芳香族化合物含量

仪器信息网芳香族化合物含量专题为您整合芳香族化合物含量相关的最新文章,在芳香族化合物含量专题,您不仅可以免费浏览芳香族化合物含量的资讯, 同时您还可以浏览芳香族化合物含量的相关资料、解决方案,参与社区芳香族化合物含量话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

芳香族化合物含量相关的耗材

  • Epic 芳香族选择性色谱柱 ES Industries色谱柱 苯基柱
    Epic 芳香族选择性HPLC色谱柱苯基 π-π 相互作用固定相 我们通常在烷基固定相上进行反相 HPLC 分析,如 C6、C8 或 C18 色谱柱。这些固定相对于非极性分析物非常有效,但它们并非总是具有其他基团所需的选择性。在此类情况下,苯基固定相即可成为烷基固定相的一种替代选择。苯基固定相与部分此类基团可以发生 π-π 相互作用,产生比烷基固定相更好或可替代的选择性。与 C18 柱相比,标准苯基固定相(即通过丙基键与高纯度二氧化硅键合的苯环)仅产生中等程度的疏水化合物保留能力;然而,为了提高疏水保留能力,我们在苯环上键合了较长的链(如己基)。 ES Industries 的化学研究人员对苯基固定相进行了广泛研究,并开发了联苯、萘、二苯和 PFP 固定相?新一代苯基固定相。联苯和萘固定相由两个苯基基团组成,具有独一无二的结构和性能。这些固定相没有采用直链己基键,而是加入了一个芳基。这使得其疏水性更强,提供比单苯环固定相更大的电子云,从而产生更多的 π-π 相互作用,实现出色的芳香族选择性和良好的疏水保留能力。 可选择的 π-π 相互作用产品:Epic BiphenylEpic PhenylEpic DiphenylEpic NaphthylEpic Phenyl HexylEpic Penta Fluoro Phenyl联苯在二氧化硅表面采用芳基连接基团出色的芳香族选择性良好的疏水保留能力萘基在二氧化硅表面采用芳基连接基团出色的芳香族选择性良好的疏水保留能力苯酚标准苯基固定相弱至中度疏水保留能力具有芳香族选择性苯基-己基在二氧化硅表面采用己基连接基团更强的疏水保留能力更强的芳香族选择性PFP高密度固定相与卤代芳香族良好的相互作用出色的 π-π 相互作用联苯高密度苯基固定相较之标准苯基固定相具有更高的疏水保留能力和芳香族选择性 Epic Phenyl Epic Phenyl 是π-碱性(供电子),并且在总体保留能力方面与烷基固定相相似。苯基固定相表现出的替代选择性可通过苯环上的 π-π相互作用来解释。在 Epic Phenyl 固定相上表现出这种替代选择性的化合物包括抗生素(如四环素)、中等碱(如麻醉剂)、一些酸性化合物(如喹啉抗生素和核苷)。Epic 高密度键合技术提供了出色的性能、耐用性和优异的批次间重现性。Epic Phenyl 提供了真正优越的苯基相互作用,提高了色谱性能。Epic BiphenylEpic Biphenyl 是一种真正独特的固定相,其性质与 ODS 固定相明显不同。这种特质是由共价连接至高纯度硅胶上的键合联苯基团产生的,赋予 π-π 电子相互作用,这可以对许多化合物产生了增强的保留能力,特别是那些含有可极化电子的化合物。许多种类化合物含有可极化电子,包括卤化物、芳香族化合物、硝基芳香族化合物和共轭体系。使用 Epic Biphenyl (100 x 2.1 mm, 1.8 μm) 对芳香族化合物进行 HPLC 分析。Epic Diphenyl具有较低疏水性的 Epic Diphenyl 键合相可以产生具有新选择性的 HPLC 色谱柱,可加快分离速度和提升分辨率,其利用强偶极-偶极氢键和 π-π 机制对含有双键或芳香官能团的化合物提供不同选择性。此外,固定相的联苯基排列也有助于空间选择性,从而获得额外的色谱相互作用。Epic Diphenyl 对包含芳香侧链的蛋白质也具有高度选择性。Epic Diphenyl 利用独有的高密度键合技术提供了出色的性能、耐用性和优异的批次间重现性。 使用 Epic Diphenyl (150 x 4.6 mm, 3μm) 对极性药物化合物进行 HPLC 分析。Epic Phenyl-HexylEpic Phenyl-Hexyl 采用 6 碳(己基)连接的苯基固定相与高纯度硅胶结合,与丙基连接的苯基固定相化学相比,己基烷基链具有独特的选择性和更高的水解稳定性。这种保留固定相可以提供与 C6、C8 或 C18 等直链烃类固定相不同的选择性,对芳香族分析物、复杂样品和极性药物化合物尤其有用。Epic 高密度键合技术为色谱分析人员提供了出色的性能、耐用性和优异的批次间重现性。Epic Phenyl-Hexyl 为色谱分析人员提供了真正优越的苯基相互作用,提高色谱性能。使用 Epic Phenyl-Hexyl (150 x 4.6 mm, 5 μm) 对食品添加剂进行 HPLC 分析。使用 Epic Phenyl-Hexyl (50 x 4.6 mm, 3 μm) 对极性药物化合物进行 HPLC 分析Epic PFP LBEpic PFP LB(低流失)是一种经过基线稳定的五氟苯基固定相,可用于高性能分离。Epic PFP LB 是一种真正独特的固定相,其性质与 C18 固定相明显不同。这种特性源于键合五氟苯基基团赋予其 π-π 电子相互作用,从而增强了对许多化合物的保留能力,包括天然产物(紫杉醇系统)、卤代化合物、芳香化合物、共轭化合物和复杂基质中的痕量杂质。许多市场上所提供的PFP色谱柱因为流失严重,导致基线波动对痕量样品峰形影响严重,并不能满足痕量分析要求。Epic PFP LB 色谱柱已经过稳定化处理,可提供低色谱柱流失、更长的使用寿命、更好的 pH 稳定性和出色的 LC-MS 性能。使用 Epic PFP LB (250 x 4.6 mm, 5 μm) 在 pH 10 条件下对10,000 柱体积进行萘的色谱柱稳定性研究。使用 Epic PFP LB (150 x 4.6 mm, 5 μm) 对二氟苯酚类进行 HPLC分析。使用 Epic PFP LB (50 x 4.6 mm, 3 μm) 对芳香族化合物进行HPLC 分析。使用 Epic PFP LB (100 x 2.1 mm, 1.8 μm) 对氟代硝基苯胺类进行 HPLC 分析 Epic π-π 相互作用色谱柱筛选套件 两套 π-π 相互作用色谱柱筛选套件,3 微米和 5 微米各一套,包含所有六种芳香族选择性固定相,规格包括便利的色谱柱尺寸,可用作筛选组合检测中的最佳芳香族选择性固定相。3μm π-π 苯基色谱柱筛选套件内含具有以下固定相的 100 X 2.1mm 色谱柱各一 根:Epic BiphenylEpic NaphthylEpic PhenylEpic Phenyl HexylEpic PFP LBEpic Diphenyl5μm π-π 苯基色谱柱筛选套件内含具有以下固定相的 150 X 4.6mm 色谱柱各一 根:Epic BiphenylEpic NaphthylEpic PhenylEpic Phenyl HexylEpic PFP LBEpic Diphenyl 点击获取 Epic色谱柱订货信息及价格》》
  • 绸环芳香族化合物分析的专用柱
    ●优化了EPA610方法 ●使用短柱,在4min内快速分析16种PAHs ●有多种规格的色谱柱,粒度有3μm、5μm两种 Hypersil Green PAH柱采用独特的烷基键合硅胶,含碳量高,专为分析PAHs设计。大多数的标准键合相不能将PAHs完全分离。而采用Hypersil Green PAH柱,结构近似的物质也可以达到完全分离。采用Hypersil Green PAH,5μm,4.6x100mm,按照EPA610规定的方法,不到30min,便可以完全分离16种PAHs的混合物。而若是采用粒度为3μm的色谱柱,分析时间不到4min。为了满足更高的灵敏度及更低的检测限要求,Thermo公司还可以提供内径为2.1μm Hypersil Green PAH柱。为了提高柱寿命,推荐使用专用保护柱。 订货资料: 品牌粒度(μm) 长度(mm) 直径(4.6mm) 直径(4.0mm) 直径(3.0mm) 直径(2.1mm) Hypersil Green PAH 35031103-054630 31103-054030 31103-053030 31103-052130 310031103-104630 31103-104030 31103-103030 31103-102130 315031103-154630 31103-154030 31103-153030 31103-152130 Hypersil Green PAH 55031105-054630 31105-054030 31105-053030 31105-052130 510031105-104630 31105-104030 31105-103030 31105-102130 515031105-154630 31105-154030 31105-153030 31105-152130 525031105-254630 31105-254030 31105-253030 31105-252130
  • Rt-TCEP色谱柱-汽油中芳香烃和含氧化合物
    Rt-TCEP 色谱柱(熔融石英)(高极性固定相,1,2,3 - 三[2-氰基乙氧基]丙烷—非键合). 通用柱,是分析汽油中的芳烃和含氧化合物的理想选择。. 温度范围: 0 °C至135 °C。汽油大多含有C12(正十二烷)以下的脂肪烃。为了便于对芳烃和含氧化合物的定性,希望苯能控制在C11之后出峰,甲苯在C12之后出峰。高极性的Rt-TCEP固定相使苯的保留指数大于1100,因此可以使醇类和芳香烃同汽油中的脂肪烃分离开。Rt-TCEP柱与TCEP填充柱具有同样的高极性,TCEP填充柱用作为ASTM D4815(石油含氧化合物的分析法)方法中预分离柱。采用Rt-TCEP色谱柱之后,由于色谱柱的柱效高,使其成为能分析许多化合物的分析柱。Rt-TCEP柱在这方面的效能是其它高极性聚硅氧烷柱不能达到的。Rt-TCEP柱采用非键合固定相,涂在表面上用于增强聚合物的稳定性和延长色谱柱的使用寿命。溶剂清洗应当避免,当在接近最大使用温度的情况下使用Rt-TCEP柱时,有必要对操作进行调节。IDdf温度限度30米60米0.25 mm0.40 μm0 to 135 °C1099810999

芳香族化合物含量相关的仪器

  • minispec 碳氢化合物含氢量测定全新 ASTM* D 7171:基于脉冲时域核磁共振的国际标准方法采用时域核磁共振技术分析诸如柴油或航空煤油等碳氢化合物的含氢量。采用时域核磁共振技术测定含氢量快速、无损、无溶剂质量控制/质量保证测定支持所有官方国际标准方法(ASTM D 7171、ASTM D 3701和ASTM D 4808)利用少量市售化合物轻松完成校准最低限度试样制备高投资回报率卓越的可再现性配备改良版软件的专用分析仪 氢含量分析带来的经济效益碳氢化合物和植物油精炼通常包括加氢处理。氢消耗是精炼厂的重要成本问题,氢含量被用作精炼进度的重要指示。含氢量是诸如航空煤油和柴油等产品必须满足的技术规范之一。为了证明产品符合官方技术规范,同时尽可能降低氢用量,必须采用精确、可靠的分析方法。minispec核磁共振方法符合工艺控制对精确度、准确度和速度的要求。操作minispec不要求技术娴熟的人员。仪器设计十分稳健,维护要求很低。进行含氢量分析的其他原因含氢量越高,汽油燃烧越好,质量越高积碳、废气、热辐射等随含氢量的下降而增加 minispec校准两种校准方法可行:采用从化学品供应商处购得的纯碳氢化合物——如十二烷采用用户提供的试样和参考值 试样处理和试管直径这种方法通常采用两种试管直径:18毫米或40毫米直径试管。可提供带杆 PTFE 试管塞,用以避免试样蒸发。 哪怕在长期运行中,大多数时候都使用金属块恒温器对试样进行预加热,这仅需用电。 典型测定用时试样生成很强核磁共振信号。这可实现很高信噪比,从而将典型测定用时缩短至短短一分钟。 minispec 在石化行业的其他应用煤的总含氢量蜡/石蜡的含油量测定油页岩和油砂的含油量测定油粘度测定国际方法国际标准方法推荐使用纯碳氢化合物进行校准。最新 ASTM D 7171 方法列出了推荐校准物质及相应的含氢量值。 氢百分比含量计算由于化学式众所周知,并且物质纯度很高,亦可直接计算出化合物的含氢量。 国际方法列表ASTM D 7171 ( 2005年发布,基于脉冲核磁共振),适用于中间馏分石油产品ASTM D 4808 (轻质和中间馏分、瓦斯油和渣油)ASTM D 3701 (航空涡轮机用燃油) 通过将原来的连续波核磁共振仪器更换为脉冲核磁共振仪器minispec,可以满足甚或超出 ASTM 方法 D 3701 和 D 4808 的要求。脉冲核磁共振分析方法更快速、更灵敏、更精确,并且适用于更多应用。
    留言咨询
  • 详细介绍汽油的使用对环境的污染随着我国经济的快速发展而愈发严重,特别是机动车的快速增多,汽车尾气的排放已成为主要的大气污染源,严重危害到人们的身体健康和生存环境。在汽油中加入含氧化合物(醇类、醚类)可以提高辛烷值及降低挥发性,所加含氧化合物的类型和浓度都有规定,并应加以调整,以便保证达到商品汽油的质量要求。驱动性、蒸气压、相分离,汽车尾气排放和挥发性汽车排放物都与燃料的含氧化合物有一定的关系。因此,含氧化合物的准确检测对于汽油质量等各方面都有重要的意义。 GC-7920汽油中含氧化合物及苯系物分析气相色谱仪专用于汽油中含氧化合物醇类醚类的测定;苯、甲苯的测定;同时增配亦可作为芳烃的分析。是石化行业、炼油厂及质量监督检验相关应用领域理想的专用气相色谱仪。使本方案具有操作简单、线性相关系数好、准确度高、精度高、费用低等优点,对于改进汽油的生产方法和工业生产过程中的产品质量控制具有重要现实意义。 执行标准:GB 17930-2011《车用汽油》GB 18351-2004《车用乙醇汽油》SH/T 0663-1998《汽油中醇类和醚类含量测定》SH/T 0693-2000《汽油中芳烃含量测定》规格参数名称型号数量气相色谱仪GC-79201台检测器FID1个色谱柱预切柱TCEP,0.56m×0.38mm不锈钢柱1根分析柱DB-1(WCOT)30m×0.32mm×3μm1根十通阀自动SSDF-10(进口)1个色谱工作站NETCHROM专用工作站1套标准样品醇/醚定性标样,混合醇/醚校正标样,醇/醚内标1套芳烃定性标样,混合芳烃校正标样,芳烃内标1套气源氮气钢瓶(99.999%)1瓶氢气发生器(HZG-300)1台空气发生器(GA-2009)1台电脑,打印机1套典型谱图
    留言咨询
  • 汽油中含氧化合物及芳烃含量分析方案简介 汽油的使用对环境的污染随着我国经济的快速发展而愈发严重,特别是机动车的快速增多,汽车尾气的排放已成为主要的大气污染源,严重危害到人们的身体健康和生存环境。在汽油中加入含氧化合物(醇类、醚类)可以提高辛烷值及降低挥发性,所加含氧化合物的类型和浓度都有规定,并应加以调整,以便保证达到商品汽油的质量要求。驱动性、蒸气压、相分离,汽车尾气排放和挥发性汽车排放物都与燃料的含氧化合物有一定的关系。因此,含氧化合物的准确检测对于汽油质量等各方面都有重要的意义。 GC-7920汽油中含氧化合物及苯系物分析气相色谱仪专用于汽油中含氧化合物醇类醚类的测定;苯、甲苯的测定;同时增配亦可作为芳烃的分析。是石化行业、炼油厂及质量监督检验相关应用领域理想的专用气相色谱仪。使本方案具有操作简单、线性相关系数好、准确度高、精度高、费用低等优点,对于改进汽油的生产方法和工业生产过程中的产品质量控制具有重要现实意义。 执行标准:GB 17930-2011《车用汽油》GB 18351-2004《车用乙醇汽油》SH/T 0663-1998《汽油中醇类和醚类含量测定》SH/T 0693-2000《汽油中芳烃含量测定》仪器配置名称型号数量气相色谱仪GC-79201台检测器FID1个色谱柱预切柱TCEP,0.56m×0.38mm不锈钢柱1根分析柱DB-1(WCOT)30m×0.32mm×3μm1根十通阀自动SSDF-10(进口)1个色谱工作站NETCHROM专用工作站1套标准样品醇/醚定性标样,混合醇/醚校正标样,醇/醚内标1套芳烃定性标样,混合芳烃校正标样,芳烃内标1套气源氮气钢瓶(99.999%)1瓶氢气发生器(HZG-300)1台空气发生器(GA-2009)1台电脑,打印机1套 典型谱图
    留言咨询

芳香族化合物含量相关的试剂

芳香族化合物含量相关的方案

芳香族化合物含量相关的论坛

  • 【求助】芳香族羧酸类化合物GCMS能定性么?

    请问芳香族羧酸类化合物GCMS能定性么?今天收到一个粉末样品,可能是芳香族羧酸类化合物,甲醇/丙酮/正己烷/氯仿/甲苯都尝试了一遍,只有甲醇溶解较好,但是仍不能完全溶解,取甲醇溶液过滤后走了GC-FID,并无明显峰检出,客户要求GCMS定性,这样怎么走MS呢?请大家帮帮忙~谢谢

芳香族化合物含量相关的资料

芳香族化合物含量相关的资讯

  • 青岛农业大学在生物传感检测芳香族污染物分子领域取得系列重要进展
    近日,生命科学学院杨建明教授团队在生物传感领域取得系列重要进展,相关研究成果已发表在生物传感研究领域Top期刊Biosensors and Bioelectronics(DOI: 10.1016/j.bios.2023.115805. 影响因子:12.6)(中科院JCR一区Top期刊),青岛农业大学王兆宝副教授和马冉(硕士研究生)为该论文的并列第一作者,梁波副教授和杨建明教授为通讯作者,青岛农业大学为第一通讯单位。环境中芳香族污染物对人身安全及环境等都造成严重危害,而常规探测方式存在探测效率低、作业安全性差、易受干扰等瓶颈问题。因此,基于生物传感的芳香族污染物探测技术的发展具有重要战略和环保意义。芳香族污染物分子可分解为多种化合物,其挥发后的主要蒸气成分包括2,4-二硝基甲苯(2,4-DNT)和1,3-二硝基苯(1,3-DNB)。因此,结合1,3-DNB和2,4-DNT检测的生物传感器可以更准确、更高效地应用于芳香族污染物的探测。然而,目前以1,3-DNB为响应物的生物传感器开发报道却很少。基于此,杨建明教授团队研究开发一套安全高效检测1,3-DNB的生物传感系统。研究发现,恶臭假单胞菌(Pseudomonas putida)中的调控蛋白MexT能够通过与其下游基因启动子区结合实现对下游基因PP_2827转录的正向调控,且1,3-DNB能够增强这一调控,揭示了1,3-DNB参与MexT调控基因转录的机制,MexT调控蛋白也因此被确定为1,3-DNB生物传感器的基本传感元件。通过mexT基因和启动子不同组合优化,开发了基于MexT的1,3-DNB生物传感器,优化后的生物传感器在液相1,3-DNB 的检测灵敏度达到0.1 µg/mL,且具备优异的检测特异性和稳定性。进一步该生物传感器结合团队自行开发的探测装置集成了一套芳香族污染物分子生物传感系统(中国地眼,CEE,Fig. 1),以模拟芳香族污染物的现场探测:该系统对沙土中1,3-DNB的检测灵敏度为0.5 mg/kg土壤,实现了现场大面积检测和土壤掩埋1,3-DNB的准确定位(Fig. 2)。本研究提出了一种新的基于转录因子的生物传感器和一套完整的1,3-DNB高效检测系统。未来该1,3-DNB生物传感器可与之前报道的2,4-DNT生物传感器优势互补,实现对环境中的芳香族污染物分子进行更高效、更准确的探测。 Fig. 1 The complete set of biosensor detection system “CEE” for 1,3-DNB detection.Fig. 2 Detection of 1,3-DNB in sands and soil by “CEE” system.同时,杨建明教授团队在可视化生物检测领域亦取得重要进展,相关研究成果已发表在分析化学研究领域Top期刊Analytica Chimica Acta(2023,1283, 341934)(中科院JCR化学1区Top期刊),我校李美洁副教授和吕书喆(硕士研究生)为该论文并列第一作者,杨建明教授为通讯作者,青岛农业大学为第一通讯单位。以感应2,4-DNT的启动子(例如yqjF启动子)作为感应元件,以GFP基因或者自发光基因作为报告元件,构建了检测2,4-DNT的生物传感器。但是,已报道的生物传感器在野外进行芳香族污染物探测时,需使用仪器进行特定波长的紫外激发,以及荧光信号的收集,这使得它们在真正的雷区中难以应用。因此,杨建明教授团队提出一种可视化检测芳香族污染物的创新思路。以合成番茄红素的基因crtEBI作为报告元件,以DNT响应启动子yqjF为感应元件,构建了可视化生物传感器(Fig. 3)。未感应DNT时,crtEBI基因不表达,不合成番茄红素,菌液呈浅黄色。感应DNT时,启动crtEBI基因的表达,产番茄红素,菌液成红色。过表达MVA途径,提高番茄红素合成的代谢通量,从而增强了生物传感器的输出信号;另外,引入终止子降低了背景干扰信号。优化后的可视化微生物传感器LSZ05可以感应1 mg/L的DNT。对该生物传感器进行表征,证明了在不同环境因素下的DNT特异性、鲁棒性和稳定性。该研究为可视化探测环境中埋藏的芳香族污染物分子奠定了坚实基础。 Fig. 3 The design of inducible lycopene-based whole-cell biosensor.此外,杨建明教授还受邀参加“中国-东盟国际人道主义扫雷论坛”并做大会主旨报告。上述研究工作得到国防科技创新特区重点探索项目、青岛农业大学高层次人才引进项目、国家自然科学基金面上项目、山东省自然科学基金青年项目、山东大学开放课题等项目的资助。
  • 出口欧盟的消费品即将面临多环芳香烃含量限制令
    来自欧盟委员会消息,欧委会计划在2013年下半年采纳一项委员会规例,以限制消费品中8种多环芳香族碳氢化合物(简称多环芳香烃,PAHs)含量,涉及的消费品包括玩具、服装、鞋履、手套、运动服、运动设备和家用器具等。出口这几类消费品至欧盟的相关企业须引起重视,提前最好应对工作。   规例中提到的这八种多环芳香烃物质分别为:苯并[a]芘、苯并[e]芘、苯并[a]蒽、稠二萘、苯并[b]荧蒽、苯并[j]荧蒽、苯并[k]荧蒽、二苯并[a,h]蒽。根据规例草案,假如产品的橡胶或塑料部件含有上述多环芳香烃,其含量超过1毫克/千克,即部件重量的0.0001%,便不能向市场和公众投放产品。新限制将适用于规例生效日期起计两年后投放市场的所有相关产品。   据悉,多环芳香烃是一组被列为致癌、诱变或危害生殖力的物质,它们可以被萃取并用作增塑剂。目前的一些迁移测试表明,含有高水平PAH的材料可释放PAHs,在与皮肤接触后可能被皮肤吸收或迁移至人体内,导致严重健康风险通。因此各发达国家都纷纷对进口产品中的PAHs进行限制:欧盟法规REACH法规规定,2010年1月1日起,若轮胎制造所使用的轮胎和油质中八种PAHs含量超过10毫克/千克,或苯并(a)芘含量超过1毫克/千克,将不得进行销售 德国对这类物质的使用也甚为苛刻,德国政府强制规定在德出售的电动工具必须经过专业的检测机构检验其不含有过量的PAHs 此外,美国环保署将16种PAHs物质列入“优先污染物”中,相关产品上市前必须进行PAHs检测。   此次欧盟将PAHs的限制??日常消费品,在保障消费者健康方面不失为一大进步,可是同时却给相关企业和出口商带来了巨大压力。宁波是全国重要的消费品生产加工基地,生产产品以小型家用电器、服装、玩具为主,据统计,2013年第一季度,宁波地区检验出口到欧盟的这三类消费品就分别达2.14亿美元、1.58亿美元和2840.4万美元,相对去年同期都有小幅增长。检验检疫部门发出警示,虽然法规制订及生效尚有一段时间,但企业仍需引起足够重视,及早未雨绸缪:一方面,企业应随时关注有关多环芳香烃的技术贸易措施信息,针对法规发布及生效日期对产品的原料采购、加工过程、运输等环节严格把关,谨防多环芳香烃含量超标 另一方面,做好风险评估工作和产后检测工作,加强有毒有害物质管控,确保出口欧盟的贸易顺利进行。
  • 使用ASTM方法对碳氢化合物的单一组分分析(DHA)
    在石油化工行业的各种分析实验室里,为了对一个特定的样品里的单个组分进行分析和鉴定以及对碳氢化合物的混合物进行表征,通常会用到碳氢化合物的单一组分分析(DHA)这种分离技术。多组分分析主要是检测汽油中的主体组分:石蜡,烯烃,萘和芳香族化合物和其他分子中碳原子数介于1到13的的可燃烧化合物,以确定汽油样品的总体质量。我们在这篇文章里所用到的氢气发生器设备是 Peak Precision 500 Hydrogen Trace Generator.对汽油中包含的易燃烧组分进行分析对于汽油的质量控制十分有必要。由于汽油样品的成分复杂,各组分的特性十分接近,为了将各个组分分离开,通常需要很长的色谱柱(100米)。碳氢化合物的单一组分分析的时候,多种方法通常会被用到,依据这些方法要用到的柱箱升温速率和色谱柱长度不同而将这些方法分开。这些方法各有利弊,有些方法对低沸点化合物的响应灵敏,分辨率高;有些方法对分子量大,出峰很晚的化合物有很好的分辨率。由于分析方法的性质复杂,再加上使用很长的色谱柱,在用氦气作载气的时候,气相色谱的测试时间往往会超过两个小时。但是,用氢气来做载气可以极大的提高测试的速度,因为氢气的高线性速率让它做载气时十分高效。这对石油分析实验室而言,无疑是一个十分吸引人的优点,因为样品的高通量意味着实验室的赢利水平提升。用氢气来做载气可加快气相色谱的分析速率,再加上当前氦气的供应紧张,价格上涨,这意味着那些从氦气切换到氢气做载气的气相色谱实验室不仅赢利水平会增加,同时分析的结果可以符合行业的标准。这篇应用文献阐明用氦气作载气时,按照ASTM的标准检测方法D67291来分析汽油样品的结果和利用毕克科技的Precision氢气发生器Trace生产出来的氢气未经过过滤来做载气,按照ASTM标准检测方法D67291 附录X2的汽油样品分析结果时的对比。通过对比,我们可以看到气相色谱跑样时间的减少,同时,对特定组分的分离效果保持不变。 结果与讨论对汽油进行碳氢化合物的单一组分分析显示:混合物中最后一个洗脱出来的化合物-正十五烷,当用氢气来替代氦气做载气时,它的出峰时间从125分钟减少到74分钟。(如图1所示)尽管分析的时间不同,但是,对汽油中的主要组分的分析(石蜡,烯烃,萘和芳香族化合物)显示使用氢气和氦气作载气时,测量出来的主要组分含量差异不明显。尽管用氢气来做载气时需要更高的气体流速,但是,在大多数情况下混合物的各组分分离的效果依旧很不错,甚至在某些时候,分离的效果得到了改善。对1-甲基环戊烯和苯的分离和检测,在汽油样品分析中有严格的规定,因为苯的碎片物质的分析十分重要。用氢气做载气的时候,尽管该有机物的洗脱时间变短了,但是,气相色谱对此有机物的分离效果却提高了。(如图2所示)对于甲苯和2,3,3-三甲基戊烷的分离,在用氦气作载气时可以实现,用氢气做载气时,这两个物质同时出峰(如图3所示)用氢气做载气时,若要将这两种物质进行分离,需对方法进行改进。用氢气或氦气作载气的时候,气相色谱对十三烷和1-甲基萘的分离效果都很好,不相上下。(如图4所示)碳氢化合物的单一组分分析结果显示,利用氢气做载气时,按照ASTM标准方法 D6729 附录X2的方法来进行汽油样品的分析既可以极大地减少分析的时间,同时,对特定关键组分的分离效果和分辨率依旧十分理想。表1 指定的ASTM标准检测方法在装有100米长毛细色谱柱高分辨率气相色谱仪的协助下,可以确定发动机燃料中易燃物的单一组分的含量。(ASTM 国际2002) 表2 对汽油中主要组分的定量分析及结果图1 利用氦气和氢气分别做载气时,对汽油样品进行碳氢化合物单一组分分析时的气相色谱图图2 利用氢气和氦气分别做载气时,对1-甲基环戊烯和苯的分离效果对比图3 利用氢气和氦气分别做载气时,对甲苯和2,3,3-三甲基戊烷的分离效果对比图4 利用氢气和氦气分别做载气时,对十三烷和1-甲基萘的分离效果对比 参考1. 指定的D6729-01标准检测方法需要用到装有100米长毛细色谱柱高分辨率的气相色谱仪,来确定发动机燃料中的易燃物的单一组分。 ASTM国际2002.2. 指定D6729-01附录X2,用氢气来做载气时,碳氢化合物的分析数据。ASTM国际2004
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制