区分辩识

仪器信息网区分辩识专题为您整合区分辩识相关的最新文章,在区分辩识专题,您不仅可以免费浏览区分辩识的资讯, 同时您还可以浏览区分辩识的相关资料、解决方案,参与社区区分辩识话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

区分辩识相关的耗材

  • 金颗粒标样30 - 300nm,低加速电压分辨率测定标样
    【产品详情】标准的金球或锡球分辨率测定标样不适用于低加速电压下或者老旧仪器中的测试,可能导致此问题的原因是低加速电压下采用高计数率和小束斑直径测样时得到的分辨率较差、信噪比过低。较大的标样粒径(30 - 300nm)在分辨率测试时可以在保留图像细节的同时确保较高的对比度,此特性使得此标样可以在非理想条件下使用。可镶嵌于Zeiss,FEI,TESCAN,JEOL和Hitachi扫描电镜各自的样品台上。 此分辨率测试标样粒径分布为30-300nm,与标样AGS168相比,更大的金粒尺寸允许此标样用于低加速电压下的分辨率校准。生长于石墨衬底上的金颗粒之间有间隙,尺寸不一,可以实现非理想操作条件下的分辨率测试,基于此特性,此标样也可以用于高分辨率测试条件下的灰度校准。理想条件下,高分辨率扫描电镜可以给出高质量的间隙分辨率测试和灰度校准结果。搭配中等分辨率的电镜使用此标样可获得尚可使用的间隙分辨率,但灰度区分不明显,只能呈现4-5级。因为标样颗粒的几何形状不规则,二次电子模式下的差分信号采集会导致灰度对比出现。大颗粒之的细小颗粒和间隙,可以用于更准确地评估电镜的成像质量。评估二次电子成像质量时,将标样倾斜,与二次电子收集装置成30°角时可得到质量最好的像。采集背散射电子时样品台的倾角则由探测器的位置决定。但若样品与探测器之间的倾角大于35°,标样上大块的金粒会产生较大的投影,会遮蔽标样上较小的金粒,因此不推荐。此外,测量金粒之间的间隙尺寸时须注意样品的倾角会影响图像的放大倍数。当放大倍数在2,000倍以上时金粒可见,最佳工作距离是7-8mm。使用钨灯丝电镜时,先用20kV的加速电压观察样品,再逐步降低加速电压和束斑直径聚焦调节至合适的聚焦状态和明度。工作时需确保电子枪、灯丝、光阑孔准直,电子束须汇聚、明度适当、束流稳定。当线扫描分辨率调至最高、测试时间较长时(在部分仪器中此时间可达10min)可得到较高的信噪比。 【技术详情】标样粒径分布金颗粒标样30-300nm产品详细价格及资料,请登录电镜耗材在线商城网站查看。
  • 粪便菌群样本采集盒
    样本类型人类粪便样本产品优势适用于微生物样本的保存采集耗材均为无菌产品样本在保存液中常温(25℃)存储可长达30天 保存液有效防止样本中微生物发生改变采样管配有取样勺,操作简单便捷配有一次性集便器,满足医院、家庭的坐便器、蹲便器等场景产品构成采样拭子×1采样管5ml(含保存液)×1一次性粪便收集盒×1自封袋×1一次性手套×1采样指南×1应用场景实验室、医院和科研院所等人类肠道微生物的检测及研究
  • NBS 5分辨率靶、NBS 1963A分辨率靶
    NBS 5分辨率靶又称NBS 1963A分辨率靶,提供26个线组,从1个/毫米到18个/毫米,对应的线大小为1.0 mm到55.6 μm.图样上的每一组线含有水平线和垂直线。如图所示。通过识别系统能分辨的频率最高的线组,可以确定光学系统的分辨率。分辨靶正靶片是将铬图样电镀到透明玻璃(B270玻璃 )上而制成的,适合用于前向照明和普通应用。板大小75mm×75mm。欢迎登陆海德网站或来电获取详细信息。?订购信息:货号产品描述规格R67NBS 5 Bar Test Chart(BS4657),正片,75mm×75mm 个 价格请电询

区分辩识相关的仪器

  • 系统主要功能指标:宽光谱测量范围:UV-VIS-NIR, 200-900nm 高系统时间分辨率: =5ps寿命衰减测量时间范围:=50ps—100us 高系统光谱分辨率: 0.1nm宽单次成谱范围: =200nm静态(稳态)光谱采集,瞬态时间分辨光谱图像及荧光寿命曲线系统集成整体控制及数据处理软件超快时间分辨光谱系统 是由光谱仪、超快探测器、耦合光路、系统控制及数据处理软件组成。光谱仪对入射光信号进行分光,分光光谱耦合到超快探测器,入射光由透镜聚焦在阴极上,激发出的光电子通过阳极加速,入射到偏转场中的电极间,此时电压加在偏转电极上,光电子被电场偏转,激射荧光屏,以光信号的形式成像在荧光屏上。转换后的光信号还可以再通过图像增强器进行能量放大,并在图像增强器的荧光屏上成像。最后通过制冷相机采集荧光屏上信号。因为电子的偏转与其承受的偏转电场成正比,因此,通过电极的时间差就可以作为荧光屏上条纹成像的位置差被记录下来,也就是将入射光的时间轴转换成了荧光屏空间轴。系统控制软件用于整个系统的参数设置、功能切换、数据采集等,图像工作站用于采集数据处理分析主要应用方向超快化学发光超快物理发光超快放电过程超快闪烁体发光时间分辨荧光光谱,荧光寿命,半导体材料时间分辨PL谱钙钛矿材料时间分辨PL谱瞬态吸收谱,时间分辨拉曼光谱测量光通讯,量子器件的响应测量自由电子激光,超短激光技术各种等离子体发光 汤姆逊散射,激光雷达。。。。。。 光谱仪建议选型参数列表光谱仪型号Omni-λ2002iOmni-λ3004iOmni-λ5004iOmni-λ7504i光谱仪焦距200mm320mm500mm750mm相对孔径F/3.5F/4.2F/6.5F/9.7光谱分辨率(1200l/mm)0.3nm0.1nm0.08nm0.05nm波长准确度+/-0.2nm+/-0.2nm+/-0.15nm+/-0.1nm倒线色散(1200l/mm)3.6nm/mm2.3nm/mm1.7nm/mm1.1nm/mm光栅尺寸50*50mm68*68mm68*68mm68*68mm光栅台双光栅三光栅三光栅三光栅与探测器耦合中继光路1:1耦合,配合二维焦面精密调节一体化底板系统光谱分辨率(1200l/mm)=0.3nm=0.2nm=0.1nm0.08nm一次摄谱范围(150 l/mm)230nm150nm90nm60nm光谱仪入口选项光纤及光纤接口,标准荧光样品室,镜头收集耦合,共聚焦显微收集耦合等多系统灵活组合超快时间分辨光谱测试系统既可以与飞秒超快光源配合完成独立的光谱测试,也可以与卓立汉光的其他系统比如 TCSPC, RTS&FLIM显微荧光寿命成像系统,TAM900宽场瞬态吸收成像系统,以及低温制冷室,飞秒&皮秒激光器等配合完成更为复杂全面的超快测试。Zolix其他可配合超快测量系统lRTS2& FLIM 显微荧光寿命成像系统光谱扫描范围:200-900nm(可拓展)最小时间分辨率:16ps荧光寿命测量范围:500ps-1μs@ 皮秒脉冲激光器激发源: 375nm- 670nm 皮秒脉冲激光器可选,或使用飞秒光源科研级正置显微镜及电动位移台空间分辨率:≤1μm@100X 物镜@405nm 皮秒脉冲激光器OmniFluo-FM 荧光寿命成像专用软件Omni-TAM900 宽场飞秒瞬态吸收成像系统测量模式:1:点泵浦-宽场探测:测量载流子迁移和热导率等;2:宽场泵浦-宽场探测:测量载流子分布和物理态的空间异质性等。探测器:sCMOS相机成像空间分辨率:优于500nm载流子迁移定位精度 优于30nm时间延时范围:0-4ns或0-8ns可选搭配倒置显微镜,可兼容低温,探针台,电学调控等模块20ps 的钙钛矿薄膜ASE 发光寿命曲线
    留言咨询
  • X'Pert 平台在马尔文帕纳科 X 射线衍射系统的新型 X'Pert3 系列中得以延用。 X'Pert3 高分辨衍射仪平台具有新型机载控制电子装置,符合X 射线和运动安全规范,且具有环保和可靠性能,已准备好迎接未来的挑战。X'Pert3 MRD 系列新增功能具体包括:&bull 全新高分辨率测角仪,它使用 Heidenhain 编码器,因而准确性更高且定位反馈时间更短&bull 无需使用工具即可快速将光管位置从点焦斑更改为线焦斑&bull 得益于气动快门和光束衰减器,系统正常运行时间满足过程控制要求&bull CRISP*(包括无铅光管塔)确保入射光路组件的寿命更长&bull 第二代 PreFIX,确保实现更准确的光学器件定位&bull 面向未来的单板计算机控制器,确保更好的连接性和更出色的远程支持*CRISP 指的是耐腐蚀智能入射光路。CRISP 可防止入射光路中出现由 X 射线引起的电离空气造成的腐蚀。该技术使仪器运行更可靠,避免额外的维护工作。
    留言咨询
  • 理学高分辨 纳米CT 400-860-5168转2204
    日本理学Rigaku nano3DX是一款真正的X射线显微镜(XRM),能够以高分辨率测量相对较大样品的3D计算机断层扫描(CT)图像,这是通过使用高功率旋转阳极X射线源和高分辨率探测器来实现的。nano3DX允许通过改变X射线波长来增强对比度或穿透力,拓展了可检测样品的类型,包括那些具有低吸收对比度的样品(例如CFRP)、或更密集的材料(如陶瓷复合材料),因此,nano3DX扩展了无损成像的范围,使研究中至关重要的灵活性和洞察力有了重大突破。nano3DX特征◆ 高功率旋转阳极X射线源◆ 多种靶材可供选择(Cr,Cu和Mo),可得到不同波长的特征X射线,以优化不同样品基质的成像◆ 光学耦合高分辨率探测系统,多种物镜可供选择◆ 快速数据采集,源自于高亮度的X射线源和高分辨率探测系统,速度比同类产品快3倍以上◆ 低Z材料的高对比度,实现了优于0.13g/cm3的密度分辨率◆ 支持原位实验◆ 高分辨率:空间分辨率优于400nm(特殊定制可达100nm)◆ 宽视野:采用相同分辨率和扫描时间,FOV比同类系统大5倍以上nano3DX典型应用日本理学nano3DX适用于逆向工程、产品研究、失效分析、高可靠筛选、质量评价、改进工艺等无损检测和评估工作。常用于各类材料(如合成材料、陶瓷复合材料等)、电子半导体元器件、地矿标本、仿生材料、生化物质等的计算机断层扫描成像,现已广泛应用于以下领域:◆ 材料学:结构材料、复合材料的微观特性分析,探讨/解析样品内部结构l金属材料、合金/铸造:航空航天, 精密制造, 半导体零部件l复合材料l高分子材料/聚合物:纤维材料, 发泡材料, 橡胶, 树脂, 高分子聚合物◆ 工程材料:建筑材料内部孔隙度、连通度和渗透性分析◆ 储能设备:质量控制、新产品开发的结构试验、失效分析等◆ 农牧业:动植物组织,木材和农产品(如种子)的质检和分析◆ 古生物学和考古学:种系鉴定、化石的结构分析,文物保护和修复◆ 地质:矿物勘察、地质分布、油气藏开发等 ◆ 半导体:元器件的结构分析应用案例:CFRP材料曾被认为很难通过X射线成像分析。由于nano3DX具有0.13g/cm3的密度分辨率,可以清晰的区分CFRP中碳纤维、环氧树脂和材料孔隙的显微结构,以三维形式观察,并可测量空隙数量、体积和方向。碳纤维增强聚合物(CFRP)。图像为1.8mm×1.8mm×1.4mm,体积由3300× 3300×2500体素表示。在相同的分辨率、时间范围内,单次扫描的测量体积比其他系统大25倍。
    留言咨询

区分辩识相关的方案

区分辩识相关的论坛

  • 高分辨

    据说高分辨的谱图可以区分较近的峰,然而谱峰之间的耦合常数应该是不变的,高场仪器怎么保证可以做到区分呢?

区分辩识相关的资料

区分辩识相关的资讯

  • 【鉴知科普】光谱分辨率:揭示光的秘密
    在探索宇宙奥秘和理解地球环境的过程中,光谱分辨率扮演着至关重要的角色。它不仅是科学家们洞察物质世界的一扇窗,更是现代遥感技术中不可或缺的一部分。今天,就让我们一起走进光谱分辨率的世界,揭开它神秘的面纱。光谱分辨率是什么?光谱分辨率是指光谱分析仪可分辨出的最小波长间隔,也是其最小可分辨精度,通常以纳米(nm)或波数(cm-1)表示。例如光谱分辨率为1nm,代表设备可分辨出300以及301nm的光。在同一波谱范围内,分的越细,波段越多,光谱分辨率越高,例如1500nm的光波,可被分为300个波段,光谱分辨率为5nm,也可分为150个波段,光谱分辨率为10nm,越高的光谱分辨率可更容易区分和识别目标性质和组成成分。光谱分辨率的度量方式半峰全宽(Full width at half maximum)英文简称FWHM,也称作半高全宽、或半高宽、半波宽。指达到光谱峰高一半处的光谱宽度。如下图如何提高光谱分辨率呢?光谱分辨率受到多种因素的影响,主要包括:1. 光谱仪的光学系统:包括光栅、透镜、滤光片等,它们的性能直接影响到光谱分辨率。2. 探测器的性能:探测器的灵敏度、噪声水平和响应速度等都会影响光谱分辨率。3. 光源的稳定性:光源的稳定性对光谱分辨率有重要影响,光源的波动会导致光谱线的移动,从而影响分辨率。4. 环境因素:如温度、湿度等环境因素的变化也可能对光谱分辨率产生影响。光谱分辨率对我们有什么意义呢?光谱分辨率在科学研究和工业应用中具有广泛的应用,包括:1. 化学分析:高光谱分辨率的光谱仪可以用于化学物质的定性和定量分析。2. 环境监测:通过分析大气中的光谱线,可以监测大气成分的变化。3. 天文学:在天文学中,光谱分辨率对于研究恒星和行星的化学成分至关重要。4. 材料科学:光谱分辨率可以用来研究材料的光学特性,如反射率、透射率等。总之,光谱分辨率是一种重要的光学参数,用于描述光谱仪器的分辨能力。通过了解光谱分辨率的概念、测量方法和影响因素,可以更好地选择和使用光谱仪器,为各种科学研究和实际应用提供更准确、可靠的数据和结果。北京鉴知技术有限公司,简称“鉴知技术”, 是一家以光谱检测技术为核心的专业公司,产品已广泛应用于缉私缉毒、液体安检、食品安全、药品检测等诸多领域,公司致力于为客户提供更先进的产品和更快捷的物质识别方案。
  • 港大引新技术DNA辨食材 快速精确分辨燕窝等真伪
    港人钟爱海味燕窝等名贵食材,近年市面发现不少以次充好、以假乱真的产品,损害消费者利益,部分伪质食品或严重影响健康。中大上月引入新技术,可更快速、精确地分辨食材真伪 有学者期望特区政府可提供更多资源,协助建立及丰富食品DNA数据库。   据香港大公报报道,螺片和鲍片、油鱼和鳕鱼、各种斑类,它们外形相似,一般人难以区分真伪,即使超市标签亦有可能出错,DNA技术便能作出准确分辨。中大食品研究中心主任关海山说,每个生物的DNA都是独一无二的,就像“一把钥匙开一个锁”。中大中央实验室早前引入了全港第一部基因测序机,可快速测定生物的DNA序列,用以分辨近似生物的品种。该技术先已应用于鉴定中药材、食源性致病菌及食用菇菌等。   实验室半个月前再引入一项最新技术──微数组扫描仪,用于对比被检测生物与已知生物的DNA序列,分辨真伪。关海山表示,该仪器可一次对比十个样本,较以往技术更快更精细,准确度达九成以上。他说,现时该技术仅处于研究阶段,仍未为业界提供服务,而香港现有食品DNA数据仍未有一项获得认可处认可,希望可以申请资金,建立DNA数据库。   关海山表示,香港是燕窝海味的大型集散地,可利用本地化验所先进技术及“香港品牌”的良好声誉,发展该类食品集中认证,并争取国际广泛认受。   通用公证行食品服务部高级经理刘慧怡表示,现时因食品DNA资料缺乏,未能做到高价食品真伪检验,但食物业界已有此诉求,希望联合中大检测技术,在三年内提供相关服务。   另外,食物营养标签法例今年七月实施,通用公证行称,做一次符合营养标签需求的检测,一般需要三千五百元至四千元不等,一旦配方改变则需重新检测。自法例通过后,公司收到的食品检测样本增加了二至三成。公证行亦希望政府交流检测方法,帮助业界提升检验技术。   为协助业界减低制作标签成本,中大于○七年成立的食品成分数据库,目前已完成对七百多种本地食品原材料分析,包括粉面、点心、时令及季节性食品、饼干及酱料等。数据库计划分析逾千种原材料,将运作至今年十月。
  • 中国地质科学院为实验室添置高分辨拉曼光谱仪
    中国地质科学院地质研究所长期致力于地层与古生物、岩石矿物、地球深部等物质的探测与分析工作。为满足不断提升的研究要求,日前,他们从HORIBA采购了一台LabRAM HR Evolution新一代高分辨拉曼光谱仪,这台仪器将被用于开展锆石等定年矿物的结构和蜕晶质作用的研究。显微激光拉曼光谱仪是一种新型的微区分析仪器,可以方便、无损地解析矿物结构,通过研究可以确定包裹体中流体的成分和盐度等信息,进而为地质分析提供重要依据。就地质研究工作者而言,他们为关心拉曼光谱仪是否具备高光谱分辨率、共聚焦、3D成像、高清摄像头等功能与配置,下面我们将逐一来了解它们。高光谱分辨率高光谱分辨率可以获得更准确的谱峰位置,并能区分彼此靠近的谱峰以及精确捕捉微小峰位频移及半高宽的变化。LabRAM HR Evolution是单级拉曼光谱仪中焦长长(达800mm),即光谱分辨率高的一款仪器,非常适用于矿物成分鉴别、应力、结晶度、缺陷、多晶型等分析。共聚焦LabRAM HR Evolution是共聚焦拉曼光谱仪,采用针孔真共焦设计(如下图所示)。通过在光路上安装完全可调节的共焦针孔光阑,滤除聚焦区域外的拉曼信号,可实现微米量级的空间分辨率。 真共焦设计原理图 陨石的拉曼成像图3D成像研究者还可以通过3D成像了解到矿物的三维空间分布。如下图中的CO2包裹体成像,通过旋转、透明度、截面等多种调节功能,可直观地观察到石英矿物中所包裹的水和CO2。 高清摄像头300万像素彩色高清摄像头INFINITY2具有非常高的灵敏度和分辨率,可以拍出非常清晰的显微图像。关于LabRAM HR Evolution关注我们HORIBA光谱学院:www.horibaopticalschool.com邮箱:info-sci.cn@horiba.com微信二维码:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制