光学性质

仪器信息网光学性质专题为您整合光学性质相关的最新文章,在光学性质专题,您不仅可以免费浏览光学性质的资讯, 同时您还可以浏览光学性质的相关资料、解决方案,参与社区光学性质话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

光学性质相关的耗材

  • HPLC颗粒物理性质列表
    可无缝转换至UPLC技术的HPLC颗粒物理性质列表品牌 目录页 固定相 颗粒形状 粒径 孔径** 表面积 孔容 碳载量% 封端 [m 2 /g] [cc/g]XSelect CSH 64 C 18 球形 2.5, 3.5, 5 μm 130 185 0.70 15 Yes 苯己基 球形 2.5, 3.5, 5 μm 130 185 0.70 14 Yes 氟苯基 球形 2.5, 3.5, 5 μm 130 185 0.70 10 NoXSelect HSS 64 T3 球形 2.5, 3.5, 5 μm 100 230 0.70 11 Yes C 18 球形 2.5, 3.5, 5 μm 100 230 0.70 15 Yes C 18 SB 球形 2.5, 3.5, 5 μm 100 230 0.70 8 No PFP 球形 2.5, 3.5, 5 μm 100 230 0.70 7 No CN 球形 2.5, 3.5, 5 μm 100 230 0.70 5 NoXBridge 67 C 18 球形 2.5, 3.5, 5, 10 μm 130 185 0.70 18 Yes C 8 球形 2.5, 3.5, 5, 10 μm 130 185 0.70 13 Yes Shield RP18 球形 2.5, 3.5, 5, 10 μm 130 185 0.70 17 Yes 苯基 球形 2.5, 3.5, 5 μm 130 185 0.70 15 Yes HILIC 球形 2.5, 3.5, 5 μm 130 185 0.70 未键合 n/a Amide 球形 2.5, 3.5 μm 130 185 0.70 12 n/aXBridge BEH130 103 C 18 球形 3.5, 5, 10 μm 130 185 0.70 18 YesXBridge BEH300 103 C 18 球形 3.5, 5, 10 μm 300 86 0.66 12 Yes 117 C 4 球形 3.5 μm 300 90 0.66 8 No
  • 相对应的UPLC颗粒物理性质列表
    相对应的UPLC颗粒物理性质列表品牌 目录页 固定相 颗粒形状 粒径 孔径** 表面积 孔容 碳载量 封端 [m 2 /g] [cc/g] %ACQUITY UPLC CSH 49 C 18 球形 1.7 μm 130 185 0.70 15 Yes 苯己基 球形 1.7 μm 130 185 0.70 14 Yes 氟苯基 球形 1.7 μm 130 185 0.70 10 NoACQUITY UPLC HSS 53 T3 球形 1.8 μm 100 230 0.70 11 Yes C 18 球形 1.8 μm 100 230 0.70 15 Yes C 18 SB 球形 1.8 μm 100 230 0.70 8 No PFP 球形 1.8 μm 100 230 0.70 7 No CN 球形 1.8 μm 100 230 0.70 5 NoACQUITY UPLC BEH 51 C 18 球形 1.7 μm 130 185 0.70 17 Yes C 8 球形 1.7 μm 130 185 0.70 13 Yes Shield RP18 球形 1.7 μm 130 185 0.70 17 Yes 苯基 球形 1.7 μm 130 185 0.70 15 Yes HILIC 球形 1.7 μm 130 185 0.70 未键合 n/a Amide 球形 1.7 μm 130 185 0.70 12 n/aACQUITY UPLC BEH130 103 C 18 球形 1.7 μm 130 185 0.70 17 YesACQUITY UPLC BEH300 103 C 18 球形 1.7 μm 300 90 0.66 12 Yes 117 C 4 球形 1.7 μm 300 90 0.66 8 No
  • HPLC颗粒物理性质列表(节选)
    HPLC颗粒物理性质列表(节选) 品牌 目录页 固定相 颗粒形状 粒径 孔径** 表面积 孔容 碳载量 封端 [m 2 /g] [cc/g] %SunFire 71 C 18 球形 2.5, 3.5, 5, 10 μm 100 340 0.90 16 Yes C 8 球形 2.5, 3.5, 5, 10 μm 100 340 0.90 12 Yes Silica 球形 5, 10 μm 100 340 0.90 未键合 n/aAtlantis 72 T3 球形 3, 5, 10 μm 100 330 1.00 14 Yes dC 18 球形 3, 5, 10 μm 100 330 1.00 12 Yes HILIC 球形 3, 5 μm 100 330 1.00 未键合 n/aXTerra 74 RP18 球形 3.5, 5, 10 μm 125 175 0.70 15 Yes RP8 球形 3.5, 5, 10 μm 125 175 0.70 13.5 Yes MS C 18 球形 2.5, 3.5, 5, 10 μm 125 175 0.70 15.5 Yes MS C 8 球形 2.5, 3.5, 5, 10 μm 125 175 0.70 12 Yes Phenyl 球形 3.5, 5 μm 125 175 0.70 12 YesSymmetry 75 C 18 球形 3.5, 5 μm 100 335 0.90 19.1 Yes C 8 球形 3.5, 5 μm 100 335 0.90 11.7 YesSymmetry300 120 C 18 球形 3.5, 5 μm 300 110 0.80 8.5 Yes C 4 球形 3.5, 5 μm 300 110 0.80 2.8 YesSymmetryPrep 91 C 18 球形 7 μm 100 335 0.90 19.1 Yes C 8 球形 7 μm 100 335 0.90 11.7 YesSymmetryShield 76 RP8 球形 3.5, 5 μm 100 335 0.90 15 Yes RP18 球形 5 μm 100 335 0.90 17 Yes Silica 球形 3, 5, 10 μm 80 220 0.50 n/a n/a ODS2 球形 3, 5, 10 μm 80 220 0.50 11.5 Yes ODS 球形 3, 5, 10 μm 80 220 0.50 6.2 No Delta-Pak 91 C 4 球形 5, 15 μm 100 300 1.00 7.3 Yes C 18 球形 5, 15 μm 100 300 1.00 17 Yes C 4 球形 5, 15 μm 300 125 1.00 2.6 Yes C 18 球形 5, 15 μm 300 125 1.00 6.8 YesNova-Pak 78 C 18 球形 4, 6 μm 60 120 0.30 7.3 Yes C 8 球形 4 μm 60 120 0.30 4 Yes Phenyl 球形 4 μm 60 120 0.30 4.6 Yes CN HP 球形 4 μm 60 120 0.30 3 Yes Silica 球形 4, 6 μm 60 120 0.30 n/a n/aWaters Spherisorb 77 Silica 球形 3, 5, 10 μm 80 220 0.50 n/a n/a ODS2 球形 3, 5, 10 μm 80 220 0.50 11.5Yes ODS 球形 3, 5, 10 μm 80 220 0.50 6.2 No ODSB 球形 5 μm 80 220 0.50 11.5Yes C 8 球形 3, 5, 10 μm 80 220 0.50 5.8 Yes C 6 球形 3, 5, 10 μm 80 220 0.50 4.7 Yes C 1 球形 3, 5, 10 μm 80 220 0.50 2.2 No Nitrile 球形 3, 5, 10 μm 80 220 0.50 3.1 No Amino 球形 3, 5, 10 μm 80 220 0.50 1.9 No Phenyl 球形 3, 5, 10 μm 80 220 0.50 2.5 No OD/CN 球形 5 μm 80 220 0.50 5 Yes SAX, SCX 球形 5, 10 μm 80 220 0.50 4 NoμBondapak 78 C 18 不定形 10 μm 125 330 1.00 9.8 Yes Phenyl 不定形 10 μm 125 330 1.00 9.3 Yes CN 不定形 10 μm 125 330 1.00 6 Yes NH 2 不定形 10 μm 125 330 1.00 4 NoBondapak 78 C 18 不定形 15–20 μm 125 330 1.00 10 Yes C 18 不定形 15–20 μm 300 100 1.00 3.5 Yes* 产品排列顺序:按柱产品推出的年代回溯排列**名义值

光学性质相关的仪器

  • NPFLEX 三维表面测量系统针对大样品设计的非接触测试分析系统灵活测量大尺寸、特殊角度的样品高效的三维表面信息测量垂直方向亚纳米分辨率提供更多的细节快速获取测量数据,测试过程迅速高效 NPFLEX 为大尺寸工件精密加工提供准确测量布鲁克的NPFLEXTM 3D表面测量系统为精密制造业带来前所未有的检测能力,实现更快的测量时间,提高了产品质量和生产力。基于白光干涉的原理,这套非接触系统提供的技术性能超出了传统的的接触式坐标测量仪(CMM)和工业级探针式轮廓仪的测量技术。测量优势包括获得高分辨的三维图像,进行快速丰富的数据采集,帮助用户更深入地了解部件的性能和功能。积累几十年的干涉技术和大样本的仪器设计的经验,NPFLEXTM是第一个可以灵活地测量大尺寸样品的光学测量系统,而且能够高效快捷地获得从微观到宏观等不同方面的样品信息。其灵活性表现在可用于测量表征更大的面型和更难测的角度样品创新性的空间设计使得可测零件(样品)更大、形状更多开放式龙门、客户定制的夹具和可选的摇摆测量头可轻松测量想测部位高效的三维表面信息测量 每次测量均可获得完整表面信息,并可用于多种分析目的更容易获得更多的测量数据来帮助分析垂直方向亚纳米分辨率提供更多的细节 干涉技术实现每一个测量象素点上的亚纳米级别垂直分辨率工业界使用多年业已验证的干涉技术提供具有统计意义的数据,为日渐苛刻的加工工艺提供保障测量数据的快速获取保证了测试的迅速和高效 最少的样品准备时间和测量准备时间比接触法测量(一条线)更大的视场(一个面)获得表面更多的数据 为客户量身订做最合适的仪器配置NPFLEX在基本配置的基础上,还有很多备选的配件和配置方案,满足不同客户的测量需求:&bull 可选的摇摆测量头可轻松测量想测的样品部位,测量样品的侧壁、倾斜表面以及斜面边缘,重复性好。&bull 获得研发大奖的透过透明介质测量模块(Through Transmissive Media,TTM)模块,,结合环境测试腔,可以穿透5cm厚的色散材料,可对样品进行加热或者冷却,进行原位测量。&bull 可选的折叠镜头能够测量碗状样品的侧壁和底部孔洞。纳米级分辨率的三维表面信息测量大家对很多样品的表面性质感兴趣,但是要获得这些品性质,需要检测大量的样品表面定量信息。许多应用在航空航天,汽车,医疗植入产业的大尺寸样品,往往只能借助于二维接触式检测工具进行表征,获得的只是一条线测量数据。二维扫描能够提供样品的表面轮廓,但是无法深入研究样品表面更精确的纹理细节信息。NPFLEX测试系统采用白光干涉原理,在每一个测量点可以实现表面形貌的三维信息收集,且具有亚纳米级的垂直分辨率。所收集的数据不受探针曲率半径的局限,高效的三维表面信息测量可获取除表面粗糙度以外的多种分析结果,更多的测量数据来帮助分析样品性质。 快速获取数据,保证测试迅速高效NPFLEX三维测量系统,能够灵活高效的获取大量测试数据。大大缩短了样品制备时间和测量方案设置时间,操作者可以快速更换样品,而且无需全面掌握样品形状和表面形貌的前提下,对样品的不同表面进行测量。仅需要不到15秒的时间,就可以出色地完成一个测量点的数据采集和分析工作。自动对焦,光强调节以及其他配套软件功能,大大节约了测试分析时间,而且可以根据操作者的实验需求,量身定做最优化的实验方案,而不影响数据的精度和质量。利用NPFLEX可以高效、快捷、灵活、准确地获得大型零部件的高精度测量结果,提供一站式的测量解决方案。
    留言咨询
  • 石墨烯/二维材料电学性质非接触快速测量系统西班牙Das Nano公司成立于2012年,是一家提供高安全别打印设备,太赫兹无损检测设备以及个人身份安全验证设备的高科技公司。ONYX是其在全球范围内推出的一款针对石墨烯、半导体薄膜和其他二维材料大面积太赫兹无损表征的测量设备。ONYX采用先进的脉冲太赫兹时域光谱技术,实现了从科研及到工业的大面积石墨烯及二维材料的无损和高分辨,快速的电学性质测量,为石墨烯和二维材料科研和产业化研究提供了强大的支持。与传统四探针测量法相比,ONYX无损测量样品质量空间分布与拉曼,AFM,SEM相比,ONYX能够快速表征超大面积样品背景介绍太赫兹辐射( T射线)通常指的是频率在0. 1~10THz、波长在30μm-3mm之间的电磁波,其波段在微波和红外之间,属于远红外和亚毫米波范畴。该频段是宏观经典理论向微观量子理论的过度区,也是电子学向光子学的过渡区。在20世纪80年代中期以前,由于缺乏有效的产生方法和探测手段,科学家对于该波段电磁辐射性质的了解和研究非常有限,在相当长的一段时期,很少有人问津。电磁波谱中的这一波段(如下图) ,以至于形成远红外和亚毫米波空白区,也就是太赫兹空白区(THz gap)。太赫兹波段显著的特点是能够穿透大多数介电材料(如塑料、陶瓷、药品、缘体、纺织品或木材),这为无损检测(NDT)开辟了一个可能的新。同时,许多材料在太赫兹频率上呈现出可识别的频率指纹特性,使得太赫兹波段能够实现对许多材料的定性和定量研究。太赫兹波的这两个特性结合在一起,使其成为一种全新的材料研究手段。而且其光子能量低,不会引起电离,可以做到真正的无损检测。 ONYX工作原理 ONYX是一套实现石墨烯、半导体薄膜和其他二维材料全面积无损表征的测量系统,能够满足测试面积从科研(mm2)到晶元(cm2)以及工业(m2)的不同要求。与其他大面积样品的测量方法(如四探针法)相比,ONYX能够直观得到样品导电性能的空间分布。与拉曼、扫描电镜和透射电镜等微观方法相比,微米的空间分辨率能够实现对大面积样品的快速表征。ONYX采用先进的脉冲太赫兹时域光谱THz-TDS技术,产生皮秒量的短脉太赫兹冲辐射。穿透性强的太赫兹辐射穿透进样品达到各个界面,均会产生一个小反射波可以被探测器捕获,获得太赫兹脉冲的电场强度的时域波形。对太赫兹时域波形进行傅里叶变换,就可以得到太赫兹脉冲的频谱。分别测量通过试样前后(或直接从试样激发的)太赫兹脉冲波形,并对其频谱进行分析和处理,就可获得被测样品介电常数,吸收吸收以及载流子浓度等物理信息。再利用步进电机完成其扫描成像,得到其二维的电学测量结果。ONYX主要参数及特点样品大小: 10x10mm-200x200mm 全面的电导率和电阻率分析样品100%全覆盖测量高分辨率:50μm完全非接触无损无需样品制备载流子迁移率, 散射时间, 浓度分析 可定制样品测量面积(m2量)超快测量速度: 12cm2/min软件功能丰富,界面友好全自动操作图1 太赫兹光谱范围及信噪比ONYX主要功能→ 直流电导率(σDC)→ 载流子迁移率, μdrift→ 直流电阻率, RDC→ 载流子浓度, Ns→ 载流子散射时间,τsc→ 表面均匀性ONYX应用方向石墨烯材料:→ 单层/多层石墨烯 → 石墨烯溶液→ 掺杂石墨烯→ 石墨烯粉末→ 氧化石墨烯→ SiC外延石墨烯其他二维材料: → PEDOT→ Carbon Nanotubes→ ITO→ NbC→ IZO→ ALD-ZnO石墨烯光伏薄膜材料半导体薄膜电子器件PEDOT钨纳米线GaN颗粒Ag 纳米线ONYX测试数据1. 10x10mm CVD制备的石墨烯在不同分辨率下的电导率结果 2.10 x10mm CVD制备的石墨烯不同电学参数测量结果 3.利用ONYX测量ALD沉积在硅基底上的TiN电导率测量结果 应用案例■ 全球《石墨烯电学测量方法标准化指导手册》近期,欧洲计量创新与研究计划(EMPIR)的项目 “GRACE-石墨烯电学特性测量的新方法”发布了全球关于石墨烯电学特性测量方法的标准化指导手册。“GRACE-石墨烯电学特性测量新方法”项目是由英国实验室(NPL)主导,与意大利计量研究所、西班牙Das-nano 公司等合作,旨在开发石墨烯电学特性的新型测量方法,以及未来石墨烯电学测量的标准化制定。 图一 石墨烯电学测量方法标准化指导手册(发送邮件至info@qd-china.com获取完整版资料) 石墨烯由于其特优异的电学特性,在未来有望成为大规模应用于电子工业及能源领域的新材料。但是,目前受限于:1)如何制备大面积高质量石墨烯,且具有均匀和可重复的电气和电子性能;2)无论是作为科研用的实验样品还是在生产线中的批量化生产,对其电学性质的准确且可重复的表征方法目前尚不完善,缺乏正确实施此类测量方法的指导手册及测量标准。针对目前面临的问题和挑战,EMPIR 的“石墨烯电学特性测量新方法”项目对现有测量方法进行了总结和规范指导,更重要的是开发了石墨烯电学特性的快速高通量,非接触测量的新方法,并用现有技术对其进行了验证,取得了很好的一致性。 西班牙Das-Nano公司参与了“GRACE-石墨烯电学特性测量新方法”项目中基于THz-TDS的全新非接触测量方法的开发及测量标准的制定。基于该技术,Das-Nano推出了一款可以实现大面积(8英寸wafer)石墨烯和其他二维材料的100%全区域无损非接触快速电学测量系统-ONYX。ONYX采用一体化的反射式太赫兹时域光谱技术(THz-TDS)弥补了传统接触测量方法(如四探针法- Four-probe Method,范德堡法-Van Der Pauw和电阻层析成像法-Electrical Resistance Tomography)及显微方法(原子力显微镜-AFM, 共聚焦拉曼-Raman,扫描电子显微镜-SEM以及透射电子显微镜-TEM)之间的不足和空白。ONYX可以快速测量从0.5 mm2到~m2的石墨烯及其他二维材料的电学特性,为科研和工业化提供了一种颠覆性的检测手段[1,2]。更多详细信息请点击:欧洲计量创新与研究计划(EMPIR)发布全球《石墨烯电学测量方法标准化指导手册》参考文献:[1] Cultrera, A., Serazio, D., Zurutuza, A. et al. Mapping the conductivity of graphene with Electrical Resistance Tomography. Sci Rep 9, 10655 (2019).[2] Melios, C., Huang, N., Callegaro, L. et al. Towards standardisation of contact and contactless electrical measurements of CVD graphene at the macro-, micro- and nano-scale. Sci Rep 10, 3223 (2020). ONYX发表文章1. P Bogild et al. Mapping the electrical properties of large-area graphene. 2D Mater. 4 (2017) 042003.2. S Fernández et al. Advanced Graphene-Based Transparent Conductive Electrodes for Photovoltaic Applications. Micromachines 2019, 10, 402.3. David M. A. Mackenzie et al. Quality assessment of terahertz time-domain spectroscopy transmission and reflection modes for graphene conductivity mapping. OPTICS EXPRESS 9220, Vol. 26, No. 7, 2 Apr 2018. 4. A Cultrera et al. Mapping the conductivity of graphene with Electrical Resistance Tomography. Scientific Reports , (2019) 9:10655.ONYX用户单位重要客户合作伙伴参与项目
    留言咨询
  • 分离性质分析仪 400-860-5168转3106
    产品信息LUMiReader PSAK可瞬时测量样品,并得到消光图谱,。每台LUMiReader含有一个聚光装置和温度控制元件,每个都能独立操作,最大程度地确保了仪器的灵活性和准确性。此外,专门设计的PSA模块也为高分辨率的颗粒测量开拓了新视野,使您能够测量分散颗粒的速度分布。因此,您无需特意知道样品的粘度或密度等。我们专有的设计确保了光线以最小强度变化或弯曲穿过整个样品,确保最大限度的灵敏性和重现性。每台光学检测器有9000多个高度灵敏的微观分辨率传感器,甚至能够即时准确检测到通过整个样品的局部细小变化。本设计解决了扫描样品耗时且精度不准的问题,使您能够捕捉到分散过程中发生的任何细微变化。LUMiReader也运用了基于联合抵制的专利倾斜技术。公认的原则是在无需外力的情况下,通过倾斜正常直立位置的样品以提高1 g的分离率。加速大小(高达10倍)取决于几何因素,如倾斜角、小瓶尺寸和样品种类。根据粘度、温度和浓度具体分析。有了从上到下同时观测整个样品的优势,您能同时观测及理解不同稳定性/不稳定性行为,比如:原始浓度产品的分层、沉降、凝聚、絮凝等。 多波长LUMiReader PSA首次实现了悬浊液和乳浊液基于粒径分布(ISO 13317)的体积检测,无需知道折射率,无需假定粒形为球体且是均匀的。这为上述参数不可用或不适用的工业产品的表征拓宽了新视野。分析仪申请LUM专利保护的STEP技术,是独特新颖地利用了多波长,而得到空间-时间消光图谱的测量方法。考虑到除根据ISO TR 13097直接稳定结果外的流体颗粒密度、分离速度和颗粒大小(ISO 13317),新型LUMiReader PSA是一种简易、全面了解复杂工业产品的仪器。 PSA此外,独特设计的PSA模块,可以测试颗粒分离的分布速度。您不需要知道任何的材料常数,如粘度或密度。 速度分布 Qv(v), qv(v)强度加权粒径分布QInt(x), qInt(x)体积加权粒径分布Q3(x), q3(x)- 直接测量,无需校准/无需了解材料性能- 粒度分布的定量信息- 每个类的颗粒大小和体积分数的定量信息- 总是有效的-质量控制的快速信息- 转化为质量或数量分布- 关于粒子的大小和分散性的定性信息 应用领域研磨料 沥青 炭黑 陶瓷 原油 精细化学品 食品 油气 墨水 汽油 制药 高分子材料 污泥 泥浆 和更多的材料。 优势直接,快速,客观的任何分离现象的表征 原始条件下的分析 在正常重力下,拥有专利保护的加速相分离 没有移动部件 可长时间存储信息样本行为的无休止监测 用于浓缩和稀释的悬浮液和乳状液 不同类型和可定制的应用程序 操作简单,信息综合 转为高质量控制,过程监控和研发而准备的高端分析仪 产品规格
    留言咨询

光学性质相关的试剂

光学性质相关的方案

光学性质相关的论坛

光学性质相关的资料

光学性质相关的资讯

  • 海洋光学亮相“第十届有机发光和光电性质学术会议”
    由中国物理学会发光分会主办,太原理工大学承办的“第十届有机发光和光电性质学术会议”于2017年7月7日至9日在历史悠久的文化古城—山西省太原市召开。此次会议主要就目前OLED的市场前景和光谱仪应用环境展开热烈讨论。 海洋光学在有机发光薄膜材料的检测方面,致力于电致发光光谱、量子效率、薄膜厚度等测量。 海洋光学不仅为客户提供系统、模块化产品,更可以提供定制化服务。会议现场展出的绝对辐射颜色测量装置以及紫光LED激发荧光光谱检测装置中,搭载的QE Pro科研级光谱仪拥有高达90%(peak)的量子效率,超高的灵敏度可以在低光度应用中进行检测,其优异的性能赢得了参会者强烈的反响与认可。 绝对辐射颜色测量装置 紫光LED激发荧光光谱检测装置QE Pro科研级微型光谱仪通过为期两天的会议,海洋光学的产品得到充分的展示和分享,也让海洋光学的工作人员了解到客户需求,便于在日后的设计中做出改良,让产品应用更符合实际需求。在不断自我改进中,海洋光学的品牌和产品将更深入人心,深入使用。我们也将整合期间收集到的客户需求以及意见,继续努力,扩充新的本地化产品以及日益革新的技术。
  • HORIBA前沿用户动态|吉大邹勃教授Adv. Sci.:二维金属卤化物钙钛矿在高压下的光学性质及结构
    本文授权转载自公众号“研之成理”,原作者邹勃教授课题组今天非常荣幸邀请到吉林大学王凯、邹勃教授课题组来对他们新发表在Advanced Science上的文章进行解析。本文由作者张龙倾情打造,内容非常翔实,推荐大家细细品味!在此,感谢王凯、邹勃教授和张龙的大力支持和无私分享。金属卤化物钙钛矿作为一类新型的半导体材料具有许多优异的光电特性:可调的带隙宽度、高效光捕获能力、宽吸收光谱、高光致荧光量子效率等,因而获得了广泛的研究兴趣和美好的光伏、LED应用前景。短短的几年内,钙钛矿太阳能电池的能量转化效率从初的3.8%快速地增加到了当前的23.2%,薄膜的荧光量子效率也已达到70%,因此其已经成为当今能源材料领域具潜力的和竞争力的一枚新星。压力是独立于温度、化学组分的第三个物理学参量,可以非常有效地使原子间距离缩短、相邻电子的轨道重叠增加,进而改变物质的晶体结构、电子结构和分子间的相互作用,使之达到高压平衡态,形成全新的物质状态。研究发现,对金属卤素钙钛矿材料进行的高压研究证实体积压缩可以有效地调控晶体结构和电子状态,同时还能够发现新奇的结构和性质(例如:我们近报道的压力诱导Cs3Bi2I9金属化在大约28 GPa,Angew. Chem. Int. Ed. 57 (2018),11213;Cs4PbBr6在大约3 GPa压力诱导发光,Nature Commun. 9 (2018), 4506;CsPbBr3高压下结构相变和带隙调控,J.Am. Chem. Soc. 139 (2017), 10087),为合成常规条件无法得到的新型功能材料提供了重要源泉。近几年,人们发现了几种二维的白光发射的钙钛矿材料,从而发展出了一个新兴的光电材料领域。不同源于自由激子复合的窄发射,研究表明白光宽发射主要归因于激子自陷。这种白光宽发射常见于二维的层状的Pb-Br或Pb-Cl钙钛矿。由于大体积的有机分子的存在,从而导致层状的无机骨架发生扭曲。激子和扭曲的无机晶格产生强的耦合,从而形成处于不同能级的稳定的自陷激子。在常温常压下,二维的(PEA)2PbCl4(PEA+= C6H5C2H4NH3+)表现出宽的白光发射由于激子自陷的存在。然而,二维的(PEA)2PbBr4只表现出了源于自由激子的窄发射,尽管它们拥有相同的结构。我们课题组设想能否通过晶格收缩提高Pb-Br无机骨架的扭曲,提高激子-晶格耦合形成稳定的自陷激子,从而激活(PEA)2PbBr4的宽发射?另外通过减小原子间的距离,可以提高原子间的轨道耦合,实现带隙窄化,促进其在光伏领域的应用。因此我们对其实施了高压光学和结构研究,来证实我们的合理预测。我们通过高压技术调控了二维金属卤化物钙钛矿的光学性质和结构,观察到了我们初设想的宽发射现象。这一研究结果扩展了人们对二维钙钛矿材料的认识,证实了其性质存在强的调控性以及深入探索的必要性和潜力,为合理设计和开发高性能的宽发射二维金属卤化物钙钛矿光电材料提供了一种新的策略。首先,我们研究了(PEA)2PbBr4的高压光致发光性质(Figure 1)。随着压力的增加,窄的自由激子发射逐渐地减弱。当压力增加到约5 GPa 时,出现了处于可见区的宽发射,且伴有大的斯托克斯移动。这是典型的自陷激子发射特征。这种压力诱导的宽发射现象初步证实了我们开始的推测。Figure 1. Emission property and broadband emission mechanism. a) PL spectra of (PEA)2PbBr4as a function of pressure at room temperature. The illustrations are PL micrographs upon compression. b) Pressure-induced PL intensity evolution of(PEA)2PbBr4. c) Schematic illustrations of emission evolutions upon compression. Ground state (GS), free-carrier state (FC), free-exciton state (FE), and various self-trapped exciton state (STE).在12 GPa以前,(PEA)2PbBr4的带隙持续地窄化,窄化了大约0.5 eV, 从而对应着更宽的光子吸收范围(Figure 2)。随着压力的进一步增加,我们观察到了带隙的蓝移和再次红移。材料的压致变色也体现出了其电子结构的变化。这一结果证实了压力对这种材料具有显著的带隙调控性。Figure 2. (a) Optical absorption spectra of (PEA)2PbBr4 under high pressure. (b) Optical micrograph of (PEA)2PbBr4 in a DAC upon compression. (c) Band gap evolutions of (PEA)2PbBr4 under high pressure. The illustration shows selected band gap Tauc plots for (PEA)2PbBr4 at 1 atm. 结构分析表明,随着压力的增加,Pb-Br无机骨架的扭曲是逐渐加剧的。无机骨架较大的扭曲,提高了激子-晶格耦合,从而形成了稳定的自陷激子,终导致宽发射的出现。Figure 3. Schematic diagram of Pb-Brinorganic layer distortion in (PEA)2PbBr4 upon compression. Gray ball: Pb, green ball: Br.邹勃,吉林大学教授、博士生导师,教育部长江学者特聘教授、国家杰出青年科学基金获得者。主要研究方向为高压化学和高压物理。已在Nat. Commun., Angew. Chem. Int. Ed, J. Am. Chem.Soc., Adv. Mater.等国际期刊(SCI)发表研究论文270余篇。王凯,吉林大学副教授、博士生导师。师从邹广田院士和邹勃教授,研究方向为高压化学和高压物理,主持自然科学基金委面上项目和青年基金等多个科研项目。已在J. Am. Chem. Soc., Angew. Chem. Int. Ed, Adv. Sci.等国际期刊(SCI)发表研究论文百余篇。免责说明HORIBA Scientific公众号所发布内容(含图片)来源于文章原创作者提供或互联网转载。文章版权、数据及所述观点归原作者原出处所有,HORIBA Scientific 发布及转载目的在于传递更多信息及用于网络分享,供读者自行参考及评述。如果您认为本文存在侵权之处,请与我们取得联系,我们会及进行处理。HORIBA Scientific 力求数据严谨准确,如有任何失误失实,敬请读者不吝赐教批评指正。我们也热忱欢迎您投稿并发表您的观点和见解。HORIBA科学仪器事业部结合旗下具有近 200 年发展历史的 Jobin Yvon 光学光谱技术,HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案。如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术。今天HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的首选。
  • 上海光机所在研究铝磷酸盐玻璃的结构和性质方面取得进展
    近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室胡丽丽研究员团队采用了一种将实验、分子动力学模拟和定量结构性质关系分析(QSPR)相结合的方法研究磷酸铝玻璃,相关研究成果发表于《美国陶瓷》(Journal of the American Ceramic Society)。目前,磷酸铝玻璃在许多领域都有广泛的应用,包括生物医学材料、光学元件、密封材料和核废料固化等。通过实验技术手段对磷酸铝玻璃的短程结构已有较多的研究,但其性质与中程结构之间的关系尚不清楚。而分子动力学模拟已成为了研究的有效工具,在揭示玻璃性质的结构起源方面发挥着越来越重要的作用。   在本项研究中,研究人员结合了实验、分子动力学模拟方法研究Al2O3对磷酸铝玻璃的短程及中程结构的影响,并通过QSPR方法建立其结构性质模型。通过拉曼、同步辐射等实验结果验证了模拟的准确性。模拟结果表明,玻璃网络中存在的P-O-P键随Al2O3含量变化逐渐被P-O-Al键替代,对玻璃的性能变化起着重要的作用。同时,磷酸铝玻璃中的长链易形成环状结构,并集中在4~20元环。此外,利用三个不同的结构描述符来建立QSPR模型,并成功地将实验数据与模拟结果相关联,表现出良好的模型预测性。这一方法为预测玻璃性质及设计玻璃组分提供新思路。图1以磷酸铝玻璃的(a)配位数(CN)、(b) Qn、(c)环尺寸作为结构输入所建立的定量结构-性能关系模型。从左到右列为结构描述符Fnet分别与实验密度、硬度、玻璃化转变温度和热膨胀系数的关系。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制