小鼠大脑皮层

仪器信息网小鼠大脑皮层专题为您整合小鼠大脑皮层相关的最新文章,在小鼠大脑皮层专题,您不仅可以免费浏览小鼠大脑皮层的资讯, 同时您还可以浏览小鼠大脑皮层的相关资料、解决方案,参与社区小鼠大脑皮层话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

小鼠大脑皮层相关的耗材

  • 小鼠倾斜立体定向工作站配件
    小鼠倾斜立体定向工作站配件为小鼠立体定向提供了倾斜定位方案,使得可以从侧面接近小鼠,小鼠倾斜立体定向工作站是为小动物,特别是小鼠研发的。小鼠倾斜立体定向工作站配件使得研究人员可以从侧面接近小鼠,用于检查听觉皮层,内嗅皮质,腹侧海马和杏仁体。一个刚性调节支架使倾斜变得可行,安装一个固定板保证动物不会掉落。小鼠倾斜立体定向工作站设置示例*SM-15 单独出售. *用于大鼠,请考虑SR-50R-HT. 自从NARISHIGE的立体定位操作器,如SM-15立体显微操作器根据此规格制造后,SR-50M-HT配备了一个AP框架槽(18.7mm方形)用来安装附件。小鼠倾斜立体定向工作站配件规格配件EB-3B 小鼠辅助杆EB-5N小鼠辅助耳柱尺寸大小/重量宽400 x 深300 x 高150mm. 10.4kg
  • 微操作型小鼠脊髓夹立体定位器ST-7M
    微操作型小鼠脊髓夹立体定位仪ST-7M是多功能小动物立体定位仪器具有微操作器和小鼠脊髓夹的功能,可以同时进行大脑和脊髓的实验,是目前小鼠实验中最为精密齐全而紧凑的定位操作仪器。微操作型小鼠脊髓夹立体定位仪ST-7M特色具有稳定结构,用于小型动物,尤其是小鼠实验。有一根辅助耳固定杆用于小鼠耳朵的牢固固定。可以同时进行大脑和脊髓的实验。提供了可移动的中心板,用于如固定猫脊髓这样的工作。AP框架杆,是固定操作器的地方,是NARISHIGE标准18.7mm方形杆,可以连接包括SM-15等其他多种配件小鼠脊髓夹立体定位仪规格配件SM-15立体定位显微操作器 EB-3B 小鼠耳固定杆(一对)EB-5N 小鼠辅助耳固定杆连接环螺丝六角扳手基座尺寸宽400 x 深300 x 高180mm基座重量7.4kg不带显微操作器的版本请访问 ST-7M-HT.用于大鼠的版本请访问ST-7R.
  • 小鼠脊髓夹立体定位器ST-7M-HT
    小鼠脊髓夹立体定位仪ST-7M-HT是带有小鼠脊髓夹多功能小动物立体定位仪器。小鼠脊髓夹立体定位仪特色紧凑型且稳定的立体定位仪器研发用于小型动物,尤其是小鼠实验。有一根辅助耳固定杆用于小鼠耳朵的牢固固定。可以同时进行大脑和脊髓实验。提供了可移动的中心板,用于如固定猫脊髓这样的工作。设置示例AP框架杆,是固定操作器的地方,是NARISHIGE标准18.7mm方形杆,可以连接像立体定位显微操作器SM-15 和其他多种配件。需要有显微操作器的版本请访问 ST-7M.需要用于大鼠的版本请访问ST-7R-HT.小鼠脊髓夹立体定位仪规格配件EB-3B小鼠耳固定杆(一对)EB-5N小鼠辅助耳固定杆 连接环螺丝六角扳手底座尺寸宽400 x 深300 x 高180mm底座重量7.4kg

小鼠大脑皮层相关的仪器

  • G Cell光影细胞科技是依托清华大学深圳研究生院而创建的一家创新型技术企业,拥有先进完备的光学检测实验平台和一支源自清华大学的高素质年轻化的技术骨干。公司作为实验室设备行业与互联网行业的跨界组合,致力于打造新一代的实验室智能设备。产品特点:小鼠听性脑干反应测试系统(ABR)通过给予不同强度的声刺激诱发并记录大脑皮层的电位反应,以此检查结果来判断听力损失情况,常用于听力筛查和听阈评估。我们的设备具备四通道,可同时测试四只小鼠的听性脑干反应。听性脑干反应是短潜伏期电位,可用来鉴别传音性耳聋、脑干病变以及听神经瘤等。通过对小鼠的听性脑干反应的测试,可帮助研究人员开展听力相关的研究。
    留言咨询
  • 产品介绍 脑立体定位仪是用于对实验动物进行脑部定位并固定的装置。实验时首先利用脑定位仪来固定动物的头部,使其不发生任何相对移动,然后利用动物颅骨外面的标志或其它参考点所规定的三度坐标系统,并根据实验动物的脑定位图谱,来确定大脑皮层下某些神经核团,如海马区的位置,以便在非直视暴露下对所研究的神经核团进行定向的刺激、破坏、注射药物、引导定位等操作。可用于帕金森氏病动物模型建立、癫痫动物模型建立、脑内肿瘤模型建立、学习记忆、脑内神经干细胞移植、脑缺血等研究。 M5084轻便型脑立体定位仪取消U型支架,小鼠适配器与底板直接结合,给实验提供了一个宽敞、开阔的空间,方便实验人员对小鼠进行头部定位操作。 典型应用 技术参数1.小型的底板尺寸255mm x 255mm2.耳杆材质:小鼠聚甲醛树脂材料,独特轻巧、相比不锈钢材质更经久耐用3.门齿夹上下调整范围:20mm(0mm~+20mm)4.耳杆上下调整范围:20mm(0mm~+20mm)5.耳杆带有刻度线(精度1mm),方便平衡固定操作6.耳杆具有插入固定方式(18度钝头和圆形中空锯齿),防止损伤颅骨7.可选配增加双臂方式 可选配置M5126手动微量注射泵M5136手动微量注射泵M5258高精度微量注射泵M5202颅钻脑立体定位仪M5116标准对角夹持器M5117通用夹持器M5131光纤转环夹持器M5127陶瓷光纤插芯夹持器 选型指南M5084轻便小鼠脑立体定位仪M02轻便小鼠脑立体定位仪 M5085轻便小鼠数显脑立体定位仪轻便小鼠恒温数显脑立体定位仪 安装实例瓯江实验室瓯江实验室瓯江实验室南京鼓楼医院
    留言咨询
  • 产品介绍 脑立体定位仪是用于对实验动物进行脑部定位并固定的装置。实验时首先利用脑定位仪来固定动物的头部,使其不发生任何相对移动,然后利用动物颅骨外面的标志或其它参考点所规定的三度坐标系统,并根据实验动物的脑定位图谱,来确定大脑皮层下某些神经核团,如海马区的位置,以便在非直视暴露下对所研究的神经核团进行定向的刺激、破坏、注射药物、引导定位等操作。可用于帕金森氏病动物模型建立、癫痫动物模型建立、脑内肿瘤模型建立、学习记忆、脑内神经干细胞移植、脑缺血等研究。 Z5084轻便型脑立体定位仪取消U型支架,小鼠适配器与底板直接结合,给实验提供了一个宽敞、开阔的空间,方便实验人员对小鼠进行头部定位操作。 典型应用 技术参数1.小型的底板尺寸255mm x 255mm2.耳杆材质:小鼠聚甲醛树脂材料,独特轻巧、大鼠不锈钢材质经久耐用3.门齿夹上下调整范围:20mm(0mm~+20mm)4.耳杆上下调整范围:20mm(0mm~+20mm)5.耳杆带有刻度线(精度1mm),方便平衡固定操作6.耳杆具有插入固定方式(18度钝头和圆形中空锯齿),防止损伤颅骨7.可选配增加双臂方式 配置清单型号名称配置选配Z5032/Z5033轻便型脑立体定位仪—单臂/双臂大鼠恒温加热装置Z5034/Z5035轻便型数显脑立体定位仪—单臂/双臂大鼠Z5045/Z5046轻便型脑立体定位仪—单臂/双臂小鼠Z5047/Z5048轻便型数显脑立体定位仪—单臂/双臂小鼠Z5084/Z5086轻便型脑立体定位仪—单臂/双臂小鼠及幼大鼠Z5085/Z5087轻便型数显脑立体定位仪—单臂/双臂小鼠及幼大鼠Z5051/Z5052轻便型脑立体定位仪—单臂/双臂大小鼠Z5053/Z5054轻便型数显脑立体定位仪—单臂/双臂大小鼠Z02轻便型小鼠定位仪—加热恒温小鼠 可选配置Z5126手动微量注射泵Z5136手动微量注射泵Z5258高精度微量注射泵Z5202颅钻脑立体定位仪Z5116标准对角夹持器Z5117通用夹持器Z5131光纤转环夹持器Z5127陶瓷光纤插芯夹持器 选型指南Z5084轻便小鼠脑立体定位仪Z02轻便小鼠脑立体定位仪Z5085轻便小鼠数显脑立体定位仪轻便小鼠恒温数显脑立体定位仪 安装实例瓯江实验室瓯江实验室瓯江实验室南京鼓楼医院
    留言咨询

小鼠大脑皮层相关的试剂

小鼠大脑皮层相关的方案

  • 迅数MIC显微系统用于小鼠大脑皮层细胞研究
    目的:探讨丙戊酸镁对小鼠急性脑缺血再灌注损伤的预防作用及其机制。方法:取小鼠随机分为假手术组、模型组和丙戊酸镁高、低剂量(0.04、0.02 mgg-1)组,每组10 只,灌胃给予相应药物,每日2 次,连续14 d,末次给药1 h 后对后3 组小鼠建立急性脑缺血再灌注损伤模型,建模成功后检测各组小鼠脑指数和脑组织中丙二醛(MDA)含量及超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)活性,并观察大脑皮层和海马CA1 区细胞形态的变化。结果:与模型组比较,丙戊酸镁高、低剂量组小鼠神经元损伤减轻,脑指数和MDA含量明显降低,GSH-Px活性明显升高(P<0.01 或P<0.05),且丙戊酸镁高剂量组SOD活性明显升高(P<0.01)。结论:丙戊酸镁对小鼠急性脑缺血再灌注损伤具有预防作用,其机制可能与抗氧化作用有关。
  • 激光剥蚀-电感耦合等离子质谱成像阿尔茨海默病额叶皮层白质和灰质铁分布(英文原文)
    大脑中的铁沉积是正常衰老的一个特征,尽管在包括阿尔茨海默氏症在内的几种神经退行性疾病中,铁沉积的速度比年龄匹配的对照组要快。利用激光剥蚀电感耦合等离子体质谱成像技术,我们在此提出了一项初步研究,定量评估了阿尔茨海默病和对照组额叶皮层石蜡包埋切片中白质和灰质铁的含量。使用磷成像指示白色/灰色边界问题,我们发现,在阿尔茨海默氏症的大脑灰质中铁的含量明显比控制变量组的大,这可能是指示在这个脆弱的大脑区域铁的稳定性较差,或为应对慢性神经退化增加炎症提供了证据。我们还观察到额叶皮层白质内铁含量增加的趋势,这可能表明在髓鞘完整性丧失之前铁代谢紊乱。考虑到大脑中过量铁的潜在毒性,我们的结果为不断发展新的磁共振成像方法提供了有力的支持证据,以评估阿尔茨海默病中白质和灰质铁积聚。
  • 采用 GC/Q-TOF 对小鼠大脑中阿片制剂诱导的变化进行代谢组学研究
    本研究阐明了小鼠大脑中阿片制剂诱导的代谢变化。通过将Agilent 7200 系列GC/Q TOF MS 的EI MS、EI MS/MS 和PCI 功能与Agilent MassHunter 软件工具相结合,获得了一个非常灵活且全面的用于鉴定代谢组学差异的工作流程。采用该工作流程可以区分吗啡敏感性和吗啡耐受性的小鼠品系,确定吗啡给药后小鼠的反应差异,并且采用不同的技术鉴定化合物。

小鼠大脑皮层相关的论坛

  • 首次将人皮肤细胞转变为大脑皮层细胞

    http://www.biomart.cn//upload/userfiles/image/2012/02/1328771705.jpg英国剑桥大学科学家首次从人皮肤样品中构建出大脑皮层细胞(cerebral cortex cell)---这些细胞组成大脑灰质。2012年2月5日,这项研究结果在线发表在《自然-神经科学》期刊上。大脑皮层疾病包括从诸如癫痫和自闭症之类的发育疾病到诸如阿尔茨海默(Alzheimer)疾病之类的神经退化疾病。这些研究发现将使得科学家们能够研究人大脑皮层如何发育和它如何“连接接通”以及这种接通如何出错(一种导致学习障碍的常见原因)。它也将允许科学家在实验室中重建诸如阿尔茨海默疾病之类的大脑疾病。这将给予他们之前不可能获得的启示,允许它们实时观察疾病发展同时也可测试阻止疾病发展的新药物。剑桥大学生物化学部门Rick Livesey 博士是这篇研究论文的主要研究员。他说,“这种方法让我们有能力研究人大脑发育和疾病,而这在5年前是难以想象的。”对他们的研究而言,科学家从病人中获取皮肤活组织,然后将来自皮肤样品中的细胞重编程为干细胞。这些干细胞如同人胚胎干细胞一样就能够被用来产生大脑皮层细胞。Livesey博士补充道,“我们正使用这种体系来重建阿尔茨海默疾病。阿尔茨海默疾病是世界上一种最为常见形式的痴呆症。当前在英国痴呆症影响着800000个人。这种疾病主要影响一种神经细胞类型,而这种神经细胞我们已能够在实验室中制造出来,因此我们在实验室中有一种非常好的工具创建出该疾病的一种完整的人类模型。”英国阿尔茨海默疾病研究中心是英国一家主要的痴呆症研究慈善组织。该中心研究主任Simon Ridley说,“我们为资助了这项研究而感到非常高兴。这项研究向前迈出了积极性的一步。在实验室中将干细胞变成完全功能性的神经细胞网络很有希望能够解密诸如阿尔茨海默疾病之类的复杂大脑疾病。痴呆症是我们时代面临的最大医学挑战,我们迫切需要更多地了解和如何阻止该疾病。我们希望这些发现能有让我们更接近这种目标。”

  • 删除记忆?未来或许真可以

    近日,刊登在国际著名杂志Neuron上的一篇研究论文中,来自加州大学戴维斯分校神经科学研究中心的研究人员利用光成功地剔除掉了小鼠大脑中的特殊记忆,该研究或为揭示大脑不同部分如何联合工作来恢复情景记忆的机制提供了一定的思路。光遗传学(Optogenetics)是一种利用光来研究神经细胞的新型技术,近年来,该技术正在被科学家们快速采用作为标准方法来进行大脑功能的研究。文章中研究者Kazumasa Tanaka将该技术应用于进行记忆恢复等的研究中,长达40年来,科学家们假设恢复情景记忆(即便在特殊场所发生的特殊事件等)涉及大脑皮层和大脑海马体之间的协调活动,该理论就是要研究在情景记忆恢复过程中涉及大脑皮层和海马体的大脑活动重新产生活性的模式,从而使得个体再次经历那些事件,如果海马体被损伤,那么病人就会失去数十年的记忆。文章中,研究人员利用遗传修饰化的小鼠进行研究,当小鼠神经细胞被激活后其可以全部发绿色荧光并且表达特殊蛋白质来促进神经细胞被光关闭,研究者将小鼠置于笼中对其训练,在笼中小鼠会经历电休克,正常情况下处于新环境中的小鼠会利用嗅觉来适应环境,但是当将其进行电休克后置于新环境中,他们就会处于一种恐惧反应中。研究者Wiltgen及其同事首次标记了参与学习过程的大脑细胞,并且发现这些大脑细胞在回想记忆期间会被重新激活,随后研究人员关闭了大脑海马体的特殊神经细胞,结果发现,小鼠会失去一些“不高兴”事件的记忆力,同时关闭海马体中的其它细胞并不会影响大脑记忆的恢复。大脑皮层不是单独工作的,而且需要来自海马体的信息输入,与此同时研究人员还揭示了大脑皮层中的特殊细胞同杏仁核相互连接机制,最后研究者表示,后期还将进行深入研究,该研究或许有一天会应用于人类机体中来帮助去除人类大脑中的痛苦记忆。(by 浮米网)

  • 高速脑皮层成像仪介绍

    [url=http://www.f-lab.cn/vivo-imaging/celox.html][b]高速脑皮层成像仪3001CELOX[/b][/url]采用以色列optical-imaging公司的[b]电压敏感染料成像[/b]技术,配合高达10000Hz的VSD成像技术,广泛用于活体成像或体外成像,[b]VSD成像[/b]![b]高速脑皮层成像仪[/b]应用(体内和体外):在体内或体外的皮质功能架构VSD成像。同时有optogenetics VSD成像。固有的光学成像的皮层功能架构。电压敏感染料的心脏成像。微血管系统的探索。灵活的数据获取这台[b]高速脑皮层成像仪[/b]主要用于电压敏感染料信号的探测。它有一个比较大的可以达到脉宽108赫兹的感应器,而且有1000赫兹和多行扫描达到10000赫兹的操作。灵活的在线归档功能让你可以进行高速成像。[img=高速脑皮层成像仪]http://www.f-lab.cn/Upload/brain-imager3001.JPG[/img]高速脑皮层成像仪:[url]http://www.f-lab.cn/vivo-imaging/celox.html[/url]

小鼠大脑皮层相关的资料

小鼠大脑皮层相关的资讯

  • Nature:中心体调控大脑皮层发育的崭新机制
    放射状胶质细胞是大脑发育最为关键的一种神经前体细胞,分裂产生大脑皮层几乎所有的神经元和胶质细胞。所有动物细胞都有中心体,通常位于细胞核附近的细胞质中。然而中心体在放射状胶质细胞内的定位十分独特,位于远离细胞核的顶端细胞膜上,即脑室腔的表面上。这种独特的亚细胞特征已被发现数十年,但其成因及功能一直令人困惑。清华大学生命科学学院、IDG-麦戈文脑科学研究院时松海教授和结构生物学高精尖创新中心史航研究员课题组线发表了题为“中心体的锚定调控神经前体细胞特性和大脑皮层的形成”(Centrosome anchoring regulates progenitor properties and cortical formation)的研究论文,首次揭示了中心体调控哺乳动物大脑皮层神经前体细胞机械特性和分裂能力,进而影响大脑皮层的大小和折叠的崭新机制。这一发现公布在Nature杂志上。时松海教授和史航研究员课题组采用基于透射电镜成像的连续超薄切片技术,首次观察到了放射状胶质细胞内的中心体是通过附着在母体中心粒上的远端附属物(distal appendages)锚定在顶端细胞膜上的(图1)。为了探索其分子调控机制和生理功能,研究人员在大脑皮层放射状胶质细胞内特异性地去除了远端附属物的重要构成蛋白CEP83,使得远端附属物无法形成,从而阻止中心体与细胞膜的连接。结果发现,去除CEP83蛋白后,母体中心粒上不再形成远端附属物,中心体和顶端膜发生了微小的错位,不再锚定在顶端膜上。进一步研究表明,中心体这一不足1微米的位移,不是通过影响初级纤毛的形成,而是破坏了顶端膜上特有的环状微管结构,导致顶端膜被拉伸、变硬。这一物理特性的改变引起了放射状胶质细胞内机械敏感信号通路相关的YAP蛋白(Yes-associated protein)的过度激活,从而导致了放射状胶质细胞前期的过度扩增以及之后中间前体细胞的增多,最终使得大脑皮层神经细胞显著增加,体积扩大,并引发异常折叠。该研究解决了长期以来关于放射状胶质细胞内中心体特殊定位原因和作用的谜题,为研究神经前体细胞行为和皮层发育调控提供了全新的角度。另外,中心体相关的许多突变都和小头症(microcephaly)紧密相关,然而该研究首次揭示了中心体蛋白突变导致大头症的机制。更重要的是,人类CEP83双等位基因突变会导致脑室体积增大,智力障碍和小儿肾消耗症,该研究为揭示人皮层形态和智力异常提供了重要线索。
  • 单细胞测序绘制人类大脑皮层图谱,揭示神经发育中分子动态特征
    从解剖学角度来看,大脑可以被细分为多个特定区域,包括新皮层(neocortex)。大脑皮层是高级认知的中枢,是人类进化过程中大脑中扩张和多样化最多的区域。早期的大脑分区和皮层分区是由形态发生梯度(morphogenetic gradient)引导建立的【1-2】,但随着发育进程的展开,这些早期模式如何产生更加精细更加离散的空间差异目前还不是很清楚【3】。大脑皮层的发育过程已被研究了一个多世纪,历史上科学家通过每次只观察一种细胞类型,研究少量的基因,随后逐步拼接整个发育事件来进行探索。但我们必须意识到,大脑在同一时间并不是只产生一种细胞类型,而是数百种细胞类型一起发生发展,就像交响乐一样美妙且复杂。随着单细胞和空间转录组学的出现和发展,结合大数据分析,我们已经能够去探究神经发育这支交响乐中所隐藏的规律。2021年10月6日,来自美国加州大学的Arnold R. Kriegstein团队在Nature杂志上在线发表了题为An atlas of cortical arealization identifies dynamic molecular signatures的研究论文。该研究利用单细胞测序研究了神经发育和早期胶质生成阶段10个主要的脑区和6个新皮层区域,揭示了不同皮层区域不同细胞纵向发育的分子图谱。绘制人类大脑发育图谱 为了描绘大脑发育过程中不同脑区及皮质区域的细胞多样性,作者收集了妊娠中期(怀孕3-6个月,神经发育高峰期)的大脑组织,随后进行为分割(大脑细分后的区域称为“regions”,皮层细分后的区域称为“areas”)和单细胞转录测序(图1)。作者从13个个体中拿到了10个脑区(主要是前脑、中脑和后脑)样本及6个新皮层区域样本(prefrontal cortex(PFC), motor, somatosensory, parietal, temporal 和primary visual(V1)皮层),最终获得了698,820个高质量的单细胞数据。通过UMPA(uniform manifold approximation and projection,新的降维技术,用于数据可视化和探索)分析,作者发现了预期的细胞类群(包括excitatory neurons,intermediate progenitor cells(IPCs),radial glia等)。数据表明,在整个大脑中,细胞类型是产生区域分化隔离的主要因素。区域特定基因分析显示,一些区域特异性基因存在于同一区域中的多个细胞类型中,说明某些区域性表达基因特征在细胞类型中具有高度渗透性。图1. 测序样本收集示意图新皮质中的细胞类型 已有研究表明新皮质包括几十个专门从事认知过程的功能区【4】。V1和PFC中的神经元在出生后就完全不同【5】,而其他的细胞类型并没有展示出明显的区域特异性差异。为了进一步扩展已有的研究,作者对来自于特定皮层区域的单细胞进行测序分析,获得了387,141个高质量的单细胞数据。通过分析,作者发现了预期的细胞类型,包括Cajal-Retzius neurons, dividing cells, excitatory neurons等。随后,按细胞类型进行分层聚类得到了138个新皮质细胞群,其中104个细胞群是由来自多个皮层区域的细胞组成的。动态区域性基因特征 为了探究新皮质发育过程中的细胞区域性差异,作者在皮质不同区域的兴奋性谱系中(radial glial (RG), IPCs和excitatory neurons)寻找每个细胞类型中的差异表达基因,同时通过检测已知的区域特异性基因的表达来评估皮质区域划分的可靠性。作者构建了星座图来探索不同皮质区域细胞类型之间的关系:RG节点主要在同细胞类型之间相互连接;IPC与兴奋神经元之间存在相互连接;PFC 和 V1 细胞类型节点之间没有连接,说明这两个基因表达模式之间相互排斥。在每一组区域标记基因中,作者鉴定了编码转录因子的基因,这些转录因子在特定区域的细胞中大量富集。其中包括一些在区域化过程中功能已知的转录因子,例如NR2F1和BCL11A,这两个基因都与神经发育疾病相关【6】。作者还发现一些与皮层区域化不相关的转录因子:在V1中,包括NF1A, NF1B和NF1X,它们是大脑发育的重要调节因子,与大头症和认知障碍有关【7】;ZBTB18, 大脑扩张驱动因子,与神经元分化和皮层迁移有关;在PFC中,包括HMGB2和HMGB3,它们在发育的不同阶段在神经干细胞中差异性表达,是神经分化的关键性调节因子,但它们在皮层区域化的过程中的功能未被研究和报道。原位杂交验证候选标志物 上述单细胞数据揭示了人类大脑发育过程中皮层的6个不同区域内细胞类型的多样性和转录谱。接下来,作者选择了兴奋神经元簇的候选标记基因进行验证,采用单分子荧光原位杂交(single-molecule fluorescent in situ hybridization, (smFISH))量化了20个样本中(来自4个皮质区域)31个RNA转录本的表达情况(图2)。与之前的报道一致,神经基因SATB2和BCL11B呈现区域动态性表达:他们在frontal区域共表达,但在occipital区域相互排斥。通过分析所有的区域,作者找到了新的亚细胞群标志物候选基因:NEFL, SERPINI1和NR4A1。这三个基因在PFC, somatosensory, temporal和V1皮层细胞中的表达量基本相等,但是它们相对的空间位置发生巨大改变:NEFL, SERPINI1和NR4A1在PFC中共表达,但在其他区域中相互排斥;在somatosensory皮层中,这些标记基因主要表达在上层分子层中。图2. 自动化空间RNA转录检测流程综上所述,该研究对新皮质区域不同细胞类型的基因表达特征提供了细致的理解。作者发现:(1) 在主要的大脑结构中,区域特征在不同的细胞类型中非常普遍;(2) 新皮质中的区域特征非常特殊,受限于单个细胞类型;(3) 除了细胞类型特征外,细胞的发育阶段(即妊娠周)是基因表达特征组合的有力决定因素。这些发现表明,区域特异性基因表达特征的动态变化速度非常快,而且是细胞类型特异性的(图3),这与之前的理论似乎不太一致,在以前认知中,基因表达模式通常被认为是一旦建立就会持续存在。通过绘制大脑发育过程中的基因表达图谱,研究人员对大脑皮层是如何形成有了更好的理解,有助于探索大脑皮层是如何在神经发育疾病中受到影响的。图3. 发育过程中皮层区域化模式图原文链接:https://doi.org/10.1038/s41586-021-03910-8
  • 杨扬/韩华团队成功开发小鼠听觉皮层亚细胞结构的三维电镜重构算法
    2022年8月,上海科技大学生命科学与技术学院杨扬团队与中国科学院自动化研究所韩华团队合作,在Cell Press细胞出版社期刊Cell Reports上以长文形式发表了题为“Fear memory-associated synaptic and mitochondrial changes revealed by deep learning-based processing of electron microscopy data”的研究论文,该研究通过对恐惧学习小鼠听觉皮层突触的三维电镜重建和大规模比较分析,探究了小鼠听觉皮层中与恐惧记忆相关的神经元突触等亚细胞结构的变化情况,并用模型分析方法揭示了突触连接模式变化引起的信息存储容量的大幅提升。中国科学院自动化研究所刘静助理研究员、上海科技大学生命科学与技术学院漆俊倩博士、中国科学院自动化研究所陈曦研究员和李贞辰博士生为本文的共同第一作者,杨扬研究员、韩华研究员、谢启伟教授为本文的共同通讯作者。大脑中的神经网络由神经元通过复杂的突触连接构成,神经元编码、处理和存储信息从根本上依赖于突触的连接模式以及在此基础之上的协调活动,解析突触的连接模式对理解大脑的结构与功能至关重要。在哺乳类动物大脑中,除了由单个轴突小结(axonal bouton)与单个树突棘(dendritic spine)形成的1-1型连接,即单位点突触连接外,大脑中的突触连接模式还包括由单个轴突小结与多个树突棘形成的1-N型连接,或多个轴突小结与单个树突棘的N-1型连接,统称为多位点突触(multiple-contact synapses,MCS)。此前,已有很多研究通过光学显微镜发现学习记忆可以改变突触的组织结构,由于突触间隙宽度仅有几十纳米(低于一般光学显微镜的衍射极限),因此在光学显微镜下观察突触结构的精细变化非常困难。与此同时,突触三维结构的光学数据获取和分析高度依赖于人工,更是极大限制了突触结构的重建数量和分析规模。为探究学习记忆如何促进突触多位点连接模式的形成及效果,本项研究以经典的听觉条件恐惧学习(auditory fear conditioning)为范式设置了实验组和对照组,基于大规模序列电子显微镜成像技术和深度学习识别模型,实现了电镜图像中多种亚细胞三维结构的自动提取,重构了小鼠听觉皮层135,000个线粒体和160,000个突触。实验组和对照组的大规模对比分析表明,尽管恐惧学习训练没有改变突触的空间密度与空间分布,却特异性地增加了1-N型突触的比例。进一步分析发现,绝大多数1-N型突触中的树突棘来自不同树突主干,并且这种多树突1-N型突触在神经元网络中能够起到信号广播的作用。为了进一步分析多树突1-N型突触的信息编码能力,本项研究建立了基于香农信息熵来计算突触信息存储容量(information storage capacity,ISC)的组合数学模型。在无新增突触的静态网络和包含新增突触的可塑性动态网络两种条件下,分别计算了引入多树突1-N型突触的ISC增量。在静态网络中,引入此类突触只是略微增加了ISC容量,而在动态可塑性网络中,此类突触将信息存储容量显著提高了50%。综上,基于序列电子显微镜成像技术和深度学习计算方法,研究者开发了小鼠听觉皮层亚细胞结构的三维电镜重构算法,自动重建精度可以满足大规模分析的精度需求,有效地节省了人工校验时间消耗,极大提高了分析效率。大规模电镜重构和对比分析结果在亚细胞水平揭示了学习记忆对大脑皮层突触、线粒体的组织结构和连接模式的影响,为类脑计算仿生模型的精确建模提供了结构基础和启发依据。图:(上左)听觉条件恐惧学习的对照组和实验组。(上右)轴突小结与树突棘替换或增加的示意图。(中左)不同突触连接模式的电镜图像及三维重构结果。1-N型突触由单个轴突小结与多个树突棘形成,N-1型突触由多个轴突小结与单个树突棘形成。(中右)不同突触连接模式示意图。绿色:树突;蓝色:轴突。(下左)密集重构揭示绝大多数1-N型突触中的树突棘来自不同树突主干。(下右)无新增突触的静态网络和包含新增突触的可塑性动态网络。该研究获得了国家科技创新2030重大项目、中国科学院战略性先导科技专项、国家自然科学基金、北京市科技计划的经费支持。作者专访Cell Press细胞出版社公众号特别邀请杨扬研究员、刘静博士和韩华研究员代表研究团队接受了专访,请他们为大家进一步详细解读。CellPress:过去也有基于电镜图像重构来探究突触和线粒体的研究报道,有的还完成了更大规模的密集重构。本文的方法和思路与过去的研究有何不同?杨扬研究员:电镜图像的密集重构对运算量的要求很高,工作量极大。而本文所使用的方法可以在不做密集重构的前提下,选择性识别和分割出研究者感兴趣的亚细胞结构,如本文关注的突触、线粒体,也可以推广到其他有特殊结构的细胞器。已有的突触或线粒体的自动重构算法多是像素或体素分割模型,也就是将图像中的像素或体素分类成前景或者背景。本文所使用的region-based卷积神经网络是一种实例分割网络,可端到端的完成目标实例的检测和分割。另外,针对强各向异性的序列电镜数据,本文提出一种2D到3D的重构方法,首先在2D上识别和分割亚细胞结构,随后应用3D连接算法完成3D的重构。这种方式可有效避免直接应用3D卷积神经网络带来的目标尺度在特征空间和图像空间不一致的问题。CellPress:多位点突触是一个新的概念吗?本文对此类突触的研究有何特别之处?杨扬研究员:一个突触前轴突小结与多个突触后树突棘形成的1-N多位点突触,和多个突触前轴突小结与一个突触后树突棘形成的N-1多位点突触,在过去的文献中都有过报道。但限于电镜图像人工识别的效率,过去的工作未能对这种特殊突触进行大规模的定量研究。本文通过基于机器学习的自动识别与重构算法实现了这一突破。此外,连接同一个多位点突触中的多个树突棘是来自同一根树突还是不同树突,代表了两种不同的神经元连接方式:前者仍是1对1的神经元连接,后者则是1个神经元对多个神经元的信息广播。本文通过密集重构,首次对这两类多位点突触进行了区分和定量,并发现后者在大脑皮层中,特别是学习之后占据了绝大多数,提示这种连接可能表征了大脑中突触层面的记忆痕迹。CellPress:人工智能算法在这个研究中发挥着怎样的作用?刘静博士、韩华研究员:近年来,人工智能算法已经深入应用到生命科学领域,加速甚至革新了生物学的研究进程。在连接组(Connectomics)领域,面对海量的高分辨电镜数据,借助人工智能算法绘制神经元的线路图是一个必不可少的环节。在本文中,我们设计了一套深度学习算法工具集,可以自动识别序列电镜图像中神经元、突触以及线粒体并恢复其三维形态。深度学习算法的应用大大提高了识别效率,将人从大量冗余复杂的标注工作中解放出来,加速了研究进程。CellPress:可否用简要的语言解释文中所提及的突触连接静态网络和动态网络,两者最核心的区别是什么?具有何种生物学意义?刘静博士、韩华研究员:突触连接网络是指根据神经元的几何拓扑特征来模拟突触连接模式的一种建模方式。其中,静态模型中仅考虑稳定的突触连接,假设没有新突触的形成或旧突触的消亡,本文使用信息熵定义静态网络的信息存储容量。而动态模型则将突触可塑性引入到网络中,允许新突触的形成,本文使用信息熵的增益表示新突触形成带来的信息存储容量的增加。动态模型通过模拟突触可塑性,与真实的大脑神经网络更为相似。CellPress:您认为该项研究对类脑计算有什么启发吗?刘静博士、韩华研究员:类脑智能(Brain-inspired Intelligence)本身就是通过模仿和借鉴人类神经系统的工作原理以构建新型的计算结构和智能形态。然而,目前人对大脑的生理机制还知之甚少。类脑研究的第一步就是要理解大脑,突触作为神经元连接的桥梁,是大脑中最重要的结构之一。突触的可塑性(synaptic plasticity)被认为与长时程记忆(long-term memory)有关。本文通过恐惧学习实验范式和电镜成像技术,发现了恐惧记忆能促进小鼠听觉皮层中一种特殊的1-N突触连接模式的形成,且这种连接模式大大增强了局部环路的信息编码能力。本研究中发现的这种局部神经环路信息传递模式或许能够作为一种记忆存储模块启发新型的类脑计算模型。作者介绍谢启伟教授谢启伟,北京工业大学现代制造业基地教授研究兴趣、领域:数据挖掘、图像处理和复杂系统智能;应用图像处理、机器学习和深度学习等方法研究基于电镜数据的神经元重建,集中于神经元电镜图像的前处理、超体素分割、图融合后处理等方法的研究,为神经科学提供有力工具,期待从脑的结构中挖掘出智能的本源。韩华研究员韩华,中国科学院自动化所研究员研究兴趣、领域:高通量显微成像技术产生海量影像数据,如何重构数据、分析数据、可视数据等已成为脑科学与类脑研究领域的重大挑战。我们致力于建立我国微观脑图谱的高通量技术体系和自主可控技术平台,持续突破大体块神经组织样品制备、长时程超薄切片连续收集、高通量扫描电镜三维成像、高精度神经结构三维重建等关键技术,开展多个百TB规模的微观脑图谱绘制工程,为构建类脑计算仿真提供生物真实网络和仿生建模依据。杨扬研究员杨扬,上海科技大学生命科学与技术学院助理教授、研究员研究兴趣、领域:以条件恐惧学习和增强式学习为行为范式,使用在体双光子成像、双光子全息光遗传、电镜、电生理等技术,研究与学习记忆相关的神经环路活动性和可塑性,及神经调制系统在其中所起的作用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制