生物膜厚度

仪器信息网生物膜厚度专题为您整合生物膜厚度相关的最新文章,在生物膜厚度专题,您不仅可以免费浏览生物膜厚度的资讯, 同时您还可以浏览生物膜厚度的相关资料、解决方案,参与社区生物膜厚度话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

生物膜厚度相关的耗材

  • 薄膜厚度测量系统配件
    薄膜厚度测量系统配件是一种模块化设计的薄膜厚度测量仪,可灵活扩展成精密的薄膜测量仪器,可在此基础上衍生出多种基于白光反射光谱技术的薄膜厚度测试仪,比如标准吸收/透过率,反射率的测量,薄膜的测量,薄膜温度和厚度的测量。薄膜厚度测量系统配件:核心模块----光谱仪;外壳模块----各种精密精美的仪器外壳;工作面积模块----测量工作区域;光纤模块----根据不同测量任务配备各种光纤附件;测量室-/环境罩---给测量带去超净工作区域。薄膜厚度测量仪核心模块---光谱仪孚光精仪提供多种光谱仪类型,不同光谱范围和光源,满足各种测量应用
  • 等厚度薄膜制样工具
    specac_迷你等厚度薄膜制样套装 等厚度薄膜制样工具主要用于高分子材料的光谱测定。根据热压制膜原理,所得到样品是纯样品,谱图中只出现样品信息。Specac公司为满足客户的不同需求,提供了3种等厚度薄膜制样工具。不仅可以将较厚的聚合物变成更薄的薄膜,还可以将粒状、块状或板材等不规则形状的聚合物变成可以用光谱检测的薄膜。 视频:http://v.youku.com/v_show/id_XNDg3ODI1OTc2.html 点击观看视频
  • 硅片厚度测量仪配件
    硅片TTV厚度测试仪配件是采用红外干涉技术的测量仪,能够精确给出衬底厚度和厚度变化 (TTV),也能实时给出超薄晶圆的厚度(掩膜过程中的晶圆),非常适合晶圆的研磨、蚀刻、沉淀等应用。 硅片厚度测量仪配件采用的这种红外干涉技术具有独特优势,诸 多材料例如,Si, GaAs, InP, SiC, 玻璃,石英以及其他聚合物在红外光束下都是透明的,非常容易测量,标准的测量空间分辨率可达50微米,更小的测量点也可以做到。硅片厚度测量仪配件采用非接触式测量方法,对晶圆的厚度和表面形貌进行测量,可广泛用于:MEMS, 晶圆,电子器件,膜厚,激光打标雕刻等工序或器件的测量,专业为掩膜,划线的晶圆,粘到蓝宝石或玻璃衬底上的晶圆等各种晶圆的厚度测量而设计,同时,硅片厚度测试仪还适合50-300mm 直径的晶圆的表面形貌测量。硅片厚度测试仪配件具有探针系统配件,使用该探针系统后,硅片TTV厚度测试仪可以高精度地测量图案化晶圆,带保护膜的晶圆, 键合晶圆和带凸点晶圆(植球晶圆),wafers with patterns, wafer tapes,wafer bump or bonded wafers 。 硅片TTV厚度测试仪配件直接而精确地测量晶圆衬底厚度和厚度变化TTV,同时该硅片厚度测量仪能够测量晶圆薄膜厚度,硅膜厚度(membrane thickness) 和凸点厚度(wafer pump height).,沟槽深度 (trench depth)。

生物膜厚度相关的仪器

  • F40薄膜厚度测量仪 400-860-5168转3827
    Filmetrics-F40薄膜厚度测量仪 结合显微镜的薄膜测量系统Filmetrics的精密光谱测量系统让用户简单快速地测量薄膜的厚度和光学常数,通过对待测膜层的上下界面间反射光谱的分析,几秒钟内就可测量结果。 当测量需要在待测样品表面的某些微小限定区域进行,或者其他应用要求光斑小至1微米时,F40是你的好选择。使用先前足部校正显微镜的物镜,再进行测量,即可获得精准的厚度及光学参数值。只要透过Filmetrics的C-mount连接附件,F40就可以和市面上多数的显微镜连接使用。C-mount上装备有CCD摄像头,可以让用户从电脑屏幕上清晰地看样品和测量位置。* 取决于材料1.使用5X物镜参考2.是基于连续20天,每天在Si基底上对厚度为500纳米的SiO2 薄膜样品连续测量100次所得厚度值的标准偏差的平均值3.是基于连续20天,每天在Si基底上对厚度为500纳米的SiO2薄膜样品连续测量100次所得厚度值的2倍标准偏差的平均值选择Filmetrics的优势桌面式薄膜厚度测量的专家24小时电话,E-mail和在线支持所有系统皆使用直观的标准分析软件附加特性嵌入式在线诊断方式免费离线分析软件精细的历史数据功能,帮助用户有效地存储,重现与绘制测试结果相关应用半导体制造 生物医学原件&bull 光刻胶 &bull 聚合物/聚对二甲苯&bull 氧化物/氮化物 &bull 生物膜/球囊壁厚度&bull 硅或其他半导体膜层 &bull 植入药物涂层微电子 液晶显示器&bull 光刻胶 &bull 盒厚&bull 硅膜 &bull 聚酰亚胺&bull 氮化铝/氧化锌薄膜滤镜 &bull 导电透明膜
    留言咨询
  • 薄膜厚度测量仪F40 400-860-5168转6273
    当测量需要在待测样品表面的某些微小特定区域进行,或者其他应用要求光斑小至1微米时,F40是最好的选择。通过对每个物镜的逐步校正,再进行测量,即可获得精准的厚度及光学参数值。只要使用 Filmetrics的C- mount连接附件,F40就可以和市面上多数的显微镜连接使用。C- mount上装备有CCD摄像头可以让用户从电脑屏幕上清晰地观察样品并确认测量位置。 选择 Filmetrics的优势桌面式薄膜厚度测量的全球领导者24小时电话,E-mail和在线支持所有系统皆使用直观的标准分析软件 附加特性嵌入式在线诊断方式免费离线分析软件精细的历史数据功能,帮助用户有效地存储,重现与绘制测试结果相关应用半导体制造 生物医学元件光刻胶 聚合物/聚对二甲苯氧化物/氮化物 生物膜/气泡墙厚度硅或其他半导体膜层 植入药物涂层MEMS微机电系统 LCD液晶显示器光刻胶 盒厚 硅膜 聚酷亚胺氮化铝/氧化锌薄膜滤镜 ITO导电透明膜
    留言咨询
  • 生物膜监测仪 400-860-5168转2390
    在线多参数水质分析测量系统意大利ALVIM生物膜监测仪ALVIM生物膜监测仪-有效实时在线监测菌膜活性如果不采取适当的预防措施,细菌会在很短的时间内沉淀在与水接触的任何结构(管道,水箱,机器)中。 自初始阶段以来,ALVIM实时在线生物膜监测系统能够检测到细菌沉降(微生物覆盖率低至表面的1%),并基于这些数据手动或自动调整并优化清洁处理/杀菌剂处理。 这样可以使生物膜的生长得到控制。 什么是生物膜?生物膜是指在与水或其他液体接触的任何表面上生长的微生物(细菌,硅藻,真菌等)层。 已经证明,即使在极端条件下,生物膜也可以生长,造成的损害范围从军团菌污染到微生物影响的腐蚀(MIC)。 与市场上的其他传感器相比,ALVIM技术的重要优势1. 区分生物膜和其他种类的沉积物/污垢(例如碳酸钙等); 这是非常重要的,因为这两种不同的结垢需要不同的处理方法;2. 具有很高的灵敏度,即检测到生物膜的初始定殖阶段;实际上,许多生物膜相关的问题,例如微生物影响的腐蚀(MIC),都是在表面上出现00个细菌斑点时就开始出现的。3. 通过测量细菌生物膜的自然电化学活性,可以早期检测细菌生物膜的生长,从而指示细菌在一定时间内的真实存在和程度。4. 优化清洁处理(杀菌剂,消毒剂等)5. 易于安装,易于操作6. 几乎免维护的探头7. 实时连续生物膜监测
    留言咨询

生物膜厚度相关的方案

  • 砂浆表面生物膜在抗污水腐蚀中的发挥的作用机理研究
    采用人工强化处理污水的方法,模拟和加速了污水中微生物的腐蚀,研究了污水中掺加生物膜和不掺生物膜砂浆的重量变化规律。对比研究了砂浆上生物膜的微生物结构和活性表面。在此基础上,分析了生物膜对砂浆老化的影响机理。结果表明,在砂浆上形成的生物膜有污水导致的不同程度的腐蚀具有一定的阻隔作用。生长在具有化学需氧量为3000 mg/L时的污水中的生物膜(COD)对砂浆的保护作用最为显著,这与COD对砂浆的保护作用有关,这可能是高pH值和密集的结构。对于普通污水中的样品,生物膜的厚度起着主要作用,尤其是在第一个月,而在污水浓度过高的情况下,污水的腐蚀性增加对后期生物膜对砂浆的防护作用会明显降低。
  • SPG膜曝气-基因工程菌生物膜反应器处理阿特拉津废水研究
    膜曝气-生物膜反应器(MABR)是一种新型的膜-生物废水处理工艺,在MABR中采用基因工程菌生物膜可以强化难降解污染物的生物去除. 本研究在SPG膜表面形成基因工程菌生物膜,运行SPG膜曝气-生物膜反应器(SPG-MABR)处理阿特拉津废水,考察了气压、 挂膜生物量和液体流速对SPG-MABR运行性能的影响,以及基因工程菌生物膜的变化. 结果表明,提高气压可以增大透氧系数,从而提高阿特拉津和COD的去除速率以及复氧速率. 提高挂膜生物量能够加快阿特拉津和COD的生物去除,但生物膜厚度增加使得氧传质阻力增大,复氧速率降低. 层流状态下减小SPG-MABR中的液体流速,有利于污染物向生物膜扩散传质,从而提高污染物去除速率. 气压为300 kPa、 生物量为25 g· m-2、 液体流速为0.05 m· s-1时,SPG-MABR反应器对阿特拉津5 d的去除率可以达到98.6%. 在SPG-MABR运行过程中,基因工程菌生物膜呈现微生物多态化趋势. 生物膜表面逐渐被其他微生物细胞覆盖,基因工程菌分布减少,生物膜内部仍以基因工程菌细胞为主.
  • MC方案:评估生物分子层厚度
    引入WLRS用于测量各层的厚度,评价生物分子固定在固体表面上的有效性及其与相应生物分子的后续反应。特别研究了兔(RgG)和小鼠γ -球蛋白(MgG)的吸附及其与互补抗体的反应。通过配备有0.35nm光学分辨率的VIS-NIR光谱仪和白光卤素灯的FR-Basic进行测量。基板是厚度约为1000nm的热生长SiO2薄膜的硅晶片。

生物膜厚度相关的论坛

  • 【我们不一YOUNG】如何有效清除和防控生物膜

    [size=15px][b][font=微软雅黑][color=#1f1f1f]如何有效清除和防控生物膜?[/color][/font][/b][/size][b][font=微软雅黑][color=#1f1f1f][/color][/font][/b][font=微软雅黑][color=#1f1f1f]1、EPS由多种长链多糖组成,如褐藻酸盐和纤维素,可以形成非常稳定的基质。食品工业利用这些特性生产增稠剂等产品。对于微生物来说,生活在生物膜中有许多益处。它们有更稳定的食物供应,有一定程度的干燥保护,并享有相当大的防护,免受杀菌剂和其他不利的环境影响。尤其是对氯、臭氧和紫外线辐射的抗性随着生物膜厚度的增加而显著增加。[/color][/font][font=微软雅黑][color=#1f1f1f][/color][/font][font=微软雅黑][color=#1f1f1f]2、单独的过氧化氢产品在与生物膜接触时容易迅速分解,无法穿透生物膜,这会严重限制它们的功效。为了达到最大的效果,过氧化氢需要高度稳定。过氧化氢银离子复合型型溶剂在与生物膜表面初次接触后的一段时间内抑制过氧化氢的分解,并使过氧化氢能够穿透生物膜结构。生物膜产生的过氧化氢酶的作用导致过氧化氢释放氧气,[/color][/font][b][color=#1f1f1f]所以过氧化氢银离子除了它的氧化作用外,所产生的细气泡还产生物理、机械作用。生物膜基质中气泡的膨胀实际上将基质吹裂。由此产生的生物膜碎片与结构分离,留下孔洞,进而允许进一步的过氧化氢渗透到结构中。在最佳条件下,整个生物膜被迅速地从基质上分离并破碎。[font=微软雅黑](转载自[/font][font=system-ui, -apple-system, BlinkMacSystemFont, 'Helvetica Neue', 'PingFang SC', 'Hiragino Sans GB', 'Microsoft YaHei UI', 'Microsoft YaHei', Arial, sans-serif][color=rgba(0, 0, 0, 0.298039)]食品微生物工程师[/color][/font][font=微软雅黑])[/font][/color][/b]

  • 【分享】生物膜法 基本知识

    1 生物膜的基本概念 生物膜法是属于好气生物处理方法。 生物膜是依靠附着于固体表面滤料的介质上而生长繁殖的微生物净化有机物的好氧处理方法,具有以下特点: (1)附着于固体介质表面上的微生物对水量,水质的变化有较强的适应性。 (2)固体介质有利于微生物形成稳定的生态体系,栖息微生物的种类较多,处理效 率高。 (3)降解产物污泥量少。 (4)管理方便。 缺点: (1)滤料表面积小,BOD容积负荷小。 (2)附着于固体表面的微生物量较难控制,操作伸缩性差。 (3)靠自然通风供氧,不如活性污泥供氧充足,容易产生厌氧。 生物膜法有三种形式: (1)润湿型 生物滤池、生物滤塔、生物转盘 (2)浸没型 接触氧化、滤料浸没在滤池中 (3)流动床型 生物活性炭、砂粒介质悬浮流动于池内 2 基本原理 借助于挂膜介质,当有机废水流过介质表面时,微生物在其表面生长繁殖,形成生物膜。 膜的表面溶有较多的溶解氧,形成好氧层,膜的内层溶解氧较少,易形成厌氧层,整个膜处于增长、脱落和更新的生态系统。微生物的生长代谢将污水中的有机物作营养,从而使污染物得到降解。正常生物膜厚2~3mm。

  • 【求助】请教生物膜中提取有机氯后的净化问题,十分感谢

    目前正在做人工培养生物膜中的有机氯农药测定。用的方法是,生物膜刮下后用冻干机冻干,加入20ml 二氯甲烷后超声萃取,氮吹,定容。溶液呈黄绿色,应该是有叶绿素的缘故。请问去除色素干扰的话,仅用浓硫酸可以么?论坛上说的Carb柱是必须的么,感觉价格很贵呵呵。不用二氯甲烷直接用正己烷的话可行么?新手,实验正在探索中,希望大家赐教。

生物膜厚度相关的资料

生物膜厚度相关的资讯

  • 上海交通大学吕海涛课题组发表微生物生物膜功能代谢组学创新研究成果
    仪器信息网讯 生物膜(Biofilms)是由微生物形成的一种被膜组织,其是微生物为抵抗外界胁迫条件而维持生存的特殊膜组织。生物膜的形成直接造成临床上90%以上抗生素耐药的发生,也关联肿瘤、糖尿病和神经系统疾病等耐药的发生(病灶处由于细菌感染形成生物膜)。此外,生物膜的形成对多个行业都产生巨大的危害,如金属精密仪器腐蚀,水环境污染,食品污染等。总之,微生物生物膜的形成,具有巨大的危害。尽管科学界进行半个世纪的研究探索,鉴于其形成的分子机理非常复杂,目前仍尚未系统解析,因而缺乏有效的策略清除不同领域生物膜的形成,抑制其毒副作用和危害的产生。上海交通大学吕海涛课题组整合运用精准靶向代谢组学和遗传学整合策略(Precision-Targeted Metabolomics combined with genetic method)、结合电镜表型分析(Imaging visulization),从小分子代谢角度,在大肠杆菌生物膜体系当中精准发现和验证若干具有调控生物膜形成的功能代谢产物;并初步阐明铁载体生物合成介导的铁离子调控功能代谢物表达,进而影响生物膜形成的代谢机理。深层次机理研究,和基于功能代谢产物生物合成调控解离微生物生物膜形成的转化应用研究,正在进行中。基于上述创新发现,该课题组起草的研究论文“Mass spectrometry based targeted metabolomics precisely characterized new functional metabolites that regulate biofilm formation in Escherichia coli”已经被爱思唯尔出版集团旗下著名分析化学杂志Analytica Chimica Acta正式接收,出版中。上海交大2017级硕士生郭睿同学(已毕业)为论文第一作者,2017级博士生罗夏琳同学和2020级博士生刘京净同学(硕转博)参与部分研究工作和论文发表,上海交大吕海涛研究员为论文通讯作者。点击下方链接:了解论文原文
  • Filmetrics在台湾和慕尼黑成立薄膜厚度测量实验室
    加利福尼亚州圣地亚哥--(美国商业资讯)--Filmetrics 宣布在台湾台南和德国慕尼黑成立薄膜厚度测量实验室。该实验室不仅为亚洲和欧洲提供薄膜厚度支持中心,而且都并网到 Filmetrics 全球支持网来及时为我们的客户提供网络上和电话上的支持。新增设的两个实验室完成了我们的二十四小时全世界支持网来实现实时视频,远程诊断,以及在线“动手”服务。 这在实时支持薄膜厚度测量用户上标志着一个重要进展。   新的实验室将会支持所有的F20应用,包括半导体,太阳能,显示器,以及生物医学工业。Filmetrics 总裁查斯特博士说,“从现在起我们欧洲和亚洲的客户可以享有我们在美国的客户所享有的高水平的支持。并且,我们新的24小时支持网就好像Filmetrics应用工程师每天任何时候都坐在他们旁边。“   Filmetrics仪器用白色光照射薄膜,再根据测量光谱反射来确定薄膜厚度。波长范围可在220到1700纳米之间选择。Filmetrics软件分析收集到的光谱数据,从而确定厚度,光学常数,和其他用户选择的参数。   公司网站 http://cn.filmetrics.com   Filmetrics公司介绍   凭借多年薄膜厚度测量的经验和遍布全球的技术支持中心,Filmetrics提供了简单易用的仪器和无可比拟的支持。总部位于加利福尼亚州圣地亚哥,Filmetrics拥有全系列薄膜厚度测量系统,并不断开发更有效的薄膜测量新产品和技术。Filmetrics成立于1995年,并迅速奠定了台式薄膜测量行业的领导地位。   联系方式:   查斯特博士, Filmetrics, Inc., +1-858-573-9300   电邮:chalmers@filmetrics.com
  • 【专刊论文推荐】上海交通大学吕海涛研究员:基于靶向代谢组学方法表征金属离子锰调控生物膜特征代谢
    p style=" text-align: justify line-height: 1.75em "    strong 仪器信息网讯 /strong 本期推荐的是发表在《Journal of Analysis and Testing》2020年第3期的 strong 上海交通大学系统生物医学研究院吕海涛研究员课题组 /strong 原创论文 strong “基于靶向代谢组学方法表征金属离子锰调控生物膜特征代谢” /strong 。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/6a08beaa-f9b4-45f6-9d6c-a71acc5cbd57.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center line-height: 1.75em "   基于靶向代谢组学方法表征金属离子锰调控生物膜特征代谢 /p p style=" text-align: center line-height: 1.75em "   郭睿,吕海涛* /p p style=" text-align: justify line-height: 1.75em "   近日,国内第一本国际性的英文分析化学期刊Journal of Analysis and Testing (JOAT) 特邀请中国科学院大连化学物理研究所许国旺研究员作为客座编辑,主持“Metabolomics: state of art in methoddevelopment and applications”专题。上海交大系统生物医学研究院吕海涛课题组受邀发表基于靶向代谢组学方法表征金属离子锰调控生物膜特征代谢的最新研究成果。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/80edb75a-ab8d-4946-845d-843615694741.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: justify line-height: 1.75em "   生物膜是由多种微生物在外界压力环境下产生,表面被胞外聚合物(EPS)包裹的微生物群落,EPS的存在使细胞对杀虫剂,抗生素以及其他入侵力的抵抗力都明显高于其悬浮细胞。生物膜的形成对各个领域都产生了影响,包括临床感染,环境污染,农业生产,食品工程和工业污染等。然而,生物膜的形成机制尚未完全阐明,并且目前我们还缺乏解决这些问题以及破坏生物膜形成的有效手段。在本研究中,我们试图探寻金属锰离子通过调节生物膜形成过程的关键功能代谢产物进而认知其调控生物形成的代谢模式与特征表型,以为后续生物膜形成机制研究奠定靶向调控物质基础。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/388cbcf4-2dfb-43a5-9b92-a42f7ac258e2.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: justify line-height: 1.75em "   本研究初步发现,金属锰离子能够调控大肠杆菌生物模的形成,与作用剂量具有一定的依存关系,且对其微观内质结构具有明显的修饰作用,进而影响稳态生物膜的形成与解离。 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202007/uepic/d74c56a0-1141-4ad9-9e1d-dbbc853c3ce4.jpg" title=" 4.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202007/uepic/43fa82ea-6ee5-4c86-8297-1e88465fb16b.jpg" title=" 5.jpg" / /p p style=" text-align: justify line-height: 1.75em "   进一步,经过精准靶向代谢组学分析,我们初步确证锰离子具有调控生物膜形成过程中特征分子代谢的潜力,而这些代谢直接关联生物膜的形成。由此,我们认为,锰离子或许能够成为抑制和调控生物膜形成的一种生物基质选择,而其靶向调控的功能代谢物,也具备调控生物膜形成的分子特征。未来可考虑从锰离子靶向调控功能代谢物角度,设计全新策略,清除生物膜的形成,彻底解决上述不同生命科学领域与生物膜相关的有害挑战。 /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202007/uepic/f1b30c68-5ce7-44a0-9bf3-b24f437699f4.jpg" title=" 6.jpg" / /p p style=" text-align: center" img style=" " src=" https://img1.17img.cn/17img/images/202007/uepic/89426807-d3b6-47a6-988c-5dd2a5467724.jpg" title=" 8.jpg" / /p p style=" text-align: justify line-height: 1.75em "   课题组正在基于上述代谢表型结果,聚焦具体有价值功能代谢物,结合生物合成调控修饰策略,开展相关机理研究,核心目标是从金属调控代谢维度阐明生物膜形成与解离的分子机理,为生物膜相关挑战性科学与转化应用问题的解决提供共性策略和方法参考。 /p p style=" text-align: justify line-height: 1.75em "   课题研究得到国家重点研发计划、国家自然科学基金和上海交通大学高层次人才启动基金等支持。 /p p style=" text-align: right line-height: 1.75em "   (感谢吕海涛研究员团队提供论文主要内容翻译) /p p style=" text-align: justify line-height: 1.75em "   下载本文: Guo, R., Lu, H. Targeted Metabolomics Revealed the Regulatory Role of Manganese on Small-Molecule Metabolism of Biofilm Formation in Escherichia coli. J. Anal. Test. (2020). a href=" https://doi.org/10.1007/s41664-020-00139-8" _src=" https://doi.org/10.1007/s41664-020-00139-8" https://doi.org/10.1007/s41664-020-00139-8 /a /p p style=" line-height: 16px text-indent: 2em " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202007/attachment/73e7f637-5326-4057-aefe-d245e15b3247.pdf" title=" 10.1007@s41664-020-00139-8.pdf" 10.1007@s41664-020-00139-8.pdf /a /p p style=" text-align: center line-height: 1.75em "   上海交通大学吕海涛研究员简介 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/ac915f0a-4375-4c52-9eaa-b84c216234d0.jpg" title=" 微信图片_20200727115812.jpg" alt=" 微信图片_20200727115812.jpg" / /p p style=" text-align: justify line-height: 1.75em "   吕海涛博士,,上海交通大学研究员(教授)/课题组长/博士生导师,国家重点研究发计划课题负责人,权威的QUT Vice Chancellor’ s Research Fellowship校长特聘教授席国际人才基金获得者,交通大学绿色通道引进高层次人才和功能代谢组学科学实验室主任。 /p p style=" text-align: justify line-height: 1.75em "   2009年于黑龙江中医药大学获得生药学博士学位,师从王喜军教授。2009-2013年先后在美国爱因斯坦医学院,华盛顿大学医学院和麻省理工学院完成博士后训练,研究方向为代谢组学、化学生物学和RNA Modifications, 合作导师为Irwin J. Kurland 教授, Jeffrey P. Henderson 教授和Peter C. Dedon 教授。2012年9月-2015年12月,任重庆大学创新药物研究中心(药学院)“百人计划”研究员,博士生导师,主任(院长)助理,功能组学与创新中药研究实验室负责人。2015年12月,加盟上海交通大学系统生物医学研究院,任课题组长,研究员,博士生导师,领衔功能代谢组科学实验室建设与发展。 /p p style=" text-align: justify line-height: 1.75em "   先后在Mass SpectrometryReviews, Journal of Proteome Research, Molecular Cellar Proteomics,Pharmacological Research, 和Liver International 等权威杂志发表SCI检索论文46篇,被Nature Chemical Biology, Chemical Reviews和Mass Spectrometry Reviews 等著名杂志引用1000余次,并发表会议论文30余篇,国内外学术会议和科研机构特邀学术报告40余次,担任分会主席主持会议5次。目前担任自2013年7月起,兼任澳大利亚昆士兰科技大学校长特聘教授/博士生导师。中国生物物理学会代谢组学分会副秘书长,世中联网络药理学专委会常务理事,中国药理学会网络药理学专委会理事,中国药理学学会分析药理学专委会创会理事,美国科学促进会(AAAS)荣誉会员和国际代谢组学学会会员。同时担任著名SCI检索杂志Phytomedicine (JCR 1区,IF 4.2)副主编,Frontiers inMicrobiology(IF 4.1)副主编,以及Pharmacological Research (IF 5.57)顾问主编,Scientific Reports (IF 4.1)和Proteomics-Clinical Applications (IF 3.5)编委,以及SCI检索杂志Acta PharmaceuticaSinica B (IF 5.7)和Chinese Journal of Natural Medicines (IF 1.9)青年编委。并受邀为Mass SpectrometryReviews, NPJ Systems Biology and Applications, Journal of Proteome Research,Biomacromolecules 等20余本SCI检索杂志审稿,国家自然科学基金委和澳大利亚NHMRC基金评审专家。 /p p style=" text-align: justify line-height: 1.75em "   近五年,吕海涛博士先后主持国家重点研发计划课题1项,国家自然科学基金面上项目2项,中央高校基本科研业务费重大项2项,重庆自然科学基金面上项目1项,QUT Vice Chancellor’s Research Fellowships 1项(校长特聘教授席国际人才基金项目), 上海交通大学特别研究员计划项目1项(绿色通道引进高层次人才项目),重庆大学百人计划项目1项(引进海外高层次人才项目)。获教育部科技成果一等奖1项,获批合作发明专利1项。 /p p style=" text-align: justify line-height: 1.75em "   联系 Email: haitao.lu@sjtu.edu.cn /p p br/ /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制