点,这便提升了我们观察的分辨率。随着现代研究的不断深入,人们对分辨率的要求也在不断提高,而科学家们也在不断的提升显微镜的分辨率,如电子显微镜将分辨率提升至纳米级别,实现了对病毒的观察,超高显微成像技术,将显微镜的分辨率从200纳米提升到几十纳米,实现了对活细胞细胞器的观察。分辨率的提升也带来了新的问题,即视野和景深的减小,当用普通中央照明法(使光线均匀地透过标本的明视照明法)时,显微镜的分辨距离为d=0.61λ/NA,可见光波长范围为400—700nm,取其平均波长550nm,波长是固定常量,因此,增大NA数值,即可得到更小的D值,也就是可以分辨的两点之间的距离更小,可以让人眼看清楚更小的物体。NA值即数值孔径,描述了透镜收光锥角的大小,NA = n * sinα,即透镜与被检物体之间介质的折射率(n)和孔径角(2α)半数的正弦之乘积。n为物镜与样本之间介质的光折射率,当显微镜物方介质为空气时,折射率n = 1 , 采用折射率高于空气的介质,可以显著提高NA值,水浸介质是蒸馏水,折射率为1.33;油浸物镜介质是香柏油或其它透明油,其折射率一般在1.52左右,接近透镜和载玻片的折射率,因此,油镜的NA值高于空气镜。孔径角又称“镜口角”,是透镜光轴上的物体点与物镜前透镜的有效直径所形成的角度,增大镜口角,可以提高正弦值,其实际上限约为72度(正弦值为0.95),乘以香柏油折射率1.52,可以得出最大NA值为1.45左右,代入分辨率计算公式,可以得出常规显微镜极限XY平面分辨率为0.2um左右。NA值还会直接影响显微镜的视野亮度(B)。由公式B∝N.A.2/ M2 我们可以推出,亮度随数值孔径(N.A.)的增大或者物镜倍率(M)的降低而增加。从理论上来说,我们应该追求尽可能高的NA值,以获得更好的XY平面分辨率和视野亮度。然而凡事都有两面性,XY平面分辨率的提升,会带来Z轴景深和观察视野的减小。显微镜一般都是垂直向下取景的,通过视场直径内观察到的物体表面凸起的位置与凹下的位置都能够看的很清楚时,那么凸点与凹点之间的高度差就是景深了,对于显微镜来说景深越大越好,景深越大在观察高低不平整的物体表面时,能够得到更好更立体的清晰度画面,大景深有助于我们对微观世界进行垂直方向形态的观察,也就是XYZ三维形态中的Z轴信息。景深就是象平面上清晰的象所对应物平面的前后空间的深度:dtot=(λ*n)/NA + n/(M∗NA) * e,dtot:景深,NA :数值孔径,M :总放大率,λ:光波波长, (通常λ=0.55um),n: 试样与物镜之间介质的折射率(空气: n=1、油: n=1.52)根据这个公式,我们可以知道,Z轴景深与XY平面NA值成反比。除了景深外,视野也受到NA值的影响,通过仪器固定注视一点时所能看见的空间范围即视野,它的计算与物镜的放大倍数直接相关,观察所看到的实际视野直径等于视场直径除以物镜的放大倍数,目镜会表明对应视场数,如10/18,即放大倍数10倍,视场直径18mm,因此当目镜确定后,放大倍数越大则观察的视野越小。XY平面分辨率是对局部细节的解析,而视野则决定了我们对样本的观察范围,视野必然是越大越好,但受限于当前的技术,我们必须采用高倍物镜,才可以得到良好的NA值,因此,视野和NA值有间接的负相关系。当我们需要观察的样本大于我们的视野时,每次观察只能看到一个局部,为了解决这个问题,拼图技术便应运而生。通过在XY方向移动样本,连续拍下不同位置的图像,最后拼接在一起,就可以得到一张全视野的图像。▲镜下局部视野▲拼接后全视野▲手动拼接▲自动拼接(图源:Echo显微镜)拼接分为手动和自动两种,手动拼图成本低廉,但是对人员的操作水平,经验要求很高,如上图,操作人员稍有不慎,就会出现图片接缝问题,同时手动拼图速度慢,不适合大批量,高通量样本处理,比如医院病理科日均上百病理切片观察,手动拼图方式无法满足要求。自动拼图的核心部件是全自动载物台,结合软件,可自动实现全自动,大范围全视野拍摄,结合自动Z轴对焦补偿,即可得到全视野的清晰图像。Echo Revolution 全自动荧光显微镜Echo Revolution全自动荧光显微镜,将XYZ三轴全部实现电动化,从而实现自动完成多图拼接的大视野高分辨率成像,而电动化的Z轴可以帮助用户实现自动聚焦、自动定焦和Z-Stacking 多层扫描大景深成像。Echo Revolution全自动荧光显微镜还添加了延时摄影功能,可以帮助用户实现长时间观察和时间回溯,使用户可以进行更全面的观察实验。
  • 如何让活细胞观察变得简单,有ECHO Revolution就够了
    细胞是生物体基本的结构和功能单位,是生物学研究的基础。传统的细胞观察是通过倒置相差(荧光)显微镜来观察细胞生长或给药前后的形态变化。但是,传统的活细胞观察方式,仅能观察到细胞瞬间的生理信息,无法反映其长时间、连续、全面、动态过程的全部信息。▲ 图源:网络,侵删随着科学的进步,人们对活细胞观察的需求和要求越来越高。如细胞三维培养观察(类器官培养观察),药物筛选等。且在药物筛选实验过程中,需要观察给药后,细胞的形态变化、生长、分化、迁移、凋亡、蛋白的表达分布和细胞器观察等。这需要显微镜长时间观察和聚焦不同焦平面的细胞,并且光毒性要小,因为用荧光观察细胞内的蛋白分布时,荧光会对细胞产生一定的损伤;对一些细胞聚集成团的厚样品来说,需要显微镜具有Z-Stcaking和三维重塑功能且分辨率要求高;同时药筛具有高通量需求,在多孔板内药筛实验中,活细胞观察需要显微镜快速在多样品孔之间进行切换、自动聚焦和荧光通道切换等,这些活细胞观察需求对显微镜功能模块要求极高。▲ 图源:网络,侵删请注意!Revolution正倒置一体电动化智能显微成像系统所设计的功能模块完美契合活细胞观察,近为之而生,搭载的实时DHR技术,使分辨率得到进一步突破,简单多功能的联用让您感受不一样的操作体验。HyperScan高速拼接大视野成像功能,即可以快速扫描整个样品孔又能解决高倍镜下视野小的问题。孔板导航成像功能(Multi-well Point)结合延时摄影成像功能(TimeLapse)、自动对焦与长时间锁焦,再搭配活细胞工作站和全自动载物台,可以实现孔板中活细胞长时间观察又可以一次性研究筛选多种不同浓度的药物对细胞的影响。Z-Stacking+DHR功能再结合自动LED荧光系统,可以更加清晰的观察细胞内不同蛋白的分布,进行三维重塑,同时降低荧光光毒性和光漂白。高速高灵敏相机捕捉微弱荧光信号,使图片结果更准确更清晰。Revolution正倒置一体电动化智能显微成像系统是一台专业的智能活细胞观察显微成像系统,对从事研究活细胞观察研究的您,必须拥有一台高颜值、高性能、易操作的研究级显微系统,Revolution您值得拥有!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制