生物类样品

仪器信息网生物类样品专题为您整合生物类样品相关的最新文章,在生物类样品专题,您不仅可以免费浏览生物类样品的资讯, 同时您还可以浏览生物类样品的相关资料、解决方案,参与社区生物类样品话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

生物类样品相关的耗材

  • PALL 生物类精选过滤产品 纳鸥科技
    Supor® 膜的Acrodisc® 针头式过滤器生命科学中通用的蛋白质吸附低的膜(0.1 μm 的膜,用于支原体去除)滤材:Supor 膜(亲水聚醚砜)应用:0.1和 0.2 μm 的孔能够对体积较小的缓冲液、培养介质以及添加剂进行灭菌。Acrodisc PF 和 Serum Acrodisc 针头过滤器适合用来对粘性的或者富含颗粒的溶液进行澄清/ 灭菌通过大孔径过滤器进行预过滤,并除去颗粒通过一个 0.1 μm 的膜,用于支原体去除订货信息Supor 膜的Acrodisc 针头过滤器(灭菌包装)货号描述包装46020.2 μm, 13 mm75/PK46040.45 μm, 13 mm75/PK46080.8 μm, 13 mm75/PK46110.1 μm, 25 mm50/PK46120.2 μm, 25 mm50/PK46140.45 μm, 25 mm50/PK46180.8 μm, 25 mm50/PK46510.1 μm, 32 mm50/PK46520.2 μm, 32 mm50/PK46540.45 μm, 32 mm50/PK46561.2 μm, 32 mm50/PK46505 μm, 32 mm50/PKAcrodisc PF 针头过滤器(灭菌包装)货号描述包装41870.8/0.2 μm, 25 mm50/PK46580.8/0.2 μm, 32 mm50/PKSupor® 圆盘过滤膜片减少过滤时间,经过了优化,能够满足生物、制药以及灭菌过滤的要求滤材:亲水聚醚砜应用: 能够满足生物、制药和灭菌过滤的要求;独立单片灭菌包装适用于微生物分析订货信息Supor 100 膜货号描述包装603090.1 μm, 25 mm100/PK603100.1 μm, 47 mm100/PK603110.1 μm, 90 mm100/PK603120.1 μm, 142 mm, 带标签的25/PK665510.1 μm, 142 mm, 无标签25/PK603130.1 μm, 293 mm, 带标签的25/PK665520.1 μm, 293 mm, 无标签25/PK Supor 200 膜货号描述包装602090.2 μm, 13 mm100/PK603000.2 μm, 25 mm100/PK603010.2 μm,47 mm100/PK662340.2 μm,47 mm, 带网格200/PK独立单片(S- 包)603340.2 μm,90 mm100/PK603050.2 μm, 142 mm 带标签的25/PK665490.2 μm, 142 mm 无标签25/PK603070.2 μm,293 mm 带标签的25/PK665500.2 μm,293 mm 无标签25/PKSupor 450 膜货号描述包装601700.45 μm, 13 mm100/PK601720.45 μm, 25mm100/PK601730.45 μm, 47 mm100/PK618540.45 μm, 47 mm, 带标签的100/PK601740.45 μm, 50 mm, 无标签100/PK602060.45 μm, 90 mm, 带标签的100/PK601770.45 μm, 142 mm25/PK665530.45 μm, 142 mm25/PK 601790.45 μm, 293 mm25/PK665540.45 μm, 293 mm 25/PKSupor 800 膜货号描述包装601090.8 μm, 25 mm 普通的100/PK601100.8 μm, 47 mm100/PK601120.8 μm, 90 mm100/PK601140.8 μm, 142 mm, 带标签的25/PK665550.8 μm, 142 mm, 无标签25/PK665560.8 μm, 293 mm, 无标签25/PK601160.8 μm, 293 mm, 带标签的25/PKPTFE 膜的Acro50® 通气滤器滤材:在聚丙烯载体上的聚四氟乙烯应用:Acro 50 滤器在以下领域有出色的性能:生物反应器、发酵罐以及玻璃瓶的通气。培养容器的灭菌气体净化。挥发迅速溶剂的过滤。订货信息PTFE 膜的Acro 通气滤器货号描述包装42510.2 μm,软管接口18/PK44000.2 μm,1/8 in. 的 MNPT18/PK44010.2 μm,9.5 mm(3/8 in.)直管接口18/PK42500.2 μm,软管接口72/PK42560.45 μm,软管接口18/PK42581 μm,软管接口18/PK40031 μm,1/8 in. 的 MNPT 接口18/PK
  • 维科生物 杀孢子剂 其他生物耗材
    杀孢子剂MK-Ⅲ460ml 即用型过氧化物类杀孢子剂,无需稀释或活化。适用于A/B级洁净区内工作表面(如生物安全柜等)、仪器设备表面或微生物样品意外溢出后受到细菌芽孢、真菌孢子污染的物品表面。性能特点1、 按GMP要求生产,0.22微米膜过滤,双层无菌包装2、无菌检查符合《中国药典》2020版 通则 1101规定3、用水符合纯化水药典标准4、材料兼容性良好,对不锈钢、塑料、玻璃、彩钢板、环氧树脂、硅胶及橡胶等表面无腐蚀性,且对仪器运行无影响5、可杀灭细菌繁殖体、细菌芽孢、真菌及真菌孢子6、 无需清洗,无有害残留 技术参数主要成分:化学名浓度%(w/w)过氧化氢4.0-6.5%过氧乙酸0.1%理化特性:外观:无色液体气味:醋味密度:1.01/cm3 (20℃)pH:1.5-3.0 (20℃)有效期:2年 应用领域适用于A/B级洁净区内工作表面(如生物安全柜等)、仪器设备表面或微生物样品意外溢出后受到细菌芽孢、真菌孢子污染的物品表面。
  • 样品前处理
    产品特点:样品前处理参考指南常见基质化合物类型主要萃取机制产品页码不同的食品基质农药和工业化学品残留使用缓冲盐或无缓冲盐萃取,dSPE*Bond Elut QuEChERS90不同的食品基质兽药无缓冲盐的萃取,dSPE*Bond Elut QuEChERS90不同的食品基质丙烯酰胺无缓冲盐的萃取,dSPE*Bond Elut QuEChERS90水溶性样品、生物体液样品 小分子 基于微萃取头的SPE:离子交换,反相Bond Elut OMIX 80 水溶性样品、生物体液、饮料和食品小分子 过滤 Captiva100Captiva NDLIPIDS102水溶性样品、生物体液、饮料和食品小分子 过滤并除脂 Captiva ND 101 尿液、血浆和生物体液、饮料和食品液体和食物样品中的儿茶酚胺、丙烯酰胺强阳离子和阴离子交换 Bond Elut AccuCAT 59 非极性有机物极性净化极性Bond Elut Alumina64尿液、血浆、生物体液强非极性化合物非极性、极性(作为正相萃取)Bond Elut C144水溶性样品、生物体液非极性化合物非极性Bond Elut C1835水溶性样品、生物体液样品非极性化合物,脱盐非极性Bond Elut C18 OH39水溶性样品、生物体液、非极性萃取物具有超大孔径,适用于较大分子和分子量高达 15 kDa 的大分子非极性,氢键 Bond Elut C18 EWP 38 分散固相萃取样品前处理参考指南常见基质化合物类型主要萃取机制产品页码水溶性样品、生物体液样品 维生素 D、脂溶性化合物和类固醇/激素非极性 Bond Elut C2 45 水溶性样品、生物体液样品强非极性化合物非极性Bond Elut C840水溶性样品、生物体液样品非极性化合物弱阴离子交换Bond Elut CBA57水性和非极性有机物强碱和弱碱极性(羟基)Bond Elut Cellulose71水溶性样品、生物体液样品 极性杂质/化合物 非极性 Bond Elut CH (环己基)43水溶性样品、生物体液样品非极性化合物非极性,偶极Bond Elut CN-E47有机植物和组织萃取物中等极性化合物宽范围的非极性保留Bond Elut Carbon68尿液、血浆、唾液、血液和生物体液酸性、碱性和中性药物 非极性与强阳离子交换 Bond Elut Certify 60 尿液、血浆、唾液、血液和生物体液酸性药物 非极性与强阴离子交换 Bond Elut Certify II 62 水、生物体液,非极性萃取物强酸性化合物弱阴离子交换Bond Elut DEA58水溶性样品、生物体液和非极性有机物极性,弱非极性 极性和非极性 Bond Elut Diol (2OH)48 水源极性有机分子,爆炸物残留非极性Bond Elut ENV32样品前处理参考指南常见基质化合物类型主要萃取机制产品页码非极性有机物 有机萃取物、非极性环境萃取物极性 Bond Elut Florisil 63 尿液、血浆、生物体液非极性化合物非极性Bond Elut LMS33水溶性样品和极性有机谷类萃取物霉菌毒素(单端孢霉烯和玉米 烯酮)离子净化 Bond Elut Mycotoxin 72 马尿、尿液、生物体液 酸性、碱性和中性药物、季胺 类药物、内源性干扰物 非极性 Bond Elut NEXUS 和 Bond Elut NEXUS WCX34 水溶性样品、生物体液和缓冲有机物极性和非极性强阴离子,极性 结构异构体弱阴离子交换 Bond Elut NH2 49 血浆、尿液、水溶性样品和生物体液 顺式二醇结构化合物、儿茶酚胺、核苷酸、氨基醇类、二酮和三酮化合物共价键 Bond Elut PBA 74 水源多氯联苯(PCB)极性Bond Elut PCB71水溶性样品和生物体液强非极性化合物,芳族化合物非极性Bond Elut PH42水源、生物体液非极性化合物,酚类非极性,静电Bond Elut PPL31水溶性样品、生物体液和缓冲有机物碱性化合物(含胺和吡啶盐类) 强阳离子交换 Bond Elut PRS 55 样品前处理参考指南常见基质化合物类型主要萃取机制产品页码水溶性样品、生物体液和缓冲有机物酸性化合物(为 QuEChERS 去除果酸)弱阴离子交换 Bond Elut PSA 56 血浆、尿液、水溶性样品和生物体液 水中的非极性化合物,如酸性/中性多环芳烃(PAH)成分非极性 Bond Elut Plexa 21 血浆、尿液、水溶性样品和生物体液酸性化合物、药物的羧酸代谢物、肽类和氨基酸混合模式:非极性与强阴离子交换Bond Elut Plexa PAX 30 血浆、尿液、水溶性样品和生物体液碱性药物 混合模式:非极性强阳离子交换Bond Elut Plexa PCX 28 水溶性样品、生物体液弱酸性化合物强阴离子交换Bond Elut SAX51水溶性样品、生物体液和缓冲有机物弱碱性化合物 强阳离子交换 BondElutSCX53 非极性有机物、油类、脂类极性杂质的净化极性BondElutSI46水源,土壤萃取样品农药和工业化学品残留非极性EnvirElut75水溶性样品、生物体液、有机反应混合物(净化)亚硝胺类、杀虫剂、除草剂 固体支持液-液萃取(LLE) Chem Elut 118 水溶性样品、生物体液、有机反应混合物(净化)亚硝胺类、杀虫剂、除草剂 固体支持液-液萃取(LLE) Hydromatrix 118

生物类样品相关的仪器

  • 品牌其他品牌产地类别国产应用领域医疗卫生,环保,食品,石油,纺织皮革小型实验室微生物类废水处理设备广泛应用于科研院所、中学、高校、环境、质检、药监、出入境检验检疫、电力、疾控、动物畜牧、农产品检验、医疗、血站、分析测试中心、石油石化、企业等实验室废水处理。小型实验室微生物类废水处理设备一、易普易达(EPED)实验室微生物类废水处理设备介绍 易普易达(EPED)实验室微生物类废水处理设备主要由废水收集单元、手动自动调节单元、预处理单元、自动加药单元、混凝气浮搅拌单元、絮凝助凝沉淀单元、沉降分离单元、固液分离单元、污泥干化单元、重金属捕捉单元、过滤吸附单元、活性微电解处理单元(选配)、光催化氧化反应技术处理单元等技术工艺组成。整套工艺技术先进、简单高效,工艺设计之初便充分考虑到废水处理环节需要足够的反应时间,只有这样,废水中的有害成分才能彻底去除。每一个单元的工艺、反应箱的容积、反应时间都经过科学的推算和反复试验。整套系统处理工艺按照国标或者客户指定的标准进行设定,全自动、精准化运行,确保处理效果。系统运行采用PLC可编程控制系统和人机界面操作系统、远程监控及操作系统(选配),多个水质参数自动在线监测。针对不同实验室废水的成分和浓度,控制系统自动进行计算,然后按比例进行自动投放药品,无需人工添加和值守。 易普易达(EPED)实验室微生物类废水处理设备针对不同实验室产生的有机、无机、生物类废水成分和浓度采用不同的处理技术和工艺进行综合处理,可有效去除实验室综合废水中的COD、BOD、SS、色度、病毒、有机溶剂和重金属离子等,经过处理后实验室综合废水可达到国家污水综合排放标准【GB8978-1996】、国家污水排入城市下水道水质标准【CJ343-2010】中的一、二、三级标准或者相关地方标准。处理后的废水可直接排入市政污水管网或地表、河水,也可以通过再处理工艺把处理后的废水进行再利用。易普易达(EPED)实验室微生物类废水处理设备特点:技术先进、全自动运行、占地面积小、操作简单方便、无需人工值守。易普易达(EPED)实验室微生物类废水处理设备应用领域:广泛应用于科研院所、中学、高校、环境、质检、药监、出入境检验检疫、电力、疾控、动物畜牧、农产品检验、医疗、血站、分析测试中心、石油石化、企业等实验室废水处理。 二、易普易达(EPED)实验室微生物类废水处理设备设计要素1、实验室废水来源:实验室药品、试剂、试液、废液、残留试剂、容器洗涤、仪器清洗及跑冒滴漏等实验过程中产生的综合废水;2、设备日处理废水量: T/D或 L/D;3、实验室综合废水成份:无机物类、有机物类、生物类废水等;1)、无机物类:重金属离子、酸碱PH值、卤素离子及其他非金属离子等; a、重金属离子类:汞、镉、总铬、六价铬、铅、锰、银 、镍、锌、铁、钴、锡、镁、锌、铜、铝、砷等金属阳离子以及处于络合状态的重金属离子团(Cr2O7)2-、(CuCN) -、(AuCN)- 、(Ptcl6)2-等; b、非金属离子类:氟化物、氰化合物、络离子化合物、AsO32-、AsO43-、Hg+、Hg2+等; c、酸碱PH值:硝酸、盐酸、磷酸、硫酸、双氧水、氯化k、氯化钙等;2)、有机物类:有机溶剂、洗涤剂、表面活性剂、苯、甲苯、二甲苯、苯胺、苯酚、多氯联苯、苯并芘、酚类、甲醛、乙醛、丙烯腈、bing烯醛、烷烃、烯烃、氟化氢、石油类、油脂类物质、甲醇、苯胺类、多环芳烃、硝基化合物、亚硝胺、氯苯类、硝基苯类、醚类、混合烃类、炳酮、糖类、卤代烃、蛋白质、有机磷农药等;3)、生物类:病原体等; a、病原体:细菌、病毒、衣原体、支原体、螺旋体、真菌、布鲁氏杆菌,炭疽杆菌等;4、实验室废水处理后的排放标准: 1)符合国家污水综合排放标准【GB8978-1996】中的三级排放标准; 2)地方相关标准经过实验室综合废水处理系统处理后的废水可直接排入市政排污管网 三、易普易达(EPED)实验室微生物类废水处理设备型号选择实验室产品类别产品型号处理量主机大小尺寸(mm)小型实验室微生物类废水处理设备 EPED-CL-50S50L/D主机:960*600*1300MM辅机:1200*600*1100MM EPED-CL-100S100L/DEPED-CL-200S200L/DEPED-CL-300S300L/DEPED-CL-500S500L/D主机:1000*800*1700MM辅机:1460*800*1400MM中大型实验室微生物类废水处理设备EPED-CL-1000S1000L/DEPED-CL-2000S2000L/DEPED-CL-3000S3000L/D备注:处理量可以根据客户实际需求定制,处理量越大,外形尺寸越大 四、易普易达(EPED)实验室微生物类废水处理设备功能特点1、实用性广:可适应各类实验室的废水处理;2、技术先进:采用多项先进的技术对废水进行多元化处理净化,达到排放标准;3、自动化程度高:通过中央集中控制,自动化程度高,操作简单,全自动运行,无须专人职守;4、保护功能全面:可实现定时开关机、无废水保护功能、储液罐液位保护功能; 5、运行成本低:模块型集成技术,处理效果好,不会产生废渣、废水等二次污染,运行成本低;6、环境友好设计:系统耐酸碱腐蚀,噪音小,功率小、多重安全保护等特点;7、智能集成化管理:通过“一站式”一体化设计,外形美观、占地面积小,便于集中管理;8、PLC可编程序智能控制系统及人机界面操作系统:设备采用PLC可编程序智能控制系统,人机界面操作系统:LCD液晶显示中文显示、具备人机对话功能,时钟和语言设定功能,开机时设备电控系统自动检测,全自动处理废水、针对不同废水的成分和浓度,控制系统自动进行计算然后按比例进行自动投放药品,更加科学化和合理化。9、具备远程管理与监控升级功能(选配)采用实验室废水处理系统专用管理监控软件运用传感器、数据线、PLC、电脑的有机结合,使系统的操作、保养、检测、监控、记录、统计、分析等都能在你的办公室电脑上立刻实施小型实验室微生物类废水处理设备
    留言咨询
  • 品牌其他品牌产地类别国产应用领域医疗卫生,环保,食品,石油,纺织皮革实验室废水中和处理/Clear实验室综合废水处理设备严格执行国家现行的环保技术标准规范,选用先进、合理、可靠的处理工艺,在确保处理排放达标的前提下,做到操作简单、管理方便、占地小、投资省、运行费用低、避免和减少二次污染。为了提高污水站管理水平,采用自动化程度高、操作人员劳动强度低的设计思路,合理选用优质配件,降低能耗,提高工作效益和使用寿命,降低成本。易普易达 Clear 实验室综合废水处理设备严格执行国家现行的环保技术标准规范,选用先进、合理、可靠的处理工艺,在确保处理排放达标的前提下,做到操作简单、管理方便、占地小、投资省、运行费用低、避免和减少二次污染。为了提高污水站管理水平,采用自动化程度高、操作人员劳动强度低的设计思路,合理选用优质配件,降低能耗,提高工作效益和使用寿命,降低成本。 一、概述1.实验室废水的分类实验室废水有其自身的特殊性质,间断性强, 高危害, 成分复杂多变。根据废水中所含主要污染物性质, 可以分为实验室有机和无机废水两大类。无机废水主要含有重金属、重金属络合物、酸碱、硫化物、卤素离子以及其他无机离子等。有机废水含有常用的有机溶剂、有机酸、醚类、多氯联苯、有机磷化合物、酚类、石油类、油脂类物质。不同的废水,污染物组成不同,处理方法和程度也不相同。实验室废水的处理本着分类收集,就地、及时地原位处理,简易操作,以废治废和降低成本的原则。实验室综合废水成份包括但不限于如下分类:(1)无机物类:重金属离子、酸碱PH值、卤素离子及其他非金属离子等;a、重金属离子类:汞、镉、总铬、六价铬、铅、锰、银 、镍、锌、铁、钴、锡、镁、锌、铜、铝、砷等金属阳离子以及处于络合状态的重金属离子团(Cr2O7)2-、(CuCN) -、(AuCN)- 、(Ptcl6)2-等;b、非金属离子类:氟酸或氟化物、游离氰或氰化合物、络离子化合物、AsO32-、AsO43-、Hg+、Hg2+等;c、酸碱PH值:硝酸、盐酸、磷酸、硫酸、双氧水、氯化钙等;(2)有机物类:有机溶剂、洗涤剂、表面活性剂、苯、甲苯、二甲苯、苯胺、苯酚、多氯联苯、苯并芘、酚类、甲醛、乙醛、丙烯腈、烷烃、烯烃、氟化氢、石油类、油脂类物质、甲醇、苯胺类、多环芳烃、硝基化合物、亚硝胺、氯苯类、硝基苯类、醚类、混合烃类、炳酮、糖类、卤代烃、蛋白质、有机磷农药等;(3)生物类:病原体等;病原体:细菌、病毒、衣原体、支原体、螺旋体、真菌、布鲁氏杆菌,炭疽杆菌等。 2.实验室废水的主要来源实验室废水,通常实验室综合废水来源包括但不限于如下来源:实验室药品、试剂、试液、残留试剂、仪器清洗及跑冒滴漏等过程中产生的综合废水。随着经济的发展和科技的进步,各地的科研单位和高等院校进行的科研实验越来越深入、广泛,从实验室中排放的实验室废水与之增加,实验室废水的水质情况复杂、排放周期不定,排放水量无规律性,且所含污染物成分较为复杂,除含有洗涤剂及常用溶剂等有机物外,还有较多的酸碱,有毒有害的有机物以及重金属。实验室废水水量相对较小,但如果不加处理就外排将对环境造成极大的污染。然而经过调研,发现许多科研实验室对产生的废水仅仅是简单的处理,甚至不作任何处理就排放。为了进一步加强对实验室的管理,研究实验室废水综合治理的方法与处理效果好、技术先进、投资较少的设备势在必行。易普易达clear综合废水处理设备广泛应用于中、高等院校、科研院所、食品药品检验、产品质检所、疾控中心、环境监测、农产品质检、检验检疫、粮油检测、动物疾控、血站、畜牧、医疗机构、医院、生物制药、石油化工、企业等实验室、化验室废水处理,经过处理后废水达到废水综合排放标准【GB8978-1996】中的一、二、三级标准,处理后的污水可排入市政污水管网或地表、河水,也可以通过再处理工艺把处理后的废水进行再利用。 二、Clear实验室综合废水处理设备可有效处理以下实验室综合废水成分:无机物类、有机物类、生物类废水等;1.无机物类:重金属离子、酸碱PH值、卤素离子及其他非金属离子等;(1)重金属离子:汞、镉、铬、铅、锰、银 、镍、锌、铜、铝、砷等金属阳离子以及处于络合状态的重金属离子团(Cr2O7)2-、(CuCN) -、(AuCN)- 、(Ptcl6)2-等;(2)酸碱PH值:硝酸、盐酸、硫酸、双氧水、氯化钙等;2.有机物类:有机溶剂、苯、甲苯、二甲苯、酚类、甲醛、乙醛、丙烯腈、氟化氢、石油类、甲醇、N-N二甲基甲酰胺、异丙醇、哌啶、二氯甲烷、无水乙醇、 DIEA、DNA合成废液、乙腈、苯酸、苯胺类、氯苯类、硝基苯类、油脂类、醚类、混合烃类、炳酮、糖类、蛋白质、有机磷农药等;3.生物类:病原体、细菌、病毒、乙肝表面抗原、丙肝抗原、衣原体、支原体、螺旋体、真菌、布鲁氏杆菌,炭疽杆菌衣原体等;4.经过处理后的污水达到《污水综合排放标准》(GB8978-1996)中的一/三级标准。 三、clear实验室综合废水处理设备进出水水质设计表: 序号污染物项目设备处理后出水水质(mg/L)1CODcr≤402BOD5≤153SS≤54PH6.5~95氨氮≤106石油类≤0.57总铅≤0.58总锰≤3.09总锌≤3.010总铬≤1.011总汞≤0.312三氯甲烷≤0.513甲苯≤0.214苯酚≤0.415有机磷农药≤0.316表面活性剂(LAS)≤8工艺流程工艺流程 工艺说明原水————————实验室仪器漂洗废水收集调节箱—————均衡水质水量,调节PH值,便于后续混凝反应絮凝装置——————投加PAC、PFC等絮凝剂,形成颗粒助凝装置——————投加PAM等助凝剂,形成矾花,加速沉淀沉淀装置——————利用重力沉淀池,沉淀污泥,并定期排放清水箱———————沉淀过后净水,收集装置预处理装置—————过滤吸附有机物质及颗粒物膜处理装置—————深度处理污水,达到排放标准消毒装置——————杀菌消毒排放————————达标排入市政污水管网 规格型号CL-50CL-100CL-200CL-300Cl-500CL-1000CL-2000处理能力50L/D100L/D200L/D300L/D500L/D1000L/D2000L/D系统主机1000(宽)×600(深)×800(高)Hmm1000(宽)×800(深)×1600(高)Hmm辅助主机/1200(宽)×800(深)×1300(高)Hmm占地面积10平10平电源输入AC220VAC220V输入功率0.5KW1.5KW备注:Clear实验室综合废水处理设备可以根据客户具体需求量身定做包括:1.根据废水水质种类制定特殊处理方案2.每天废水处理量(L/D)3.现场安装位置以及安装尺寸的合理布局调整等。 *具备远程管理与监控升级功能(选配)采用实验室废水处理系统专用管理监控软件运用传感器、数据线、PLC、电脑的有机结合,使系统的操作、保养、检测、监控、记录、统计、分析等都能在你的办公室电脑上立刻实施 六、产品特点★实用性广,可适应各类实验室的废水处理;★采用多项先进的技术对废水进行多元化处理净化,达到排放标准;★通过中央集中控制,自动化程度高,操作简单,全自动运行,无须专人职守;★可实现定时开关机、无废水保护功能、储液罐液位保护功能;★模块型集成技术,处理效果好,不会产生废渣、废水等二次污染,运行成本低;★耐酸碱腐蚀,噪音小,功率小、多重安全保护等特点;★通过“一站式”一体化设计,外形美观、占地面积小,便于集中管理;★设备采用PLC可编程序智能控制系统,人机界面操作系统:LCD液晶显示中文显示、具人机对话功能,时钟和语言设定功能,开机时设备电控系统自动检测,全自动处理废水、针对不同废水的成分和浓度,控制系统自动进行计算然后按比例进行自动投放药品,更加科学化和合理化。 七、应用领域应用领域实验室废水来源中、高等院校生命科学院、化工学院、材料学院、环境学院、食品学院、医学院、农学院 科研院所研究院、研究所、测试中心、检验中心疾控中心理化检验、微生物、PCR、P2、P3、P4等实验室畜牧兽医动物防疫、病原微生物等实验室药品检验化学室、药品室农产质检中心农产品质量安全检验、建材室产品质检食品分析室环境监测水分析室、恒量分析室农业技术中心化学室、药物残留室医院体检中心理化室、检验室检验检疫局保健中心、技术中心生物制药理化分析、质检室、实验室企 业中心实验室、质检室、化验室
    留言咨询
  • 生物样品采样箱 400-860-5168转3974
    生物样品采样箱一、产品介绍: 生物样品采样箱是疾病预防控制中心应急事件处理预案中必需具备的现场生物类样品采样装备。  二、主要特点: 用于疾病预防控制中心、医院、卫生监督的采样;以保障现场工作基本需求,对提高卫生应急现场工作的机动能力和工作效率具有重要的意义。三、配置方案:内置单元品名规格单位数量生物采样容器设备单元一次性无菌咽拭子含病毒培养液盒1涂抹棒含缓冲液盒2采便管含培养基盒1采尿管50mL个10采血管4mL支50一次性采血针7#支50无菌冻存管5mL支10无菌冻存管2mL支10无菌密封采样袋封口处带有钢丝个10生物采样辅助品单元安全盒1L个1压舌板木制一次性包1剪刀12.5cm把1敷料镊12.5cm支1签字笔略支1记号笔略支1采样防护品单元医用垃圾袋一次性个2医用一次性口罩10个/包包1医用乳胶手套一次性独立包装双5酒精棉球医用独立包装盒1止血带医用条1储物盒塑料材质个3
    留言咨询

生物类样品相关的方案

生物类样品相关的论坛

  • 生物类似物企业技术指南有望年底出台

    国家药监总局(CFDA)南方医药经济所副所长陶剑虹在第四届生物类似物发展论坛上表示,目前,CFDA正式启动了生物类似物药物监管准则的编制,预计年内将向企业发布技术指南。“将按照欧盟和WHO的相关规定,分别针对创新型和非创新型品种建立不同的监管审批原则”。  在国内生物类似物法规一片空白的背景下,该指南对生物制品行业的意义巨大。一位接近国家药品审评中心(CDE)的与会专家也透漏,CFDA正在研究制定生物类似物的相关审评监管政策,CDE专门对生物类似物企业指南进行开会讨论。“会前第一版内部已经有了,会后第一版据说年底就会有。不过,与此前业内期望国家出台符合中国国情的生物类似物政策不同的是,该指南更趋向于是一个国际标准,可能在执行操作方面才会有中国特色”。  据陶剑虹介绍,从明年起到2018年,全球进入专利药物到期密集期,而面对生物类似物巨大的机遇,我国却在政策层面上面临阻碍,没有明确的生物类似物研发指导原则和相关法规。为此,国内38位院士联名上书,呼吁尽快出台适合国情的生物类似物审批政策,缩短审批流程,为生物类似物创造良好环境,建言报告也得到了积极回应。  据了解,我国《药品管理法》2001年颁布,最新的配套细则也有7年历史,且未对生物类似物发布明确的技术指南。国内涉足生物类似物的药企只能按照创新药的开发流程来报批,开发过程繁琐冗长,消耗了大量的时间和资金。2011年-2013年,我国企业每年申请审批的生物制品超过1000种,但能获批上市的只有70余种。  相较之下,世界各国针对生物类似物已出台了相应的监管政策。欧洲早在2006年就建立了初具规模的生物类似物审批途径;美国FDA的监管态度也日趋明朗,今年9月出台的生物类似药紫皮书为该类药物的研发和推进奠定了基石;日本、韩国、澳大利亚均发布了生物类似物审批的指导原则;巴西、墨西哥、委内瑞拉、哥伦比亚和印度也已经发布了生物类似物审批的草案。

  • 生物类实验废物的处理

    生物类废物应根据其病源特性、物理特性选择合适的容器和地点,专人分类收集进行消毒、烧毁处理,日产日清。液体废物一般可加漂白粉进行氯化消毒处理。固体可燃性废物分类收集、处理、一律及时焚烧。固体非可燃性废物分类收集,可加漂白粉进行氯化消毒处理。满足消毒条件后作最终处置。1. 一次性使用的制品如手套、帽子、工作物、口罩等使用后放入污物袋内集中烧毁。2. 可重复利用的玻璃器材如玻片、吸管、玻瓶等可以用1000-3000mg/L有效氯溶液浸泡2-6h.然后清洗重新使用,或者废弃。3. 盛标本的玻璃、塑料、搪瓷容器可煮沸15min.或者用1000mg/L有效氯漂白粉澄清液浸泡2-6h,消毒后用洗涤剂及流水刷洗、沥干;用于微生物培养的,用压力蒸汽灭菌后使用。4. 微生物检验接种培养过的琼脂平板应压力灭菌30min,趁热将琼脂倒弃处理。5. 尿、唾液、血液等生物样品,加漂白粉搅拌后作用2-4h,倒入化粪池或厕所,或者进行焚烧处理。

  • CFDA准备出台生物类似药研究指南

    国家食品药品监管总局(CFDA)积极研究并准备出台生物类似药(biosimilar,又译“生物类似物”)研究技术指导原则的消息在业内不胫而走。根据CFDA药化注册司的部署,药品审评中心承担了生物类似药研究技术指导原则的起草撰写工作,日前已启动了生物类似药研究技术指导原则制定专项工作。“中国药监审评部门着手生物类似药指导原则的调研和起草等相关工作,这是一个鼓舞人心的消息。指导原则的制定要从一开始就参考国际水准,考虑战略定位,具体实施则需要有循序渐进和全球合作的心态。”盛德国际律师事务所生物科学战略顾问、中国药科大学国家药物政策与医药产业经济研究中心研究员苏岭在接受本报采访时说。审批的挑战“在制定我国生物类似药的规范时,如何既可以让企业减少申报程序,节省研发、临床的时间和成本,同时又保证它与原研药的一致性,将是我国药监部门面临的一个挑战。”中国药学会理事长、中国工程院院士桑国卫在“生物类似药政策法规及技术指导原则高层研讨会”上指出。按照现行的审批机制,虽然生物类似药按照新药审批可以规避和原研制品在专利上的纠缠,但审批速度并未因此得到提升。目前,国内生物类似药没有明确的分类要求,没有公开的技术审评要求,申请人和审评机构对其技术要求没有统一的认识。信达生物制药质量部执行总监孙左宇博士说,生物类似药与创新药的审评在流程和时限上没有区别,没有时间优势、费用更贵的状态阻碍了我国生物类似药的发展。长春金赛药业药物研究院副院长王英武指出:“我国目前缺少专门针对生物类似药临床对比性试验的指导原则和申报途径,临床试验必须要与参比药品进行大规模的头对头比较,使得研发成本大幅提高,并延长了产品研发周期和申报速度。”标准如何制定美国药品研究和制造商协会主席罗伯特·J·胡金在接受本报记者采访时指出:“对于生物类似药,各个国家应该遵循一些普遍的理念和原则,这些理念是科学性,是没有任何偏见的。”“首先要通过科学标准来确定生物类似药和原研产品能够达到一致,如果能够达到一致,那就按照生物类似药的一套程序去上市。如果达不到科学和医学严格的标准,和要仿制的生物制品不具有等同性,那就应该当成新药去审批上市。”罗伯特·J·胡金这样建议。目前,全球已有22个国家或组织陆续制定颁布了其生物类似药相关指南,遵循的原则都是WHO的建议和EMEA的规范。苏岭认为,如何结合我国具体国情,又不失时机地与先进国家的要求和国际共识接轨,是鼓励开发高水平高质量的生物类似药和促进我国生物制药产业健康发展的契机。而从另一个角度讲,生物类似药更是涉及巨大利益的商业问题。一边是本土药企希望提升审批速度,使得生物类似药凭借价格优势迅速占领市场;另一边是原研厂家担忧生物类似药生产商绕开专利而实现“弯道超车”。“对于国内开发企业来说,急于求成、齐头并进是生物类似药开发的大忌。”苏岭说。

生物类样品相关的资料

生物类样品相关的资讯

  • 热的“烫手”的生物类似药,分析方法门槛有多高?
    p   a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"  与 span style=" COLOR: rgb(255,0,0) TEXT-DECORATION: underline" strong 化学仿制药 /strong /span 相比, span style=" COLOR: rgb(255,0,0) TEXT-DECORATION: underline" strong 生物类似药 /strong /span 虽然也属于仿制药范畴,但其不仅投资门槛更高,技术门槛也更高。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"    strong 三大技术门槛 /strong /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   生物类似药的技术门槛高至少表现在三大方面: /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   一是有关生产、制造过程和工艺流程。在产品生产过程中,有多种因素可能会影响到生物类似药的质量,如分子设计、表达系统、细胞株类型、翻译后修饰(PTM)、不纯物和污染物、配方和辅料、包装容器、生产过程中的蛋白降解等。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   二是对生物类似药在质量、安全性和有效性(QSE)等方面进行分析检测、表征,需要在临床试验前在蛋白的多种性质上与原研药参考品一致。这种一致性,根据欧盟EMA的要求需要“相似”(similar)。而根据美国FDA的要求则需要“高度相似”(highly similar)。如果是可以自动替换(interchangeable)的生物类似药,其要求更高。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   上面两大高门槛对于中国药企而言更是意味着投资的高门槛,因为无论是上下游的工艺开发、生产还是分析方法开发、质量检测,所需仪器设备甚至耗材几乎都需要进口。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   第三个方面是生物原研药的专利壁垒。生物药的专利要远比化学药复杂,这个高门槛很容易被投资人忽视。艾伯维(Abbvie)和安进(Amgen)因Humira(修美乐)的生物类似药的专利之战仅仅是一个例子。现在风头正劲的免疫肿瘤抗体药(尤其是已经上市的两个PD-1抗体药)以后很可能成为被仿制的热点目标,但免疫肿瘤领域近期多起专利诉讼也说明:即使是做原研生物药,专利问题也需要防范。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   出于工作关系和个人兴趣,笔者本文仅谈谈生物类似药的分析技术。如表格所示,生物类似药的表征分析,涉及许多生物化学和生物物理技术,笔者对于大多数技术略知一二,本文无意具体谈这些分析技术的细节和难度,而只是通过简单评论这些技术手段,试图说明进入生物类似药的门槛很高。 /a /p p style=" TEXT-ALIGN: center" a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self" img title=" biosimilar4-table.jpg" src=" http://img1.17img.cn/17img/images/201604/insimg/f1990612-cf0d-4d5d-951c-85bb88d8965b.jpg" / /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"    strong 质控蛋白三大性质 /strong /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   与评价化学药类似,对于生物药的评价,质量、安全性和有效性可以说是最重要的三个方面,而质量又是安全性和有效性的前提和基础。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   对于生物药的质量,FDA认为治疗性蛋白的三大方面性质虽然不能被完全充分测定,但对于评价蛋白药是非常重要的,这三大性质即:PTM、蛋白高级结构和蛋白聚集,下面将分别简单介绍。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"    span style=" TEXT-DECORATION: underline" 蛋白的翻译后修饰(PTM) /span /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   蛋白的翻译后修饰(PTM)有很多种,常见的包括糖基化(又可细分为:半乳糖苷基化、岩藻糖基化、唾液酸糖苷化等)、氧化、磷酸化、硫酸化、脂化、二硫键形成和脱酰胺。这些化学变化大多是在细胞内发生的,但有些也可能发生在生产的各个阶段(如纯化和储存过程)。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   现在的科学研究已经表明,蛋白的PTM会影响蛋白的活性和免疫原性。蛋白的PTM还可能改变蛋白的结构进而引起聚集,从而进一步影响蛋白的免疫原性。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   因此,需要在蛋白类药物生产的各个阶段对蛋白质的PTM进行检测。对于单一成分的纯化蛋白药,PTM的检测和监测则相对容易一些。而对于含有许多种蛋白质的复杂混合物蛋白药物(如有些预防性疫苗),即使是采用蛋白质组学技术,检测所有蛋白的PTM也是非常大的挑战。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   研究蛋白PTM的最有力的利器当是生物质谱了,主要是基于电喷雾(ESI)和基质辅助激光解离(MALDI)两种技术。近年来,质谱在生物类似药领域的应用明显增多,在近几年的美国质谱协会会议上,每年都有不少口头报告或墙报是直接用质谱研究生物类似药PTM的,其中糖基化研究占比最大。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   但是,由于生物质谱价格昂贵,动辄几十万美元,高端的售价甚至在50万美元以上,这也限制了生物质谱在包括生物类似药在内的生物制药领域的应用。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"    span style=" TEXT-DECORATION: underline" 蛋白的高级结构 /span /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   蛋白的高级结构是指蛋白的二级、三级和四级结构,这些结构特性决定了蛋白的三维空间结构,进而最终决定了蛋白的功能和活性。因此,比较生物类似药(指蛋白药)和原研药的蛋白高级结构,是证明两只药相似的重要手段。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   X-射线衍射和核磁共振(NMR)是公认的测定蛋白质三维空间结构的两种最主要的技术。但是,对于生物类似药和原研药的结构相似性研究,这两种技术都有很大的挑战。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   对于X-射线衍射而言,需要耗时较长的蛋白结晶过程和数据解析过程,对于样品量较大的工业界而言,显然不能满足高通量的要求。而NMR不但价格昂贵、灵敏度相对较低、数据分析耗时长,对于分析分子量达150kDa的大分子抗体药也面临很大的挑战,所以NMR在生物类似药领域注定应用非常有限。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   另外,还有其它一些经典生物物理技术被用于表征蛋白的结构,如圆二色性谱、傅里叶变换红外光谱、荧光光谱、差示扫描量热法、分析超速离心、排阻色谱以及各种染料结合鉴别技术等。这些技术一个最主要的限制,就是只能检测来自蛋白不同部位的某一种总的信号。从这些测定得到的信息只能得到生物药整个结构的总的平均值。比如:圆二色性谱测定就只能表明某一种主要的二级结构(阿尔法螺旋、b折叠和无规卷曲)的平均百分比。如果一个含有多个阿尔法螺旋结构的蛋白,其中只有一个阿尔法螺旋结构和另一蛋白相比发生了变化,但是即使这一变化相对较大,被另外不变的阿尔法螺旋平均以后,圆二色性谱所能测到的变化也可能很小,甚至没有可以测量出的变化。所以这些经典生物物理技术不能用于检测生物药很小的结构变化。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   更灵敏的技术则是氢氘交换质谱(HDX-MS),这也进一步显示质谱技术在比较生物类似药和原研药结构方面的重要性。现代生物质谱技术在生物药领域的应用已经远不仅仅是做蛋白质鉴定、分子量测定、氨基酸序列测定,蛋白结构只是其多种新应用的一个方面。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"    span style=" TEXT-DECORATION: underline" 蛋白聚集 /span /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   蛋白聚集是蛋白药生产过程中很头疼的问题,尤其是对于高浓度的蛋白溶液,很容易引起蛋白聚集。单体蛋白的聚集过程可以是可逆的,也可能是不可逆的,其聚集后的大小可以从二聚体到包含上万亿个蛋白单体的肉眼可见的颗粒。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   总的来说,蛋白聚集对于任何蛋白药都是问题。蛋白聚集不但会降低蛋白药的有效剂量,更大的问题是可能会引起毒副作用和免疫反应。一般而言,蛋白分子量越大,其免疫原性越强。在某些特殊情况下,这些难以预料的副作用甚至可能是致命的。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   因此,蛋白聚集必须被检测、定量和表征,用以比较生物类似药和原研药。如表中所示,表征蛋白聚集的主要分析技术包括排阻-高效(压)液相色谱(SEC-HPLC)、凝胶电泳、分析超速离心、光散射法等。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   由于简单、易用、廉价、快速、样品用量少等特点,SEC-HPLC是目前检测蛋白聚集的最常用方法。当然,SEC-HPLC也有自己的缺点,如较大的蛋白聚体可能在进样上柱时就被除去,造成假阴性。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   这也进一步说明,没有任何一种十全十美的分析技术。正是缘于此,美国FDA和ICH(国际人用药注册技术协调会议)都建议生物类似药研发企业不但要检测蛋白不同种性质,也建议采用多种技术检测同一种性质,以尽量得到更全面的生物类似药和原研药可以比较的多种信息,如理化性质、生物活性、免疫化学性质、纯度、不纯物和污染物等。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"    strong 相似度界定:Case By Case? /strong /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   值得一提的是,生物类似药有两个常用且易于混淆的概念:可比性(comparability)和相似性(similarity)。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   ICH明确定义和限制“可比性”是指同一家生产商所生产的原研药(包括批准上市后阶段),在生产工艺变化(如放大)后,两种工艺所生产的同一产品(当然不可能100%相同)的可比性(参见ICH Q5E指导性文件:Comparability of Biotechnological/Biological Products Subject to Changes in their Manufacturing Process,生产过程变化后生物工程/生物产品的可比性)。而“相似性”则是生物类似药生产商仿制的生物药与原研药生产商制造的参考品相比较而言的。 /a /p p a title=" " href=" http://www.instrument.com.cn/application/SampleFilter-S22003-T000-1-1-1.html" target=" _self"   根据ICH的定义,“可比性”概念是不可用于生物类似药的。事实上,对于开发生物类似药的厂商而言,最大的困难显然不是上述两个易混淆的概念,可能一个最大的困难是生物类似药与原研药的相似度要多高才足够高,目前欧盟EMA和美国FDA已经出台的有关生物类似药的指导性政策文件都没有明确的界定,而由于生物药的复杂性和其本身的千差万别,也决定无法有明确的界定。所以欧盟EMA和美国FDA的有关文件中时常会出现“case by case”(具体问题具体分析)的字眼。 /a /p p br/ /p
  • 生物类似物分析相似性研究
    p   strong   span style=" color: rgb(0, 176, 240) " 一. 生物类似物获批情况 /span /strong /p p   从FDA数据库可以查到,截止2018.8.24美国共有12款生物类似物获批。其中部分小分子(如ELI LILLY的甘精胰岛素BASAGLAR)也已获批,但为NDA,因此不作为类似物统计。 /p p style=" text-align: center " img width=" 599" height=" 446" title=" q.jpg" style=" width: 488px height: 332px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/58c99f7e-92e6-4c9c-8b19-eeacaf8385c2.jpg" / /p p style=" text-align: center " img width=" 598" height=" 236" title=" w.jpg" style=" width: 490px height: 172px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/5391e126-7471-42dd-b508-c9f272d09b28.jpg" / /p p style=" text-align: center "   从EMA数据库可以查到,截止2018.8.24欧盟共有45款生物类似物获批: img width=" 599" height=" 388" title=" e.png" style=" width: 498px height: 298px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/d67d7398-bb31-486f-85c7-6056bafefaed.jpg" / /p p style=" text-align: center " & nbsp img width=" 601" height=" 421" title=" r.png" style=" width: 528px height: 358px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/e4f16b4f-f1ba-43ab-a6b2-17e0da5ef487.jpg" / /p p style=" text-align: center " img width=" 600" height=" 405" title=" t.png" style=" width: 515px height: 298px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/34f42b07-aa1c-4f54-a1bd-89c6c7022f91.jpg" / /p p   从获批情况分析,较早批准的产品都已经出现较多类似物,这一点在EMA中体现的尤为明显,如药王adalimumab、infliximab及filgrastim等均已有若干类似物获批。而从生产上来看,Sandoz毫无疑问是生物类似物的最大赢家,其在EMA有9款类似物获批。 /p p   对比美国以及欧盟生物类似物批准的情况,可以很明显的发现欧盟批准的生物类似物数量远多于美国,究其原因主要包括以下几点: /p p   EMA在2005年便建立生物类似物的申报途径,而FDA则是在2009年才在BPCI法案中提出生物类似物的申报途径,EMA比FDA更早建立生物类似物申报途径 /p p    EMA将甘精胰岛素这类小分子制品也归属为生物制品,EMA批准的生物类似物中多款均为小分子制品。但在FDA这类小分子与化学药一样采用NDA的申报途径,而不是生物制品的BLA申报途径。且在FDA甘精胰岛素审评由CDER负责,而生物制品的审评由CBER负责,这也导致FDA的生物类似物获批清单中未将甘精胰岛素这类小分子纳入 /p p    对于生物制品分析相似性研究,FDA的规定非常严格(如研究的批次数、相似性的标准等),这直接导致生物相似性研究周期很长,如Amgen申请的贝伐珠单抗MASVI分析相似性研究持续6了年,前后共使用20余批次原研Avastin。这也使得FDA的生物类似物获批更为滞后 /p p   从数据中可以看出FDA批准的生物类似物集中于近几年,2015年1款,2016年3款,2017年5款,2018截至目前为3款。有这些基础之后,相信未来FDA批准生物类似物的速度会越来越快。 /p p   span style=" color: rgb(0, 176, 240) " strong  二. 分析相似性研究 /strong /span /p p   分析相似性研究(analytical similarity)在欧盟被称为可比性研究(Comparability exercise)。其是指用于证明用于证明生物类似物与原研高度相似,但允许临床非活性组分存在微小差异的分析研究。一般应使用多批次自研产品与原研在包括结构、理化以及功能属性方面的对比,并使用数据统计方法对各质量属性对比结果进行统计及对比。分析相似性是生物类似物的基础,在生物类似物开发中很重要。 /p p   strong  相关指南 /strong /p p   针对生物类似物分析相似性研究,FDA以及欧盟均发布了不少指南。以CMC领域为例,部分重点指南如下: /p p   FDA发布的指南有: /p p   Quality Considerations in Demonstrating Biosimilarity to a Reference Protein Product /p p   Scientific Considerations in Demonstrating Biosimilarity to a Reference Product /p p   Reference Product Exclusivity for Biological Products Filed Under Section 351(a) of the PHS Act(Draft guidance) /p p   Biosimilars: Questions and Answers Regarding Implementation of the Biologics Price Competition and Innovation Act of 2009 Guidance for Industry(Draft guidance) /p p   Considerations in Demonstrating Interchangeability With a Reference Product Guidance for Industry(Draft guidance) /p p  & nbsp & nbsp Statistical Approaches to Evaluate Analytical Similarity Guidance for Industry(核心指南,目前已撤销) /p p   EMA发布的指南有: /p p   Similar biological medicinal products /p p   Similar biological medicinal products containing biotechnology-derived proteins as active substance: non-clinical and clinical issues /p p   Similar biological medicinal products containing biotechnology-derived proteins as active substance: quality issues /p p  & nbsp & nbsp Guideline on the comparability of Medicinal Products Containing Biotechnology-Derived Proteins as Active Substance: Quality Issues /p p   Biosimilar medicinal products containing recombinant granulocyte-colony stimulating factor (Annex to guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: non-clinical and clinical issues) /p p   Non-clinical and clinical development of similar biological medicinal products containing low-molecular-weight heparins /p p   Non-clinical and clinical development of similar biological medicinal products containing recombinant human insulin and insulin analogues /p p   Similar biological medicinal products containing interferon beta /p p   Similar biological medicinal products containing monoclonal antibodies: non-clinical and clinical issues /p p   Similar biological medicinal products containing recombinant erythropoietins /p p   Similar biological medicinal products containing recombinant follicle-stimulating hormone /p p   Similar medicinal products containing somatropin (Annex to guideline on similar biological medicinal products containing biotechnology-derived proteins as active substance: non-clinical and clinical issues) /p p   FDA发布的指南都较为宽泛。而EMA针对生物类似物发布的指南既有较为宽泛的指导性文件,也有针对某款产品特异性的指南,同时EMA的部分指南同时适用于变更及类似物可比性研究,这一点也与FDA完全不同。 /p p   strong  分析相似性研究内容 /strong /p p   FDA于2017年发布的草案指南对分析相似性进行了详细的规定,虽然该指南目前已被撤销,但其部分思想仍可作为指导。结合目前FDA批准的类似物制品CMC审评报告,可以明显看出该指南的思想融合了已经批准的产品的开发思路,而目前在FDA获批的类似物也都是按照该指南的思路开展分析相似性研究。对该指南,并结合已经获批的类似物审评报告进行总结,分析相似性核心内容包括以下内容: /p p   对产品的质量属性进行分层(Tier),包括Tier 1,2,3。其中tier 3目测对比是风险较低或风险高但无法量化的质量属性 tier 2质量范围是风险程度中等的质量属性 tier 1等同检测则是风险高的质量属性 /p p   Tier 3一般为结构、工艺相关杂质(HCD、HCP等)、强降解趋势对比、理化属性、与机理无太大联系的活性项目 Tier 2质量属性一般包括产品相关杂质、糖型(与ADCC、PK等有关)、与机理有关的活性检测、蛋白浓度等 Tier 3则一般为临床机理对应的生物学活性 /p p   不同层级设立不同的相似性标准,tier 3主观对比相似即可 tier 2要求自研产品的范围应该在参比的mean± 3SD tier 1则要求更为严格,要求自研与参比的均值差的90%置信区间应在原研的[-1.5SD,1.5SD]范围内。值得注意的是于2017年获批的MASVI分析相似性研究中并按照上述要求对tier 2及3设立标准,而只是对实际的属性范围进行了对比 /p p    对多批次原研及自研进行分析研究,指南推荐至少10批次自研于10批次参比进行比较。2018年该指南撤销时特意提出批次数太多是该指南不合理的地方,但就目前批准的生物类似物来看,tier 1质量属性(与制品机理直接相关的生物学活性)基本都采用了20多批次参比进行对比,后续批次要求降低,有利于加快生物类似物获批上市 /p p   strong   在研究过程中应该考虑储存时间等对质量属性的影响 /strong /p p   从目前已经在FDA获批的类似物来看,没有类似物能在分析相似性方面做到于参比完全类似,而都是通过total of the evidence整体判断相似性。如糖型这一关键属性,几乎没有哪一款类似物做到与参比类似,因此出现不类似的质量属性很正常。由于生物制品本身较为复杂,而其生产工艺也同样复杂,生物类似物开发商对参比的了解难以深入,因此开发出的类似物质量属性难以做到完全与参比相似。即便知道某些质量属性不相似,也不一定能通过前期的工艺优化让该属性于参比相似。同时,这种优化也未必必要,指南中指出出现不相似的情况,给出合理的论述即可。 /p p   从已在FDA获批的类似物审评报告中可以知道,当出现不类似的情况时,可以用于论述的思路如: /p p   当杂质含量较低时,其风险相对较小,如依那西普类似物进行tier划分时,就规定当属性的量低于2%时,可以降低一个tier /p p   该属性虽然有差异,但临床数据显示自研于参比的pK等无明显差异 /p p   增加更多批次进行研究,参比批次变多时,其质量属性范围也更可能变宽 /p p   考虑储存时间对该属性的影响,加上时间因素重新计算数据 /p p   分离相应的组分,进行相应的活性等研究,证明与主成分无明显差异,等。 /p p   以下为部分已被FDA批准的类似物相关资料。 /p p    strong ABP501(biosimilar to Humira,Amgen)分析相似性层级制定及对比结果 /strong /p p style=" text-align: center " strong img width=" 600" height=" 392" title=" y.jpg" style=" width: 471px height: 269px " src=" https://img1.17img.cn/17img/images/201808/insimg/41be2c4e-9b64-40db-ae1d-a25fe9882a95.jpg" / /strong /p p style=" text-align: center " strong img width=" 599" height=" 395" title=" u.jpg" style=" width: 469px height: 298px " src=" https://img1.17img.cn/17img/images/201808/insimg/32fcdb2b-ab55-4c73-921b-74396608c771.jpg" / img width=" 600" height=" 395" title=" i.jpg" style=" width: 470px height: 306px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/4f464c07-86af-4545-8c7f-e7112d5a2b90.jpg" / /strong /p p style=" text-align: center " img width=" 600" height=" 396" title=" o.jpg" style=" width: 477px height: 285px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/cca82c99-86b6-4366-b832-6e3e99e27023.jpg" / /p p style=" text-align: center " img width=" 599" height=" 397" title=" p.jpg" style=" width: 481px height: 308px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/a64ec501-90ff-4e20-b06f-60c642d50a0e.jpg" / /p p style=" text-align: center " img width=" 599" height=" 238" title=" a.jpg" style=" width: 484px height: 205px " src=" https://img1.17img.cn/17img/images/201808/insimg/6bdffcaa-a01d-4be4-9f24-f88ca55ac83d.jpg" / /p p style=" text-align: center " strong br/ /strong /p p strong   GP2015(biosimilar to Enbrel,Sandoz)各层级相似性标准 /strong /p p style=" text-align: center " strong img width=" 599" height=" 403" title=" s.jpg" style=" width: 503px height: 332px " src=" https://img1.17img.cn/17img/images/201808/insimg/98dcf996-3539-46ef-a27e-255bf4ab3691.jpg" / /strong /p p br/ /p p strong   GP2015(biosimilar to Enbrel,Sandoz)分析相似性层级制定 /strong /p p style=" text-align: center " strong br/ /strong /p p style=" text-align: center " img width=" 600" height=" 315" title=" d.jpg" style=" width: 512px height: 267px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/86ee5d19-be4f-4d61-a45d-31ac4bcef104.jpg" / /p p style=" text-align: center " img width=" 600" height=" 333" title=" f.jpg" style=" width: 523px height: 305px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/1460d5df-eb35-4c4f-a59f-069b5e934158.jpg" / /p p style=" text-align: center " img width=" 601" height=" 202" title=" g.jpg" style=" width: 524px height: 180px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/2c7e5d6a-fa00-41bb-bf40-a0280e86ea4a.jpg" / /p p style=" text-align: center " strong br/ /strong /p p    span style=" color: rgb(0, 176, 240) " strong 三、已获批的类似物案例分析 /strong /span /p p   目前已经获FDA批准的类似物中,大部分可以获得FDA的审评报告,部分产品的审批报告在Drug@FDA数据库中未发布,但可在FDA网站搜索获得。下面将Amjevita(Adalimumab-atto)分析相似性研究为例,了解这些产品如何开展分析相似性研究,FDA提出了哪些关键缺陷,而申请人又是如何答复这些缺陷的,详细报告可见审评报告。 /p p    strong 1.Amjevita(Adalimumab-atto) /strong /p p   Amjevita是FDA药王Adalimumab在FDA获批的第一款类似物(目前已有两款,而EMA则有更多款已经获批),相信FDA在不久的将来也会批准更多Adalimumab类似物,谁让这款药这么火呢。该类似物生产商为Amgen,其分析相似性研究中研究的项目,质量属性分层级、各层级的标准、各研究项目的批次数以及研究结果(是否相似)均已在上一期已经给出,这里不再赘述,直接看看该类似物在分析相似性方面有哪些主要的缺陷吧。 /p p    strong a.糖基化不同(审评报告201-207页) /strong /p p   数据显示自研与参比的糖基化类型相同,但各糖型的比例稍有不同。其中非岩澡糖、高甘露糖、半乳糖、唾液酸均与参比不同。半乳糖及唾液酸如下图所示: /p p style=" text-align: center " br/ /p p style=" text-align: center " img width=" 598" height=" 283" title=" h.jpg" style=" width: 490px height: 230px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/3751fe61-6979-47f7-b717-e29c389a4de8.jpg" / /p p style=" text-align: center " img width=" 599" height=" 254" title=" j.jpg" style=" width: 497px height: 193px float: none " src=" https://img1.17img.cn/17img/images/201808/insimg/477ad59e-12af-4bb2-85ea-e999b17eb3f1.jpg" / /p p   而据报道非岩藻糖(afucosylated forms)可通过影响产品与FcγRIIIa的结合而最终影响ADCC活性,高甘露糖可影响PK及ADCC活性,唾液酸可影响PK,半乳糖可影响CDC活性。生产商将糖基化作为tier2属性,针对糖基化的差异,生产商进行了如下论述,并获得了FDA的认可: /p p   · 自研产品与参比相比,PK、FcγRIIIa的对比结果无明显差异,说明糖基化的不同不会产生显著影响 /p p   · 在中间产品/中控中控制岩藻糖基化,使得后续生产批次岩藻糖基化水平不超过分析相似性的水平 /p p   · 前期研发的批次糖基化相对较高,但后续工艺优化后,糖基化与参比更为接近了 /p p    strong b.FTIR鉴别(审评报告209-211页) /strong /p p   生产商Amgen对6批自研及参比进行了FTIR鉴别检测,并通过相应的计算按照tier 2层级对结果进行分析,结果显示两者类似。而FDA认为该质量属性只需要作为tier3属性,提供图谱对比即可。 /p p   同时对CD以及DSC检测,Amgen同样按照tier2标准进行分析,但FDA同样认为只需要按照tier3属性进行分析即可。 /p p style=" text-align: center " img width=" 598" height=" 405" title=" k.jpg" style=" width: 471px height: 310px " src=" https://img1.17img.cn/17img/images/201808/insimg/dfbdefae-c8e0-4f43-9f96-b48910fa5621.jpg" / /p p    strong c.SE-HPLC纯度不同(审评报告211-213页) /strong /p p   Amgen同时提供了自研放行结果与参比的对比(在IR回复中提供的)以及自研在24个月(与参比检测时具有相同的‘寿命’)与参比的SE-HPLC对比结果,结果显示虽然放行时自研的聚体比参比低,但在24个月时自研与参比的聚体类似,如下图: /p p style=" text-align: center " img width=" 598" height=" 340" title=" l.jpg" style=" width: 483px height: 272px " src=" https://img1.17img.cn/17img/images/201808/insimg/2dc93b5b-f59f-4edd-9d32-3cdbf2572c1c.jpg" / /p p style=" text-align: center "   span style=" font-size: 14px "   strong 自研24个月时的对比结果 /strong /span /p p style=" text-align: center " strong img width=" 599" height=" 336" title=" z.jpg" style=" width: 444px height: 271px " src=" https://img1.17img.cn/17img/images/201808/insimg/f245f195-dab3-4c6e-8d35-7b76527acd81.jpg" / /strong /p p style=" text-align: center " strong    span style=" font-size: 14px " 自研放行时的对比结果 /span /strong /p p   同时自研的SE-HPLC中低分子物质比参比更低(如下图),但考虑到低分子物质总量才0.2%,这个小峰预计低于0.1%,无法定量,因此其影响可忽略不计。 /p p style=" text-align: center " img width=" 600" height=" 371" title=" x.jpg" style=" width: 440px height: 276px " src=" https://img1.17img.cn/17img/images/201808/insimg/448f4126-6269-49d1-a738-4b93e4e43ee8.jpg" / /p p    strong d.nrCE-SDS纯度不同(审评报告217页) /strong /p p   80%的自研结果在参比的相似性范围内,但有两个数据不在范围内。给出的论述包括:1.不在范围内的批次是早期研发批次 2.nrCE-SDS纯度在98%-99%,已经很高了,检测到的不一致差距很小,可以忽略 3.结合生物学活性无明显差异,认为自研的nrCE-SDS与参比类似。 /p p style=" text-align: center " img width=" 599" height=" 252" title=" c.jpg" style=" width: 469px height: 198px " src=" https://img1.17img.cn/17img/images/201808/insimg/d804bc2b-dff6-42ac-9a86-ae5861013681.jpg" / /p p    strong e.CEX-HPLC不同(审评报告218-221页) /strong /p p   考虑储存时间影响时,检测数据显示自研与参比的主峰及碱性峰基本不在参比的相似性范围(如下图),FDA要求生产商提供合理解释。 /p p style=" text-align: center " img width=" 599" height=" 372" title=" v.jpg" style=" width: 470px height: 272px " src=" https://img1.17img.cn/17img/images/201808/insimg/8b9d2e4b-bb9d-411e-b512-8b574769b706.jpg" / /p p   Amgen回复包括: /p p   · 提供未调整储存时间的结果(如上图),显示酸性峰在范围内,但主峰与碱性峰不在范围内 /p p   · 收集各个峰进行活性检测,酸性、主峰及碱性峰均不改变活性 /p p   · 酸性峰的电荷改变位点不位于影像PK及活性的区域 /p p   · 自研与参比的PK及FcRn结合是一致的 /p p   · 自研与参比的结合能力、活性、功能检测结果无明显差异 /p p   · 使用羧肽酶处理可证明建兴区的不同是由于产品独特的C端赖氨酸引起,其不会对产品的性能产生影响 /p p   strong  f.高温及强降解(审评报告225-226页) /strong /p p   由于Amgen的产品与参比的处方不同(具体处方可见审评报告),因此与预期的一样两者在高温及强降解下降解率不同。而Amgen还将原液配置成与参比一致的处方体系中,与参比进行了对比,结果显示不一致是由于处方体系造成的,而非分子本身造成的。 /p p   strong  g.50° C高温强降解(审评报告226页) /strong /p p   降解后的SE-HPLC对比显示在分子大小纯度方面自研比参比更加稳定(如下图),而rCE-SDS则显示两者趋势相似 电荷异构体纯度自研与参比类似。 /p p style=" text-align: center " img width=" 599" height=" 181" title=" b.jpg" style=" width: 519px height: 139px " src=" https://img1.17img.cn/17img/images/201808/insimg/66117285-d8ef-4644-ba07-0aec7188510a.jpg" / /p p    strong h.生物学活性(审评报告239页起) /strong /p p   Amgen开展了大量活性方面的对比研究,如下图。检测结果基本都相似 /p p style=" text-align: center " img width=" 599" height=" 620" title=" n.jpg" style=" width: 538px height: 573px " src=" https://img1.17img.cn/17img/images/201808/insimg/2cd6da55-99b6-4cbf-bfa3-25217b4c451b.jpg" / /p p    strong 2.Zarxio(Filgrastim-Sndz) /strong /p p   其分析相似性研究按照3个tier对质量属性分层,各个tier相似性标准同上一期中列出的标准。研究的项目包括:结构、理化、杂质、活性。其杂质分析可以关注一下,包括如脱氨基、N端截短变体、乙酰化、琥珀酰亚胺等,具体如下图: /p p style=" text-align: center " img width=" 601" height=" 578" title=" m.jpg" style=" width: 546px height: 530px " src=" https://img1.17img.cn/17img/images/201808/insimg/13b4d351-4b70-49e8-a709-8b9ba0ead58c.jpg" / /p p style=" text-align: center " img width=" 599" height=" 356" title=" ,,,,.jpg" style=" width: 554px height: 329px " src=" https://img1.17img.cn/17img/images/201808/insimg/0c370ddb-4876-46b7-b3b5-22b788c3b876.jpg" / /p p   从审评报告中可以较为详细的了解铬各项目的结果以及批次数,如针对生物学活性项目,生产商采用了15批自研以及15批美国参比,蛋白质浓度采用了13批自研以及12批美国参比。 /p p   审评报告中需特意指出的包括: /p p   a.由于脱氨基为产品相关物质且关键性较低,因此被设置为tier3属性,只对比自研与参比的范围 /p p   b.正亮氨酸与参比稍有不同,但已有研究数据显示正亮氨酸变体与产品生物活性无差异,属于产品相关物质。且自研与参比的免疫原性无明显差异,以及毒理数据支持该水平的正亮氨酸变体,基于此FDA认为该差异无影响 /p p    strong 3.Inflectra(Infliximab) /strong /p p   在审评中主要的问题有: /p p   strong  a. 翻译后修饰 /strong /p p   发现有5个位点的脱氨基以及重链255号位点的氧化水平与参比不同,但给出论述其差异很小,翻译后不足以对产品的生物学活性产生影响。 /p p style=" text-align: center " img width=" 600" height=" 227" title=" ..............................jpg" style=" width: 561px height: 211px " src=" https://img1.17img.cn/17img/images/201808/insimg/2db2ebfe-6f44-4f39-913f-f2250640ee06.jpg" / /p p   氨基酸分析显示酪氨酸及甲硫氨酸处部分发生了一些变异,因此FDA发IR缺陷信,提出该问题,同时自研的变异性更大,要求生产商回复。 /p p   生产商回复总结: /p p   1、经调查为合同实验室的错误导致酪氨酸及甲硫氨酸数据变异,同时并不是所有样品都是在相同条件下处理。酪氨酸的变异可能源于检测时的水解操作。随后生产商优化方法,并进行更多批次的研究,数据未出现更多变异。 /p p   strong  b. 蛋白浓度不同 /strong /p p   数据显示自研蛋白浓度(9.6mg/ml)与参比(9.3mg/ml)相比,存在约3.2%的差距,而自研的蛋白浓度标准与参比不冲突,PK数据显示自研与参比无明显差异,因此生产上认为该差异无影响。FDA则认为4%的误差虽小,但可能并非由于巧合,而可能实际蛋白浓度确实存在差异,并要求生产商确认该差异,并且如果确实存在差异,生产上准备采取哪些措施来使得蛋白浓度一致。生产商检测多批次后发现,自研的蛋白浓度与参比确实存在4%的差异,因此生产商决定收窄蛋白浓度标准,且变更制剂工艺参数,重新生产3批次确认批,并通过增补递交数据。 /p p   strong   span style=" color: rgb(0, 176, 240) " 四、糖基化研究及计算方式 /span /strong /p p   糖基化包括N糖和O糖,而抗体中N糖普遍存在,抗体均具有一个固定的N糖基化位点,也可能存在额外的糖基化位点,目前对N糖基化的研究较为广泛。O糖则在部分产品中可能存在,研究的也相对少一些。对O糖的分析相似性研究可以研究自研与参比的主要糖基化类型(定性),而对N糖的研究则应更为详尽,除了糖型外,主要糖型的比例也应当进行研究(定量),这其中主要包括:高甘露糖、半乳糖、非岩藻糖、岩藻糖以及唾液酸。由于这些糖型可能影响ADCC、CDC、PK等关键质量,因此一般作为tier 2属性来研究。从目前批准的产品来看,糖基化与参比不同几乎是常态,此时提供合理的论述即可。 /p p   N糖中常见的包括甘露糖(M)、半乳糖(G)、岩藻糖(F)以及唾液酸(S)。在计算糖基化类型时,一般应将甘露糖(M)、半乳糖(G)、非岩藻糖(AF)岩藻糖(F)以及唾液酸(S)作为整体考虑。如: /p p   高甘露糖是指仅含甘露糖的糖型,包括M5、M6、M7等 /p p   半乳糖是指含半乳糖的糖型,如:G0、G1、G1F等,半乳糖为这些糖基化之和 /p p   非岩藻糖是指不含核心岩藻糖的糖型,包括高甘露糖、G0、G1等 /p p   span style=" color: rgb(0, 176, 240) " strong  五、相似性研究中应该注意的问题 /strong /span /p p   a.针对在储存期间会改变的质量属性,如:SEC-HPLC、活性等,应考虑自研及参比的‘年龄’,在相对年龄相同的时间对比,如果无法实现,则可以考虑使用稳定性数据外推其影响 /p p   b.当某质量属性较低时,其风险相对较小,可以考虑将其纳入更低的层级 /p p   c.同一质量属性有多个方法进行检测评估时,性能最好的方法应放在风险最高的层级,其他方法则放在风险较低的层级 /p p   d.某些属性或方法由于本身的特性被排除于数据统计,如定性检测及限度检测可能被层级1或2评估所排除,如氨基酸组成,该属性并非不重要,但其无法按照tier 1/2的标准进行数据统计,因此作为tier3属性 /p p   e.可以预见在研发中工艺会出现变更,只要证明其与最终工艺产品可比,则样品均可用于分析相似性研究 /p p   f.生物类似物研发时,参比购买是一个制约因素,参比在市场流通的批次相对较少,因此最好趁早多收集参比,为相似性研究积累更多批次样品。 /p p    span style=" color: rgb(0, 176, 240) " strong 六、FDA批准的类似物CMC审评报告 /strong /span /p p   下面为可以在FDA上查询到的类似物审评报告,供参考: /p p    strong a.Zarxio (Filgrastim-sndz) : /strong /p p strong   b.Inflectra(Infliximab-dyyb): /strong /p p strong   c.Erelzi(Etanercept-szzs): /strong /p p strong   d.Amjevita(Adalimumab -atto): /strong /p p   另外Retacrit(EPOETIN ALFA ) 以及Nivestym(Filgrastim-aafi)审评报告也可在FDA网站搜索到,有兴趣的可以关注一下。 /p p   从CMC审评报告中可以了解到产品主要信息、批准历程(首次递交、历次缺陷等)、分析相似性研究内容。如果你是生物类似物开发者,那建议你一定要学习一下这些报告,相信从中可以获取很多信息。 /p p   另外EMA也会针对各个产品发布审评报告,但其侧重点不同,EMA审评报告中会申报资料将各章节进行总结,但不会分析相似性研究。从EMA审评报告中可以获取的重要信息包括产品的详细信息、相似性研究总结、内外源因子控制等。而FDA审评报告中则重点突出分析相似性研究,其他内容大多被覆盖无法知晓确切信息,在审评报告突出分析相似性研究也是为了给后续的类似物开发商提供参考,有利于加快类似物的发展。 /p p   span style=" color: rgb(0, 176, 240) " strong  七、FDA撤销指南的背景及原因,以及后续指南的修订思路预测 /strong /span /p p   近几年美国虽然有一些生物类似物获批,但其获批远少于EMA。美国是医疗大国,每年用于医疗的费用高昂,生物类似物可以为政府及民众降低医疗费用。很显然,目前美国生物类似物获批的数量以及速度没有达到政府的预期,FDA局长Scott Gottlieb也是特意指出了该点。 /p p   行业对该指南也是有较大的担忧,指南要求至少十批参比及自研进行分析相似性研究。而事实上,参比的可获得性一直是困扰生物类似物开发商的一大难题,一段时间内在市场上流通的参比较少,要购买10批次参比进行研究将花费较长时间。 /p p   在此背景下,FDA于2018.6.21年撤消了该指南,撤销的通知中强调了该指南会提高生物类似物开发的效率及成本(通知原文如下),包括指南求所要求的参比批次数。 /p p   从通知中不难看出,FDA对于加快生物类似物开发及上市的殷切期望。后续分析相似性指南预计会考虑到下面几点: /p p   a.参比及自研的批次数要求。不再设立10批的要求 /p p   b.数据统计方法将重新确立,不再参考目前的标准 /p p   c.新的数据分析方法会考虑到参比的批间变异性 /p p   d.突出临床PK数据的对比,而稍微弱化分析相似性研究 /p p   通知原文: /p p   [6/21/2018] The Food and Drug Administration (FDA or Agency) is announcing the withdrawal of a draft guidance for industry entitled “Statistical Approaches to Evaluate Analytical Similarity,” issued in September 2017. The draft guidance, if finalized as written, was intended to provide advice for sponsors developing biosimilar products regarding the evaluation of analytical similarity between a proposed biosimilar product and the reference product. After considering public comments that the agency received about the draft guidance, the FDA determined it would withdraw the draft guidance as it gives further consideration to the scientific and regulatory issues involved. span style=" color: rgb(146, 208, 80) " Comments submitted to the docket addressed a range of issues that could impact the cost and efficiency of biosimilar development, including the number of reference product lots the draft guidance would recommend biosimilar developers sample in their evaluation of high similarity and the statistical methods for this evaluation. /span The FDA believes that in better addressing these issues in the future, the agency can advance principles that can promote a more efficient pathway for the development of biosimilar products. /p p   The agency intends to issue future draft guidance that will reflect state-of-the-art techniques in the evaluation of analytical data to support a demonstration that a proposed biosimilar product is highly similar to a reference product. The goal is for future draft guidance to address potential challenges faced by biosimilar sponsors in designing studies that are intended to demonstrate that a proposed biosimilar product is highly similar to a reference product, including consideration of appropriate methods to analyze analytical data to account for potential lot-to-lot variability of the reference product. Future draft guidance also will focus on providing appropriate flexibility for sponsors in order to help spur the efficient development of biosimilars without compromising the agency’s rigorous scientific standards for evaluating marketing applications for biosimilars. /p p   The FDA continues to encourage sponsors of proposed biosimilar products to discuss product development plans with the agency, including the evaluation of analytical data intended to support a demonstration that the proposed biosimilar product is highly similar to a reference product. The FDA will continue to provide development-stage advice to sponsors of proposed biosimilar products or proposed interchangeable products through several types of formal meetings, which are described in more detail in FDA’s guidance for industry,Formal Meetings Between the FDA and Sponsors or Applicants of BsUFA Products. More information about this and other FDA guidance documents related to biosimilar products and interchangeable products, as well as contact information for FDA, is available at /p p   The FDA will communicate publicly when new draft guidance is issued in relation to the evaluation of analytical data between a proposed biosimilar product and a reference product. /p p   span style=" color: rgb(0, 176, 240) " strong  八、FDA针对生物类似物实施的BAP(biosimilar action plan)计划 /strong /span /p p   为了平衡创新及市场竞争,FDA推出了生物类似物行动计划,以加快生物类似物上市,BAP主要关注4各方面,包括:加快生物类似物/可互换产品的开发及批准效率 最大消毒为生物类似物开发协会提供科学及法规澄清 为提供患者、临床医生等提高对生物类似物的理解建立有效沟通 通过减少不公平的竞争来支持市场竞争。该计划中包括的部分内容有: /p p   a.开发及实施新审评工具,如标准模板,以加快审评效率并给公众更多产品信息 /p p   b.为类似物开发商提供信息来源及开发工具,以加快类似物开发效率 /p p   c.加强橙皮书内容,在其中加入更多已批准产品的信息 /p p   d.探索与其他国家药政官方共享数据的可能,以促进在某些研究中使用非US参比 /p p   e.为生物类似物设立一个新的机构(OTBB),以协调及支持生物类似物使用者费用项目 /p p   f.发布生物类似物标签指南草案/终稿,以帮助生产上确定在标签上应提供哪些信息 /p p   g.就证明等效为生产商提供额外的澄清,如发布新的指南 /p p   h.为生物类似物分析相似性研究发布新的指南 /p p   i.为生物类似物开发过程中参比的可获得性提供保障 /p p & nbsp /p
  • 可比性研究|使用HR-MAM方法对原研药与其生物类似药进行可比性研究
    可比性研究|使用HR-MAM方法对原研药与其生物类似药进行可比性研究关注我们,更多干货和惊喜好礼可比性研究生物类似药通常指与参考分子(原研药)高度类似的治疗性生物产品1。世界各地的监管机构,如美国食品药品监督管理局(United States Food and Drug Administration, USFDA), 欧洲药品管理局(European Medicines Agency, EMA)和中国市场监督管理总局(National Medical Products Administration, NMPA)均发布了指导规则,要求证实生物类似药与原研药之间在药品安全性/功效性等方面的相似度1。 随着高分辨质谱(HRAM MS)逐步成为创新药和生物类似药表征必不可少的分析工具,在氨基酸序列确认和化学/翻译后修饰等鉴定中,均起到不可或缺的作用2。2015年,Rogers 等2在公开发表的文献中提及可将基于肽图分析的Multi-Attribute Method (MAM) 工作流程用于多重PQA的监控与定量,与此同时还可进行新组分检测(new peak detection)2,进而提供更多产品质量相关信息,并提高生产率。由此,MAM在质量控制(QC)实验室中替代传统分析手段的潜力,引起越来越多生物制药行业和监管机构越来越多的关注2 3。2019年,US FDA的Rogstad等在发表的文献中提及可以考虑使用MAM替代一些常规的QC分析方法4。图1 赛默飞HR-MAM工作流程(点击查看大图)本期我们介绍赛默飞HR-MAM (图 1)工作流程的zui新进展:对未经处理/不同强制降解条件下的生物类似药与利妥昔原研药进行可比性研究,对多个选定PQA进行有效的鉴定、相对定量和监控,以减少分析实验所花费的时间,并提高生产率。 多PQA选定助力原研药与生物类似药结构相似性确证: PQA通常在药物安全性与有效性方面起到重要作用,基于肽图分析表征可以选择适合的PQA,如:糖基化(glycosylation),脱酰胺化(deamidation),琥珀酰亚胺化(succinimide formation),异构化(isomerization),氧化(oxidation),重链C-末端赖氨酸截断(C-terminal lysine truncation),N-末端焦谷氨酸环化(N-terminal pyroglutamate)。 所有被选中的PQA可在BioPharma Finder软件中创建为一个包含该PQA肽段保留时间/质荷比/价态/所有电荷态等信息的工作簿,随后此工作簿被导入至变色龙软件中,用于后续的MAM数据分析。使用HR-MAM工作流程,即使是含量约0.1%的组分,也可通过高分辨质谱平台提供的数据获得高重现性的定性与定量结果。在本文的研究中,选定了下列PQA来证实HR-MAM工作流程用于目标肽段定量的能力,进而评估利妥昔原研药与生物类似药之间的结构相似性:重链 N55 脱酰胺化和琥珀酰亚胺化 重链 N388和N393 脱酰胺化 重链 N388和N394 琥珀酰亚胺化 重链 M256 氧化 重链 D284 异构化 重链N-糖基化 重链C-末端赖氨酸截断和轻/重链N-末端焦谷氨酸环化。 PQA相对定量兼具稳健性与重现性,MAM展现独特潜力: 由于C-末端赖氨酸截断与N-末端焦谷氨酸环化等末端修饰会影响单克隆抗体产品的电荷异质性5,所以在结构可比性研究中需要对其进行评估。以本文中涉及的PQA为例,利妥昔原研药和两个不同批次的生物类似药,其重链C-末端赖氨酸截断与轻/重链N-末端焦谷氨酸环化的比率均在可比范围内(图2)。值得注意的是,所有定量结果三针技术重复的变异系数(coefficients of variation, CVs)均小于2%,显示了优异的重现性。图2. 利妥昔原研药/生物类似药在未经强制降解/强制降解条件下常见末端修饰相对定量结果。图中每个条柱均代表三针技术重复的平均值,误差线代表三针技术重复的标准偏差(下同)。(点击查看大图) N-糖基化可能会影响单克隆抗体产品的免疫原性、药效、抗体依赖的细胞介导细胞毒性(antibody-dependent cell-mediated cytotoxicity, ADCC)、补体依赖的细胞毒性(complement-dependent cytotoxicity, CDC)、血清清除率和药代动力学5。在生物类似药的开发和生产过程中,为了确保产品的安全性和有效性,N-糖基化必须被密切监控并严格控制。对于生物类似药开发厂商而言,生物类似药的糖基化异质性分布必须与其原研药具有可比性,以避免扩大临床试验的规模。 在本方案涉及的实验所用的原研药和生物类似药样品中,总共鉴定到15种不同糖型,这些糖型的相对含量在不同样品之间并没有明显区别(图3)。与传统N-糖链定量方法相比,未发生糖基化修饰的肽段相对含量也可在HR-MAM工作流程中同时被监控,这是传统方法无法做到的,展现了其独到价值。对所有糖型的相对定量结果同样显示了优异的重现性和灵敏度。例如,对于相对含量约0.3%的糖型A2S1G0F ,其技术重复之间的CVzui新应用方案,码上下载想要深入了解详细实验结果、参数设置、MAM优势,立即下载zui新Application Note相关阅读• 客户案例|辉瑞在多个实验室同时部署MAM• HR Multi-Attribute Method Workflow 化繁为简,有规可循|为生物制药表征和质量控制保驾护航 参考文献:[1] US Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Scientific Considerations in Demonstrating Biosimilarity to a Reference Product. Guidance for Industry. April 2015. [2] Liu, H., et al. A high-resolution accurate mass multi-attribute method for critical quality attribute monitoring and new peak detection. APPLICATION NOTE 72916. [3] Rogstad, S., et al. Multi-Attribute Method for Quality Control of Therapeutic Proteins. Anal. Chem. 2019, 91, 14170−14177.[4] US Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Scientific Considerations in Demonstrating Biosimilarity to a Reference Product. Guidance for Industry. April 2015. [5] Beck, A., et.al. Characterization of Therapeutic Antibodies and Related Products. Anal. Chem. 2013, 85,715−736. 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台。https://www.instrument.com.cn/netshow/sh100244/
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制