小鼠肝组织

仪器信息网小鼠肝组织专题为您整合小鼠肝组织相关的最新文章,在小鼠肝组织专题,您不仅可以免费浏览小鼠肝组织的资讯, 同时您还可以浏览小鼠肝组织的相关资料、解决方案,参与社区小鼠肝组织话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

小鼠肝组织相关的耗材

  • 小鼠头部固定适配器
    NARISHIGE的MA-6N小鼠头部固定适配器用于SR系列立体定位仪,通过应用有效的显微操作器技术,实现了使用燕尾机械来进行平滑调整。MA-6N小鼠头部固定适配器配备了改进的辅助耳固定杆,固定容易,用户可以感受到夹持的触感。头部固定适配器规格尺寸大小/重量宽20 x 深98 x 高50-70mm, 132g
  • 头部固定适配器(小鼠)
    Narishige 的SG-3N和SG-4N小鼠/大鼠头部固定适配器能够以不同的形式使用,并且有广泛的适用性。这个简易和小型的模型是为固定头部而设计的,特别考虑了在显微镜台上要使用方便。夹紧方法是基于3点固定(嘴,鼻,耳),确保头轻松且牢固地固定在适当的位置,同时即使是小型动物也不会造成伤害。通过把口、鼻夹和耳固定杆安装在一根棒上,该仪器可以360度自由调节头部角度。研发用于低重力固定,固持器的的整体尺寸非常小,因此非常适用于将小动物固定到显微镜台。虽然形状和功能很简单,但该固持器可以许多不同的目的。用于大鼠的是SG-3N,用于小鼠的是 SG-4N。当与任选可用的安装适配器联合使用时,低重心设计使得可拆卸头部钳夹单元能够安装到显微镜台,从而可以在显微镜下观察牢固固定的小鼠头部。头部固定适配器规格底座尺寸宽140-180 x 深60 x 高50mm重量510g
  • MRI兼容小鼠立体定位器SRP-5M
    兼容小鼠立体定位器SRP-5M是可用于核磁共振环境的带有显微操作器的小鼠定位仪器,非常方便小鼠核磁共振实验时的定位和固定。兼容小鼠立体定位器SRP-5M虽然头部固定器组件100%是由塑料制成,但AP框架棒和基板都由金属制成,它保证了稳定和精确的立体定位记录。兼容小鼠立体定位器SRP-5M头部固定器组件能够从基板拆卸,使得MRI可以扫描固定在相应位置的动物,核磁共振扫描之后,相应位置固定着动物的头部固定器组件,能够容易地放回在基板的原有位置,兼容小鼠立体定位器SRP-5M能够用于多种多样的应用,只需更换头部固定组件用于小型动物(大鼠/小鼠)。结合该设备注入标记或造影剂,用于MRI扫描,头部固定组件可以进行立体定位,记录对准动物的MRI扫描点。兼容小鼠立体定位器SRP-5M特色自从NARISHIGE的立体定位操作器根据新标准制作后,AP框架具有18.7mm的方形形状。如提供的SM-15立体显微操作器。需要不带显微操作器的版本请看SRP-5M-HT2。SRP-5M和SRP-6M之间的差别在于AP框架杆的数目。 SRP-5配备了一个AP框架杆,而SRP-6有两个AP框架杆。用于大鼠的版本分别的SRP-5R和SRP-6R(SRP-5R-HT2和SRP-6R-HT2不带显微操作器)兼容小鼠立体定位器SRP-5M规格配件SM-15 立体定位显微操作器耳柱嘴、鼻夹六角扳手尺寸大小,重量SRP-5M: 宽400 x 深300 x 高110mm, 7.4kg * 该头部固定架不能连接麻醉面罩GM-4。

小鼠肝组织相关的仪器

  • 激光多普勒血流仪适合对多种组织器官进行点式或线式的快速扫描,我们可以根据您的研究对象和实验方向,推荐合适的型号和配置,敬请来电咨询。LAB型号的血流仪广泛应用于脑缺血实验、皮肤肌肉血流量测定、脏器血流量测定、皮瓣血流量、牙龈牙髓测定等各种器官、组织血流量测定。型号:LAB 单通道型号型号:LAB 2ch 双通道型号激光血流仪的主要功能特点: 用于大鼠、小鼠脑血流测定,各组织脏器血流测定等; 测试范围广,根据所要检测的组织选用相应的探头; 探头校准数据自动存储于芯片中,实现了探头的免校准,即插即用; 分析软件功能强大,自动生成报告,提供长时间连续监测; 可选配多通道配置,同时对多多个部位或只动物进行测量; 可将多台主机与一台计算机相连;主要参数: 用于连续测量组织血流 测试激光:780nm 半导体激光,CLASS 1M 级别 信号带宽:24HZ-24KHZ 时间常数:0.1, 1, 3 sec 测定项目:组织血流量:0–1000.0(mL/min/100g 相当),血流变化曲线 受光强度模拟信号输出:0– 10V 血流模拟信号输出:0– 10V 光纤探针:100/140 μm 测定范围:约 1mm 直径范围内 测定深度:0.5mm – 1mm 工作温度范围:5-40℃ 使用湿度范围:0-90%可以根据需要,选择激光散斑成像仪激光散斑成像系统(激光多普勒扫描成像系统)利用多普勒原理,通过光频谱分析获得血流分布图,具有实时成像且分辨率高的特点,适合对多种组织器官进行点式或线式的快速扫描。可以对组织血流进行连续监测,用于记录由于皮肤营养和体温调节等因素引起的毛细血管,微静脉和微动脉中的血流变化,如脑皮质血流、海马血流、肠系膜血流、肝血流、肾血流、脾脏血流等各组织血流量、流速、组织血氧测定。广泛应用于临床研究和科研实验室。型号:OZ-2/OZ-3性能介绍: 非接触:图像由低功率激光扫描组织获得。患者与扫描仪之间距离最大1m; 日间操作:独特的光学设计,即使在室内环境光线很强时也能操作; 重复扫描模式:可对进行性反应成像,并通过自动分析功能定量; 彩色数码相机简化扫描设置,并提供扫描区域的照片; 高分辨率高达256x256个 独立检测:分辨率为0.2~2.0mm/像素 还可提供0.1mm/像素的高分辨率型号; 灵活的扫描尺寸,从1像素到50cmx50cm的任意矩形; 界面友好的软件,数据库记录并存储了患者资料和图像信息非常容易进入和进行搜索; 双波长/高分辨率版本可供选择;激光多普勒血流仪的测试原理图:主要技术参数: 激光光源:单波长系统,近红外780nm或830nm,红光635nm-690nm,2.5mW,光束1.0mm,IEC 60825-1:2001标准3R级; CCD相机:自动聚焦,电动10倍光学变焦,752x582像素分辨率; 带宽:取决于扫描速度:低通(3db) 20Hz、100Hz或250Hz; 可选高通(0.1db)3Khz、15Khz或22.5Khz; 范围和扫面区域:距离20cm,最大面积为13cmx13cm;距离100cm,最大面积为50cmx50cm. 扫描速度:约4ms/像素,10ms/像素或50ms/像素; 典型成像速度为20秒完成15cmx15cm图像在64x64像素分辨率; 5分钟内完成50cmx50cm,图像在256x256像素分辨率; 空间分辨率:最大256x256像素:20cm处0.2mm/像素的“常规扫描”,10cm处2.0mm/像素的“大点扫描” 照明条件:正常环境照明; 软件:基于Windows&trade 的控制; 处理和分析软件支架:移动支架、桌面支架; 电压:接受84-264V交流电,50VA,50-60Hz 控制器:尺寸W H D mm 305 x 115 x 260;重量4.5kgs. 扫描头:尺寸W H D mm 426 x 244 x 300;重量8kgs. 存放温度:0-45℃. 使用温度:15-30℃.胃部血流实例图: 胃部血流实例图:激光多普勒血流有多种款式和型号可选,可提供:大、小鼠脑血流量测量(脑缺血模型)皮肤肌肉血流量测量、动物海马血流量测量、皮瓣灌注量测量、血管活性研究测量、牙龈血流量测量、各组织脏器血流量(肝、脾、肾等)测量、肠系膜血流量测量、烧伤创面血流灌注量测量;组织氧含量测量、糖尿病足的足趾末端压力测定等。敬请来电咨询。请关注玉研仪器的更多相关产品。如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询
  • 小鼠软组织成像仪随着科技的进步和生命科学的发展,小鼠软组织成像已经成为生物医学研究中不可或缺的一部分。这种技术能够以前所未有的精度和深度揭示小鼠体内的微观世界,为研究者提供了深入了解生物学过程、疾病发生机制以及药物研发的重要工具。小鼠软组织成像是一种利用先进成像设备和技术,对小鼠体内的软组织进行非侵入性或微创观察的方法。这些成像技术包括核磁共振成像(MRI)、计算机断层扫描(CT)、超声成像、光学成像等。通过这些技术,研究者可以观察到小鼠体内的组织结构、功能变化以及疾病发展过程。小鼠软组织成像在生物医学研究中的应用:疾病模型研究:小鼠是生物医学研究中常用的动物模型,通过软组织成像技术,研究者可以观察到疾病在小鼠体内的发展过程,从而更好地理解疾病的发病机制和病理变化。药物研发:小鼠软组织成像技术可以用于评估药物在体内的分布、代谢和疗效。这对于药物研发过程中的早期筛选和临床前研究具有重要意义。基因功能研究:通过小鼠软组织成像,研究者可以观察到特定基因在体内的表达和功能,从而揭示基因与疾病之间的关系。小鼠软组织成像仪:纽迈分析推出的小鼠软组织成像仪能提供给您独特对比信息,准确而直观的反映活体动物内部情况,现MRI设备已广泛应用于生命科学领域。小鼠软组织成像仪是一款功能强大,无损伤性的成像分析仪,帮助您了解实验对象体内结构及各组织对比信息。该设备使用永磁体,维护成本低,性能优越,适合于生命科学相关领域科研应用。小鼠软组织成像仪技术指标:场强:1±0.05T ,共振频率约42MHz动物线圈:直径60mm小鼠软组织成像仪适用范围:磁共振造影剂大、小鼠活体成像小鼠软组织成像仪应用方向:肿瘤识别(脑、皮下、肝脏)肿瘤生长与治疗过程肥胖研究磁共振造影剂研究小鼠软组织成像仪应用案例:
    留言咨询
  • RWD瑞沃德小鼠耳杆 400-860-5168转1886
    小鼠耳杆耳杆均标有刻度,分辨率为1mm,与适配器一同用于固定动物头部。-规格参数-规格产品信息产品图片68306针对小鼠的颅骨厚度薄容易挤压损伤的情况而设计的小鼠专用耳杆,尖端采用60°钝角。68307耳杆采用中空齿式,不深入小鼠耳道,接触动物头部面积大,不会刺破小鼠颅骨产生损伤,并能相对稳定的夹持动物头部。68308采用O型胶环作为小鼠固定的接触面,保证固定头部的同时,避免了对动物颅骨产生损伤。68314耳杆尖端为齿式,一侧耳杆高度可调,调整范围为-5~+5mm。
    留言咨询

小鼠肝组织相关的方案

小鼠肝组织相关的论坛

  • 【转帖】盐酸林可霉素造成小鼠肠道菌群失调规律的研究

    目的:通过观察盐酸林可霉素对小鼠肠道菌群,肠道组织病理学改变,血中淋巴细胞数的影响规律,以期为科学研究正确使用盐酸林可霉素造成菌群失调动物模型提供参考资料。方法:盐酸林可霉素连续灌胃3d停止给药,于停药后第1天,第4天,第7天,和第10天检测肠球菌数,双歧杆菌数,血中淋巴细胞数和肠道病理改变,评价盐酸林可霉素对小鼠肠道菌群的影响规律。结果:灌胃3d停止用药后第1天和第4天双歧杆菌减少,肠球菌增加,与正常组比较差异有统计学意义(P0.05),肠道黏膜皱褶变浅,上皮内杯状细胞减少。停药后第1天出现血中淋巴细胞数减少。结论:盐酸林可霉素短期大量给药,可造成小鼠菌群失调,肠道组织损伤,免疫功能受损,该损伤持续约1周。盐酸林可霉素是科学研究中用于造成菌群失调动物模型的常用抗生素,其抑制细菌生长,尤其抑制益生菌的作用非常明显,但各家用该药的方法、剂量有较大差别,由于动物的耐受性较强,菌群失调能持续的时间不清,本实验尝试在肠道菌群变化、肠组织损伤等方面来研究林可霉素造成菌群失调的规律。以期为该药在科学研究中的使用提供数据依据,现报告如下。

  • 小鼠MRI立体定位器

    [url=http://www.f-lab.cn/stereotaxis/srp-6m-ht2.html][b]小鼠MRI立体定位器SRP-6M-HT2[/b][/url]是用于核磁共振环境的[b]小鼠立体定位仪器[/b],它采用兼容MRI的材料制造,是[b]小鼠核磁共振[/b]和显微操作实验的理想选择。[b]小鼠MRI立体定位器SRP-6M-HT2[/b]头部固定器组件是由100%塑料制成,AP框架棒和基板都由金属制成,保证了稳定和精确的立体定位记录,头部固定组件能够从基板拆卸下来,使得MRI可以扫描固定在相应位置的动物,核磁共振扫描之后,相应位置固定着动物的头部固定组件,能够轻易地放回在基板的原有位置,[b]小鼠MRI立体定位器SRP-6M-HT2[/b]能够用于多种多样的应用,只需更换头部固定组件用于小鼠,结合该设备可以注入标记或造影剂,用于MRI扫描,头部固定组件可以进行立体定位,记录对准动物的MRI扫描点。[img=小鼠MRI立体定位器]http://www.f-lab.cn/Upload/srp-6m-ht2_.jpg[/img][b]小鼠MRI立体定位器SRP-6M-HT2特色[/b]自从NARISHIGE的立体定位操作器根据此标准制作后,AP框架具有18.7mm的方形形状。如提供的 SM-15 立体定位显微操作器。需要带显微操作器的版本请访问SRP-6M。SRP-5M-HT2 和 SRP-6M-HT2 之间的差别在于AP框架杆的数目。 SRP-5装配有一个AP框架杆,而SRP-6装配有两个AP框架杆。用于大鼠的版本分别是SRP-5R-HT2 和 SRP-6R-HT2(SRP-5R 和 SRP-6R不带显微操作器)小鼠MRI立体定位器:[url]http://www.f-lab.cn/stereotaxis/srp-6m-ht2.html[/url]

  • 48.10 5'-DFUR在小鼠结直肠癌模型内转化分析

    48.10 5'-DFUR在小鼠结直肠癌模型内转化分析

    【作者】 但操;【导师】 张继民; 【作者单位】 广州医学院, 外科学,【摘要】 研究背景:5’-脱氧氟尿苷(5’-deoxy-5-fluorouridine, 5’-DFUR)是临床治疗消化道恶性肿瘤的口服抗癌药物,为5-氟尿嘧啶(5-FU)的前体药物。其本身没有细胞毒作用,需要在细胞内经过胸苷磷酸化酶(thymidine phosphorylase,TP)转化为5-FU才能发挥抗肿瘤作用。已有文献报道乳腺癌和胃癌细胞可以表达TP活性,而大肠癌细胞是否表达TP则持论不同。我们在前期研究中发现大肠癌组织中TP活性主要由间质细胞中的巨噬细胞表达,而测定6株结肠癌细胞系也几乎没有TP蛋白表达。在癌细胞不表达TP的情况下5’-DFUR在结直肠癌组织中如何转化尚属疑问。我们前期体内实验对结肠癌小鼠动物模型应用化疗药物5’-DFUR进行治疗,结果发现与5-FU相比平均荷瘤生存期更长,平均瘤重轻,同期平均体重下降缓慢,提示5’-DFUR在小鼠结肠癌组织比正常组织中转化率高,抗癌选择性高。其原因可能是TP酶在癌组织中分布较正常组织多。前期体外实验把5’-DFUR加入培养基中同人血单核细胞一起培养24h,5’-DFUR对4种癌细胞的IC50明显下降,提示血液中单核细胞也可表达TP。由于尚未发现实验比较在癌组织和血液中TP含量,故两者TP的含量高低尚需要实验进一步证实。本实验应用高效液相色谱法(high performance liquid chromatography,HPLC)测定应用5’-DFUR后癌组织和血液中5-FU的转化情况,间接推断TP酶在癌组织和血液中分布差异,为进一步研究5’-DFUR在结直肠癌组织中转化及TP酶调控机制提供资料。实验材料:1、实验动物SPF级近交系BALB/c小鼠28只,6-8周龄,雄性,体重20.00±2.34g,购自广东省医学实验动物中心。2、肿瘤细胞株BALB/c小鼠结肠腺癌细胞株(CT26),购自美国菌种保藏中心(American Type Culture Collection, ATCC)。3、实验药物5’-DFUR由Roche公司日本研究中心提供; 5-FU注射液,江苏南通精华制药有限公司生产(批号: 080607);5-FU标准品购自Sigma有限公司提供(批号: 097K1352)。4、实验仪器岛津高效液相系统;色谱柱:Diamonsil C18柱(250mm×4.6mm,5μm)实验方法:1、小鼠结肠癌CT-26细胞株的培养10%胎牛血清1640培养基,含青霉素100×103 U/L和链霉素100 mg/L,37℃,5%CO2水浴恒温培养箱中培养,隔日换液,2-3天酶消化法传代。2、细胞悬液制备制备模型当天取指数生长期的细胞,用0.25%胰蛋白酶消化,机械吹打成细胞悬液,2 000r/min离心5 min,弃上清液,加适量生理盐水调整细胞浓度至1×107个/ml,以台盼蓝测定细胞活力在95%以上。3、结肠癌模型制作方法将体外培养的CT26细胞悬液0.2ml注入小鼠(BALB/c)背部皮下,约2周后基本可以形成肉眼可见的肿瘤隆起。4、动物分组及给药荷瘤小鼠28只随机分为4组:①5’-DFUR给药15分钟组;②5’-DFUR给药30分钟组;③5-FU给药15分钟组;④5-FU给药30分钟组。根据动物体重,5-FU用量0.020mg/g ,配制浓度为1.0 mg/ml。5’-DFUR用量0.038mg/g;配置浓度为2.0mg/ml。各组分别腹腔注射给药15分钟、30分钟后处死小鼠立即取血和瘤组织。5、标本处理小鼠眼眶动静脉取血0.5 ml后放置入37℃水浴30分钟,3200rpm离心5min,取上清液4℃保存。肿瘤组织用滤纸吸干血迹后称重,然后按0.5g组织与4 ml生理盐水(1:8)加入匀浆器匀浆5min, 3200rpm离心5min,取上清液4℃保存。6、制作血液和肿瘤组织的5-FU药物标准曲线取未给药小鼠血清7份,每份90μL,分别加入由5-FU对照品和蒸馏水配制的系列标准液适量并混匀配成100μL,使血清中药物浓度分别为6.25,12.5,25.0,50.0,100.0,200.0,400.0μg·mL-1,制作血清标准曲线;取未给药小鼠肿瘤组织匀浆液7份,每份90μL,分别加入由5-FU对照品和蒸馏水配制的系列标准液适量并混匀配成100μL,使肿瘤匀浆液中药物浓度分别为1.0,2.0,4.0,8.0,16.0,32.0,64.0μg·mL-1,制作肿瘤标准曲线。7、测量各标本浓度取血清100μL,置于5mL玻璃试管中,加入乙酸乙酯2mL,漩涡振荡2min后,3200rpm离心5min,取上层析液置于另一玻璃试管中。再次加入乙酸乙酯2mL进行第二次提取,漩涡振荡2min后,3200rpm离心5min,取上层析液,然后合并两次提取的上层析液,离心浓缩挥干。加入100μL流动相定容,混匀取出,置于EP管中,10000rpm离心7min,取上层析液20μL进样。记录药物峰面积,代入相应标准曲线计算药物浓度;取肿瘤匀浆液100μL,以同样方法处理标本测量浓度。8、观测指标给药15分钟、30分钟处死组5’-DFUR组和5-FU组小鼠血液与癌组织5-FU浓度。9、统计学方法应用统计软件SPSS13.0数据包对5’-DFUR组和5-FU组小鼠血液与癌组织5-FU浓度采用配对样本t检验进行比较。当P0.05时,认为差异有统计学意义。结果:1、注射药物5’-DFUR 15、30分钟后,癌组织转化的5-FU浓度分别54.64μg/g±12.80μg/g和45.58μg/g±18.82μg/g,血清中中5-FU浓度分别为8.83μg/ml±1.68μg/ml和9.82μg/ml±2.93μg/ml,15分钟、30分钟组癌组织5-FU浓度分别为血清的6.36、4.47倍(P0.05);2、注射药物5-FU 15、30分钟后,癌组织转化的5-FU浓度分别86.13μg/g±15.42μg/g和94.68μg/g±39.89μg/g,血清中5-FU浓度分别为133.35μg/ml±20.69μg/ml和112.70μg/ml±26.27μg/ml,15分钟、30分钟组血清5-FU浓度分别为癌组织的1.59、1.62倍(P0.05)。结论:小鼠结肠癌模型体内,癌组织内5’-DFUR转化率高于血液,考虑分布在癌组织中的PyNPase酶比血液高。 【谱图】http://ng1.17img.cn/bbsfiles/images/2012/08/201208142214_383901_1609970_3.jpg

小鼠肝组织相关的资料

小鼠肝组织相关的资讯

  • 文献解读丨小鼠组织中口服奥曲肽的MALDI-TOF质谱成像方法优化及评价
    本文由中国药科大学天然药物国家重点实验室药物代谢与药代动力学重点实验室所作,发表于Talanta 165 (2017) 128–135。 近年来,基质辅助激光解吸/电离飞行时间质谱成像(MALDI-TOF-MSI)技术受到了广泛的关注,因为它可以对动植物组织切片中不同的分子进行定位,尽管在逐点绝对定量中仍存在一些障碍。奥曲肽是一种合成的生长抑素类似物,在临床上广泛应用于预防胃肠道出血。 本研究的目的是建立一种定量显示奥曲肽在小鼠组织中空间分布的MALDI-TOF-MSI方法。在这个过程中,一个结构相似的内标物与基质溶液一起被点到组织切片上,以尽量减少信号变化,并给出良好的定量结果。通过比较奥曲肽与不同基质共结晶后MALDI-TOF-MSI产生的信噪比,选择2,5-二羟基苯甲酸作为最合适的基质。通过测定不同浓度的新鲜组织切片中奥曲肽的含量,验证了MALDI-TOF-MSI在线性、灵敏度和精密度方面的可靠性。验证的方法成功地应用于奥曲肽在小鼠组织中的分布研究。 结果表明,MALDI-TOF-MSI不仅能清晰地显示奥曲肽的空间分布,而且可以计算关键的药代动力学参数(Tmax和t1/2)。更重要的是,MALDI-TOF-MSI测定的奥曲肽的组织浓度-时间曲线与LC-MS/MS测定的结果一致。这些发现说明了MALDI-TOF-MSI在药物开发过程中的药代动力学分析潜力。使用仪器:岛津MALDI TOF、 LC–MS/MS 图1 内标对MALDI-TOF-MSI分析小鼠肝切片中奥曲肽线性的影响。(A) 小鼠肝脏切片上的兰瑞肽(内标)的质谱图,(B)加入奥曲肽标准溶液的肝脏切片光学图像,(C)5个浓度水平的奥曲肽的代表性质谱图像([M+H]+离子 m/z 1019 Da),(D) 用奥曲肽的平均信号强度绘制的奥曲肽校准曲线(n=5),(E)经内标校正后的奥曲肽的代表性质谱图像,(F) 用奥曲肽/内标的平均强度比绘制的奥曲肽校准曲线(n=5) 图2 对口服20 mg/kg奥曲肽后0、10、30、60、90和120 min采集的小鼠组织进行成像MS分析。(A)胃切片的代表性光学和质谱图像,(B)肠切片的代表性光学和质谱图像,(C)肝切片的代表性光学和质谱图像 图3 MALDI-TOF-MSI和LC-MS/MS测定奥曲肽的组织浓度-时间曲线。(A) MALDI-TOF-MSI法测定小鼠胃中奥曲肽的浓度-时间曲线 (B) LC-MS /MS法测定小鼠胃中奥曲肽的浓度-时间曲线 (C) LC-MS/MS法和MALDI-TOF-MSI法测定小鼠胃中奥曲肽的含量的相关性分析。 本研究开发了一种基于MALDI-TOF-MSI的小鼠组织切片奥曲肽定量分析方法。首次通过比较DHB、CHCA和SA提取的奥曲肽在一系列激光功率水平下的信噪比,系统研究了激光能量对MALDI基质选择的影响。结果表明,DHB、CHCA和SA的最优功率水平应分别设置为50、70和60,DHB因其较高的灵敏度和较低的基质效应最终被选为最合适的MALDI基质。兰瑞肽是一种与奥曲肽结构相似的生长抑素类似物,被用作内标,通过减小组织异质性、基质晶体异质性和激光功率波动引起的离子信号变化,提高分析的线性、准确性和精密度。然后成功地应用所开发的MALDI-TOF-MSI方法,观察口服20 mg/kg剂量后,奥曲肽在小鼠胃、肠、肝中的分布和消除过程。 结果表明,MALDI-TOF MSI不仅能清晰地显示奥曲肽在小鼠组织中的空间分布,而且使关键药物动力学参数(Tmax和t1/2)的计算成为可能。更重要的是,MALDI-TOF-MSI测定的奥曲肽的组织浓度-时间曲线与LC-MS/MS绝对定量的结果吻合较好。 文献题目《Optimization and evaluation of MALDI TOF mass spectrometric imaging for quantification of orally dosed octreotide in mouse tissues》 使用仪器岛津MALDI TOF、 LC–MS/MS作者Tai Rao, Boyu Shen,Zhangpei Zhu, Yuhao Shao, Dian Kang, Xinuo Li, Xiaoxi Yin, Haofeng Li,Lin Xie, Guangji Wang, Yan Liang Key Lab of Drug Metabolism &hamacokinets,State Key Laboratory of Natural Medicines,China Pharmaceutical University, Tongjiaxiang 24, Nanjing 210009 PR China
  • 成像质谱:非酒精性脂肪肝病模型小鼠中脂类成分的可视化分析
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 摘 要: /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 质谱法不仅经常被用于血液和尿液样本中脂质的研究,同时也可用于以实验动物器官为样本的脂质研究。近年来,将匀浆样本的多变量分析结果与待测样本组织切片空间分布研究结果相结合的方式,有望加速有关疾病机理阐释或新药研发方面的研究工作。 因此,本应用实例对2,2’-偶氮(2-氨基丙烷)双盐酸盐(AAPH)给药后,非酒精性脂肪肝(NAFLD)模型小鼠脂质成 span style=" text-indent: 2em " 分的变化进行研究。 /span /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1 研究背景 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 肝细胞癌通常由肝炎病毒引起,但也可能由酒精性肝炎引起。然而,由于代谢综合征病例的增加,与酒精无关的非酒精性脂肪性肝炎(NASH)的发病率也有增加。因此,目前正在进行各种各样的相关研究。以往的研究表明,非酒精性脂肪肝病(NAFLD)的出现或其发展为非酒精性脂肪性肝炎(NASH)的进程与氧化应激之间存在很强的相关性。然而,这一机制的细节和诱发、影响因素尚不清楚。近年来, 动物实验结果表明2,2’-偶氮(2-氨基丙烷)双盐酸盐(AAPH)给药可以抑制脂肪在肝脏的过度积累1)。为了阐明其作用机制,可使用多种类型的质谱仪对同一样本进行分析,充分利用不同类型质谱提供的数据信息。本文描述了对AAPH 给药后NAFLD 模型小鼠研究的实例。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/5915422f-fd59-4161-8be6-0d165758d8f2.jpg" title=" 1.png" alt=" 1.png" / /p p style=" text-align: center " 图1 实验动物准备 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2. 实验材料及方法 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 以NAFLD 模型小鼠为实验动物, AAPH 单剂量(90mg/kg)给药24 小时后取肝脏进行实验。肝脏匀浆样本用于LCMS 分析,制备10μm 厚肝脏冰冻组织切片用于成像质谱分析。将给予磷酸盐缓冲液(PBS)的模型小鼠肝脏作为对照样本(图1)。成像质谱分析的流程图如图2 所示。使用冷冻切片机制备10μm 厚的老鼠肝脏组织切片(I),将切片放置于ITO 导电载玻片表面(II),在组织切片表面涂敷基质辅助电离(III),获取成像质谱分析数据(IV)。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/e65e6c2a-746e-4a29-9027-5c007baf8713.jpg" title=" 2.png" alt=" 2.png" / /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 图2 成像质谱分析流程 /p p style=" text-indent: 2em line-height: 1.75em " 3. 使用LCMS 数据进行验证 /p p style=" text-indent: 2em line-height: 1.75em " 取模型小鼠肝脏,匀浆后由LCMS进行分析,对脂质成分进行检测。实验条件如表1所示。 /p p style=" text-indent: 2em line-height: 1.75em text-align: center " 表1 LCMS实验条件 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/452b470c-8f24-4e51-a583-8212f9502448.jpg" title=" 3.png" alt=" 3.png" / /p p style=" text-align: center " 图3 LCMS-IT-TOF /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 图3 显示实验数据进行统计学分析的结果。对AAPH给药组与对照组进行比较,多种脂质成分存在差异。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 表2 总结了出现特征变化的不同脂质成分。 /p p style=" text-align: center text-indent: 2em line-height: 1.75em " 表2 AAPH 给药后发生变化的脂质组分 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/8039b671-0c06-454f-90ef-c37c83bf5af0.jpg" title=" 4.png" alt=" 4.png" / /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 根据分析结果,通过对比给药组与对照组肝脏匀浆检测数据的统计学分析结果,可以鉴别给药后发生变化的组分。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 294px " src=" https://img1.17img.cn/17img/images/202006/uepic/2817dda4-851e-4ea4-bd22-9c96d9047c8d.jpg" title=" 5.png" alt=" 5.png" width=" 600" height=" 294" border=" 0" vspace=" 0" / /p p style=" text-align: center " 图3 统计学分析结果 /p p style=" text-align: center " (A) PCA score plot, (B) PCA loading plot, (C) OPLD-DA score plot, (D) OPLS-DA S-plot /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 4. 使用成像质谱进行脂类成分的可视化分析 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 表3显示了iMScope成像质量显微镜的分析条件。成像质谱分析的实验结果如图5所示。相邻切片的HE染色结果如图4所示。使用正离子模式分析组织切片,成功获得表2中在LCMS分析结果中出现变化脂质成分的质谱图像,如图5中虚线框选的质谱图像。此外,还获得了在采集范围内其他具有类似特征分布的脂质成分的质谱图像。成像质谱技术的主要优点之一是通过一次分析在同样的分析条件下,可以同时提供多个不同质荷比化合物的空间分布信息。这一特点使无标记成像质谱分析成为可能。本应用实例中,部分脂质成分可以根据iMScope的检测数据并参考相关文献得到鉴别2),3)。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/173cb788-d8f8-4c66-96e4-e859095877ee.jpg" title=" 6.png" alt=" 6.png" / /p p style=" text-align: center " 图4 连续切片的HE染色结果 /p p style=" text-align: center " 表3 iMScope成像质谱实验条件 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/1067befb-7acb-4e1d-881c-9c868b4db0b5.jpg" title=" 7.png" alt=" 7.png" / /p p style=" text-align: center" img style=" width: 600px height: 350px " src=" https://img1.17img.cn/17img/images/202006/uepic/34ee0d51-4b7a-4519-832b-051e09819ef2.jpg" title=" 8.png" width=" 600" height=" 350" border=" 0" vspace=" 0" alt=" 8.png" / /p p style=" text-align: center" img style=" width: 600px height: 186px " src=" https://img1.17img.cn/17img/images/202006/uepic/ee38d58c-510f-4865-9a5d-d1c0a79298d1.jpg" title=" 9.png" width=" 600" height=" 186" border=" 0" vspace=" 0" alt=" 9.png" / /p p style=" text-align: center " 图5 iMScope 质谱成像分析结果 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 5. 小 结 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 本文展示了AAPH 给药后发生变化的脂质成分在模型小鼠肝脏切片上的空间分布结果。在新药研发或临床应用相关的基础医学研究领域中,必须建立可以针对给定研究目标及样本特点进行优化的实验体系。因此,多种类型的质谱仪被广泛使用。此外,如本文所述,利用新型质谱仪进行多层面分析也有望发现新的信息,并提高研究效率。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 6. 参考文献 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 1) Free. Radic. Res, 38: 375–84 (2004) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 2) Anal. Chem. 80(23): 9105–14 (2008) /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 3) Anal. Chem. 84(4): 2048–54 (2012) /p p br/ /p
  • 岛津成像质谱显微镜应用专题丨小鼠大脑成像分析
    优势● iMScope QT可测量的最大范围超过100万像素,能够进行大面积样本分析,例如在一次检测中对小鼠大脑全切片进行分析。● iMScope QT的分析速度比前一代产品快8倍以上,能够进行快速分析。● iMScope QT具有高质量准确度、分辨率及高空间分辨率,能够进行精确质谱成像分析。 概述质谱成像技术可以通过质谱仪直接检测生物分子和代谢物,同时保留其在样本组织上的位置信息,因此,可以生成不同生物分子基于特定离子信号强度和位置信息的二维质谱图像。iMScope成像质谱显微镜是用于质谱成像分析的整合型仪器,结合了光学显微镜和质谱仪,能够分析物质的结构和分布特征,拓展了药物研发和代谢物研究等领域的范围。通过将MALDI转换成LC和ESI系统,iMScope还可用于LC-MS定性及定量分析。本文将介绍配备Q-TOF质谱仪的新型iMScope QT(图1),并与前一代iMScope TRIO设备进行比较。图1 iMScope QT 小鼠全脑切片分析前一代iMScope TRIO设备的最大可测量范围是250 × 250像素。在iMScope QT中,可测量范围已扩展至1024 × 1024像素,能够以15 μm的空间分辨率分析小鼠全脑切片(约17mm × 9.4 mm)。根据表1条件进行检测,可在m/z 885.557处获得磷脂酰肌醇PI (38:4),并在m/z 888.631处获得硫苷脂(C24:1)的清晰质谱图像(图2)。 此外,由于iMScope QT的最大激光频率为20 kHz,分析速度比iMScope TRIO快8倍以上。结果显示完成图2所示的小鼠全脑切片(702624 pix)质谱成像分析仅需6小时。 表1 分析条件图2 小鼠全脑切片的质谱成像结果(空间分辨率:15 μm) 小鼠小脑的高空间分辨率分析对小鼠小脑附近的区域进行高空间分辨率质谱成像分析,如图2(a)中红色部分所示。根据表1中的分析条件,空间分辨率为5 μm。如图所示,可在m/z 885.557处获得 PI (38:4)、在m/z 888.631处获得硫苷脂(C24:1),检测到更清晰更详细的质谱图像(图3(b)和(d))。 此外,由于iMScope QT的质量准确度和分辨率较高,能够分离和检测PI (38:4)的同位素(m/z 888.573)和硫苷脂(C24 :1)(m/z 888.631),并能提取每种同位素的质谱图像(图3(c)和3(d))。而iMScope TRIO则无法获得以上结果。 图3 小鼠小脑的光学图像和质谱图像(空间分辨率:5 μm) (a) 光学图像(b) PI (38:4)的质谱图像,m/z 885.557(c) PI (38:4)同位素的质谱图像,m/z 888.573(d) 硫苷脂(C24:1)的质谱图像,m/z 888.631 结论与iMScope TRIO相比,iMScope QT的分析范围更广,分析速度更快,可实现更广泛的快速成像分析。此外,随着检测准确度和分辨率的提高,能够对各种目标化合物进行高精确度、高特异性的质谱成像分析。 iMScope QT不仅整合了质谱和形态学分析,而且能够在更广泛的领域实现更快速、更灵敏以及更高的空间分辨率的检测。 本文内容非商业广告,仅供专业人士参考。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制