方法与过程

仪器信息网方法与过程专题为您整合方法与过程相关的最新文章,在方法与过程专题,您不仅可以免费浏览方法与过程的资讯, 同时您还可以浏览方法与过程的相关资料、解决方案,参与社区方法与过程话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

方法与过程相关的耗材

  • 焊接残余应力检测方法
    金属材料在机械加工和热加工的过程中都会产生不同的残余应力。残余应力的存在对材料的力学性能有着重大的影响,因此,残余应力的检测对于热处理工艺、表面强化处理工艺、消除应力工艺的效果及不良品的控制分析等都有很重要的意义。南京聚航科技有限公司技术先进,服务周到,可针对各类试件、工件提供专业的残余应力检测技术服务。服务方式可根据客户情况,选择将试件邮寄或者我方人员上门两种方式。聚航科技为您提供专业的盲孔法残余应力检测、环芯法残余应力检测、切条法残余应力检测、磁测法残余应力检测等测试服务。根据客户所述说的残余应力检测需求专门为客户提供详尽的检测方案。并根据国内外相关标准,提供测试报告,为客户进行应力分析。我公司所用的测试仪器经省级计量机构检定精度达到0.1级。南京聚航科技有限公司残余应力检测事业部推出的残余应力检测服务是针对机械制造行业中产品毛坯-粗加工-热处理-半精加工-精加工-成品等全过程或某重要工艺的残余应力参数检测服务,金属非金属都可,可以帮助客户建立起一套属于自己产品的残余应力数据库,完善企业产品合格检测标准,让客户充分了解到工艺全流程或重点工艺加工处理后的产品残余应力水平,缩短产品研发时间、优化产品结构和工艺、改善产品安全性能、保证质量、降低成本、完善产品质量管控手段、提高客户产品的成品率、增强产品竞争力。 南京聚航科技有限公司遵循保密原则,充分保障客户的商业、技术秘密。南京聚航科技有限公司残余应力检测技术服务行业有:航空:航空飞行器的框架、发动机机匣、涡轮盘、薄壁件等;航天:航天飞行器薄壁件、舱体、支架等; 兵器:装甲钢、铝合金车体、齿轮箱、弹壳、雷达等;轨道交通:车体、转向架、底架横梁等; 其他行业:汽车、机械、船舶、电子等。
  • 德国WTW过程pH电极ProcessLine
    WTW过程pH电极ProcessLine 用于测量pH、温度和氧化还原电位的过程检测高温高压电极一、优点1、从准确度、稳定性、快速响应和长使用寿命方面考虑,专业制造的ProcessLine在性能上几乎等同于液态电解液的电极;2、保养省,即无需添加电解液及安装无需进行复杂的压力顺序控制;3、针孔式隔膜,防止参比电极污染或积垢;4、Duralid电解质KCl含量高,且具有特殊性能,能确保很长的使用寿命和快速且稳定的测量结果;5、经实践验证的H膜式玻璃,钠差极低,且呈完美的球形;6、应用领域更广,可在具有极端离子强度、强氧化剂、强酸及强碱的介质或溶剂中使用;7、基于以上因素,ProcessLine电极维护保养非常省,且极为节省成本,是最复杂过程领域(特别是已知的化工领域)的首选产品。 二、技术参数型号PL 80-225 pHPL 81-225 pHT VPPL 82-225 pHT VPPL 89-225 Pt测量范围0 - 140 - 140 - 140 - 14温度范围0 – 130℃0 – 130℃0 – 130℃0 – 130℃温度传感器-Pt 1000Pt 100-接头S7插头,PG13.5VP插头VP插头S7插头,PG13.5参比系统Duralid凝胶电解液,低维护,Ag/AgCl系统隔膜双孔最大压力12bar
  • 确保方法耐用性 —UPLC方法验证包
    确保方法耐用性—UPLC方法验证包为了确保分析方法持续可靠且具有重现性,采用多批色谱填料进行检测和验证变得尤为重要。作为硅胶杂化颗粒的主要生产商,沃特世公司为不同批次之间的重现性设立了行业的基准。基于信誉卓著的颗粒和色谱柱生产的过程控制,使批与批和柱与柱之间的变异性最小化,从而为分析方法长期的可靠性提供信心。ACQUITY UPLC方法验证包提供三批色谱填料(来自不同批次的颗粒基体)以判断一个分析方法的耐受性,可靠性和一致性。ACQUITY UPLC方法验证套装[MVK:Method Validation Kit]**固定相 粒径 色谱柱长度 部件编号2.1 mm ID 部件编号3.0 mm IDCSH C 18 1.7 μm 50 mm 186005571 186005573CSH C 18 1.7 μm 100 mm 186005572 186005574CSH 苯己基 1.7 μm 50 mm 186005579 186005581CSH 苯己基 1.7 μm 100 mm 186005580 186005582CSH 氟苯基 1.7 μm 50 mm 186005575 186005577CSH 氟苯基 1.7 μm 100 mm 186005576 186005578BEH C 18 1.7 μm 50 mm 186004044 186004691BEH C 18 1.7 μm 100 mm 186004045 186004692BEH C 8 1.7 μm 50 mm 186004046 186004693BEH C 8 1.7 μm 100 mm 186004047 186004694BEH Shield RP18 1.7 μm 50 mm 186004048 186004695BEH Shield RP18 1.7 μm 100 mm 186004049 186004696BEH Phenyl 1.7 μm 50 mm 186004050 186004697BEH Phenyl 1.7 μm 100 mm 186004052 186004698BEH HILIC 1.7 μm 50 mm 186004053 186004699BEH HILIC 1.7 μm 100 mm 186004054 186004700BEH Amide 1.7 μm 50 mm 186004807 186004809BEH Amide 1.7 μm 100 mm 186004808 186004810HSS T3 1.8 μm 50 mm 186004055 186004701HSS T3 1.8 μm 100 mm 186004056 186004702HSS C 18 1.8 μm 50 mm 186004057 186004703HSS C 18 1.8 μm 100 mm 186004058 186004704HSS C 18 SB 1.8 μm 50 mm 186004137 186004705HSS C 18 SB 1.8 μm 100 mm 186004138 186004709HSS 氰基 1.8 μm 50 mm 186005996 186005998HSS 氰基 1.8 μm 100 mm 186005997 186005999BEH130 C 18 1.7 μm 100 mm 186004896 -BEH300 C 18 1.7 μm 100 mm 186004897 - BEH300 C 4 1.7 μm 100 mm 186004899 -OST C 18 1.7 μm 100 mm 186004898 -BEH Glycan 1.7 μm 100 mm 186004907 -**每个套装包括来自3个不同批次填料的3根色谱柱。

方法与过程相关的仪器

  • 过程仪表 400-801-8117
    范围广泛的在线、非接触式厚度测量和镀层重量测量方法,适用于钢铁,铝业等行业的板带测量应用中。我们的分析技术能提供坚实、精确和可重复的测量,有助于您延长设备的正常运行时间,提高产品质量以及改善产品质量并将原材料损耗减小到最低。产品范围:镀层/涂层测厚仪金属在线测厚仪非金属在线测厚仪在线测厚仪X射线荧光测厚仪其它工业过程控制了解详情:赛默飞世尔科技过程仪表原料与材料的展台,展位号:SH100930。或使用简易域名登陆:http://mm.instrument.com.cn。
    留言咨询
  • 瑞士万通2060 XRF过程分析仪可信赖的X射线荧光过程分析仪产品亮点瑞士万通过程分析2060 XRF过程分析仪在能量色散X射线荧光家族中独树一帜。其设计着重于质量和过程控制并考虑到多个采样点和用户友好操作。多达10个在线XRF分析采样点快速分析- 60秒可获得分析结果无损分析从镁到铀(z=12至92)之间的液体样品可集成多种分析技术(XRF与滴定、光度法)在一个分析平台产品优势简单、无损XRF分析仪X射线荧光(X-ray fluorescence)是一种非破坏性,可应用于各种样品元素的定性和定量分析方法。XRF是如何工作的呢? 当样品在高能X射线照射时,会导致原子内层电子跃迁并产生暂时的空位,同时处于不稳定态的原子捕获外层电子迅速填充这些空位。在此过程中,由跃迁释放的能量以荧光X射线的形式放出,荧光 X 射线能量特征则与样品中存在的每个元素相关,2060 XRF 过程分析仪可通过捕获这些被释放的X射线,确定样品中特定感兴趣元素的浓度。2060 XRF 过程分析仪的设计易于使用,即使是技术新人也能操作自如并获取可靠结果。使用我们的XRF分析仪,您可以在无损样品的情况下获得样品准确的成分数据。一机实现理想分析2060 XRF Process Analyzer集成了高分辨率硅漂移探测器(SDD)和Axon&trade 技术。凭借其特殊的超低电子噪声,提升了每秒X射线计数(cps),从而带来更快、更精确的结果。多路同时分析,加快投资回报另一个显著优点是它能够使用单一仪器对多个样品进行并行分析。在电镀行业,2060 XRF 过程分析仪可以同时分析不同电镀槽液中的多个组件,削减分析耗时,提高生产力。简化的工作流程为公司带来更快的结果和更快的投资回报率。不错过任何变化——全天候操作在工厂,过程分析仪在全面监测和控制方面发挥着关键作用,它能有效地降低未察觉问题发生的风险。用手动方法监测异常值(例如,通过实验室XRF分析仪),由于环境变化影响样品特性或样品分析延迟等因素会面临挑战性。不过,随着2060 XRF 过程分析仪等在线分析仪的投入使用,在生产过程中能实时连续采集数据,监测生产过程状况准确又即时。这种持续监测不仅消除了样品因环境因素而被改变的可能性,而且能够对过程参数的任何偏离快速检测和即时响应。因此,在线过程分析仪是保持生产效率和减少过程控制中出现错误或疏忽风险的不可或缺的工具。
    留言咨询
  • 1290 Infinity II 方法开发系统1290 Infinity II 方法开发系统是一种高性能 UHPLC 方法开发仪器,具有最高的灵活性和性能,能够解决最复杂的方法开发难题。利用这套高级方法开发系统,可在单个方案中自动筛选 1300 多组不同的液相色谱分离条件,支持最高 1300 bar 的压力、最多 26 种不同的流动相和最多 8 根色谱柱。使用安捷伦智能系统模拟技术 (ISET) 模拟其他液相色谱系统,将优化的方法直接无缝转移到各种目标仪器,甚至可转移到其他仪器制造商的仪器。特性 基于 Agilent Infinity II 技术,压力可高达 1300 bar,在方法开发中实现 UHPLC 效率 在多种不同的筛选参数之间自动切换 最多可以组合四个 1290 Infinity II 高容量柱温箱,将可自动选择的色谱柱数量扩展为 32 根(每个 MCT 支持 8 根色谱柱)— 完成最具挑战性的方法开发任务 将方法开发系统与能够在方法开发过程中实时模拟目标系统的智能系统模拟技术 (ISET) 相结合,针对不同制造商的传统液相色谱系统开发方法 利用 InfinityLab 色谱柱 ID 标签追踪色谱柱使用情况,并自动排除与所选方法不兼容的色谱柱,例如温度稳定性引起的不兼容 获得整套单一供应商解决方案(包括软件)— 使用安捷伦方法筛选向导自动建立针对溶剂和时间消耗进行了优化的筛选方案,并对结果进行筛选以确定最佳分离条件 基于 QbD 工作流程 — 完全兼容第三方软件 ACD Autochrom (ACD/Labs)、ChromSword Auto (ChromSword) 和 Fusion QbD (S-Matrix)
    留言咨询

方法与过程相关的试剂

方法与过程相关的方案

方法与过程相关的论坛

  • 关于驰豫过程

    对于波谱检测来说,一般需要低能级的粒子数大于高能级的粒子数,这样才能观察到净的吸收。相比于其他的波谱方法,核磁共振波谱中,能级差非常小,因此高能核自发辐射回到低能态的几率很低,如果没有有效的驰豫过程,饱和(高能核和低能核数目相同,不能体现净的吸收)现象很容易发生,因而要尽量避免。但“饱和”现象有时候又是需要的,比如去偶的技术就是基于“饱和”现象的。那么对于仪器而言,到底是根据怎样的原理来控制“促进有效驰豫”或是“阻止驰豫的发生”?

  • 分享过程方法审核的十问十答

    转发学习质量与认证中的好文章~过程方法审核的十问十答1、问:接受审核的组织,其过程会是因为审核组审核而产生、存在的吗?答:不会。任何一个已存在的组织,其过程均已存在。2、问:组织未明确识别出过程。目前依部门编排计划进行审核,是不是受审核的部门就不存在过程?组织就不存在过程方法的运用?审核组也不能开展过程方法审核?目前依部门安排计划实施审核,假设想要依过程方法审核,你又打算怎么开展?答:鉴于现在新标准的应用存在水平不一的情况,部分客户未明确识别出过程,导致审核时仍会出现按“部门”编排计划。即使这样,受审核方的过程依然存在,组织也存在过程方法的应用。审核组依然可以应用RB/T180-2017《基于过程的审核指南》。3、问:谈论“过程方法审核”,可以脱离实际存在的人、机、料、法、环、测等进行审核?答:谈论“过程方法审核”,不能脱离受审核方提供的“过程”,实施审核时,切不可脱离过程相关的人、机、料、法、环、测等。所有审核,应当在过程活动发生的现场。坐在会议室审核车间的生产控制,不是“现场”;过程方法审核,审核员不可随心所欲,应当围绕所审核的过程展开,围绕过程绩效、输入、输出和过程控制措施的实施情况等,结合PDCA、CADP或其他形式有的放矢地展开。4、问:过程的风险是否客观存在?审核时是否需要关注?答:过程的风险是客观存在的,新标准审核时需关注。不同的过程风险不同,同样的过程在不同的组织、不同的时期、所处的区域不同,其面临的风险也不尽相同。现场审核时,需充分了解,再将其融入到审核中。在对每个过程审核时,需要审核其风险及其控制情况。审核员可要求过程所有者介绍过程的风险及现有的控制措施,做出相应的评价。如采购过程存在的主要风险,包括但不仅限于不能如期交货、合同欺诈、货币汇率的变化、单一供应商等风险,审核受审核方如何控制这些风险,还需要审核其针对风险实施控制的效果。针对控制所取得的有效性,审核组需要加以验证、确认。5、问:过程方法实施审核,组织的过程运行和控制方式,是需要依审核组成员认为的过程运行方式实施?答:不行,忌讳以审核员的观点来要求企业如何实施运行,审核员需要尊重受审核方确定的过程及控制方式落实审核,审核该组织的过程策划、实施状况及效果。审核组需要根据受审核方实际的过程,依其顺序、相互关系实施审核。6、问:过程方法审核,是否需要关注过程的输入、输出,及其将输入转换成输出的“过程活动”。过程方法审核时,受审核方使用的规范或要求如何引用?答:过程方法审核,需要关注输入源、输入、输出、接收方,?对如何将输入转换成输出的“过程活动”进行审核,?依据受审核方所策划的控制措施(规范或要求),?审核其符合性、有效性,以及输入源、输入的充分性,输出的完整性、接受方的满意情况等相关内容。7、问:过程的角色或所有者,其职责、权限,该如何审核??答:新标准注重过程所有者对角色的胜任,关注能力,抽样验证组织是如何对过程所有者进行能力确认的,如:能力矩阵表,?审核中需要对角色的职责、权限的定义是否明确、有无得到沟通进行审核和验证。过程所有者应参与并接受审核,切不可随便找个人来应付审核,需要审核其对过程控制的参与程度,以及对自身和该过程相关人员工作的掌握程度。能力验证,可通过观察、交谈、必要时抽样实操等进行,观察并验证其能否正确地做事和把事情做好。?8、问:过程方法审核时,过程运行所需的设施/设备,可以忽略不审?答:不可以,应该审核。在实际的审核过程中,对于与制造相关的设施、设备、工装模具,审核员往往会重视审核。但在其他一些过程,如采购过程、培训或人力资源管理过程,此类过程的资源在审核时,往往会忽略。如采购过程所用到的办公电脑、办公系统、ERP/SAP等基础设施和软件的维护、管理、故障或失效的应对等也需要进行审核;又如培训过程用到的投影、会议室等,对其维护与管理也要进行验证、确认。9、问:过程方法的审核,重点关注哪些内容?过程方法的审核,若遇有审核时间较紧张时如何处理?过程方法的审核应关注需求、关注现场、考虑有效性及效率和深度审核?答:过程方法审核,需要注重对过程有效性和绩效的审核,关注过程的增值,针对与顾客关联的过程和绩效表现不佳的过程应优先审核,针对未能实现的绩效,需要关注其改善措施及落实。过程方法审核,需要审核过程是如何实现顾客及相关方的要求。审核应在过程活动发生的“场所”进行,不可在一个会议室完成所有的审核工作。部分项目的审核人天数紧张时,可优先关注绩效的完成情况,再关注过程的控制,以及输入、输出等。10、问:过程方法审核过程中,发现了问题,就当未看见,可以忽略,跳过问题继续往下审?答:不可以。必须要审核,可适时调整审核计划或审核思路,结合发现的问题,运用PDCA或CAPD等方法,从人、机、料、法、环、测等方面进行完整的审核,查出问题的根源。初次审核通常采用PDCA的方法。

方法与过程相关的资料

方法与过程相关的资讯

  • 新方法可预测干细胞分化过程
    美国密歇根大学研究人员近日通过在新型细胞基质上培养成体干细胞的实验,发现了一种可以预测干细胞是如何进行分化并形成何种组织的方法。研究成果刊登在8月1日的《自然—方法学》(Nature Method)上。      相关仪器及方法:NSR2005i9步进式投影曝光装置 Prometrix P-10表面轮廓仪 6320FV扫描电镜 Samdri-PVT-3D临界点干燥仪 XL20扫描电镜 ABI 7300实时PCR系统 Axiovert 200M倒置显微镜 新型干细胞基质(支架)   完成人:克里斯托弗陈课题组   实验室:美国宾夕法尼亚大学生物工程系 密歇根大学生物工程系与机械工程系 台湾成功大学医学院骨关节研究中心   这是细胞培养实验开始第二天的人体间叶细胞的干细胞免疫荧光图。图中,红色部分为“微柱”,绿色部分为细胞,蓝色部分为细胞核。这个细胞在后期分化为了骨细胞。(图片提供:Michael T. Yang (University of Pennsylvania))   这是人体间叶细胞的干细胞扫描电镜图。该细胞被放置在长度为13微米的长“微柱”上生长。在细胞培养实验第二天,细胞产生向心力,这可以从“微柱”的弯曲程度看出。这个细胞在后期分化为了脂肪细胞。(图片提供:Jianping Fu (University of Michigan))   这是人体间叶细胞的干细胞被放置在短“微柱”上培养的扫描电镜图。细胞培养实验第二天,这些细胞开始伸展,其伸展程度和施加在“微柱”上的力均大于在长“微柱”培养的细胞。这些细胞在后期分化为了骨细胞。(图片提供:Jianping Fu (University of Michigan))   干细胞转变为其他种类细胞的过程称为细胞分化。而要想发展以干细胞为基础的再生治疗技术,关键在于充分了解细胞分化。   “我们首次证明了,在细胞分化起始阶段,我们就能预测细胞下一步的分化过程。”Jianping Fu说。Fu是密歇根大学机械工程与生物医学工程的助理教授,同时也是文章的第一作者。“通常情况下,要了解掌握干细胞分化的趋势,需要数周甚至更长的时间。我们的研究成果则可以加速这一过程,这在药物筛查和再生医学方面有很大的应用前景。采用我们的方法,可以较早预测干细胞的分化,以及其在新药治疗中将转变成何种细胞类型。”   在这项研究中,Fu和他的同事发现,干细胞对它们附着的基质会施加一定的力。这种力很有可能与细胞分化有关,但对其的研究还不及对化学触发的研究那么广泛。研究人员在文章中说,培养干细胞所用基质的刚性确实有助于测定干细胞会转变成何种类型。   “经过研究,我们可以肯定地说,和化学因素一样,力学因素在控制细胞分化方面起着同样重要的作用”,Fu说,“而在这以前,干细胞生物学家在很大程度上忽略了这种力学因素”。   研究人员构建了一种新型的干细胞基质(支架),其刚性可调节,而无需改变其化学成分,传统的干细胞生长基质则无法做到这点。这种新型的基质支架看起来像是一种微型地毯,上面布满了类似于头发的突起物——“微柱”,由聚二甲基硅氧烷这种弹性聚合物制成,而聚二甲基硅氧烷是橡皮黏土的重要成分,Fu说。研究人员可以通过调节微柱的高度来调节这种基质的硬度。   工程师在实验中对骨髓和其他连接组织(比如脂肪)进行提取,得到人体间叶细胞组成的干细胞。干细胞在坚硬的基质中生长,最后分化转变成了骨细胞,而在较软的基质中生长,则分化转变成了脂肪。当研究人员通过这种基质的力学性能观察到了细胞分化之后,他们决定在整个细胞培养过程对细胞的这种附着力进行跟踪测定,看是否能预测到这些细胞的分化。   研究人员使用荧光显微镜测量微柱的弯曲程度,从而对细胞这种附着力进行定量分析。“我们的研究表明,如果干细胞要进行分化,那么它们的附着力会比那些没有分化的干细胞要大许多,而干细胞分化成不同类型的细胞,其附着力也会有很大差异。”Fu表示,“我们证明了,可以通过观察这种附着力的变化来提早预测干细胞分化。”   制成这种新基质的成型工艺成本很低,研究人员也表示,任何对此有兴趣的科研人员都可以获得这种成型工艺。“我们觉得,这种工艺为整个科研领域提供了一种新的、切实可行的方法。”Fu表示。
  • 太赫兹光谱或成为评价地质演化过程的新方法
    流体包裹体是研究矿物演化的重要手段之一。最近,中国石油大学(北京)油气光学探测技术北京市重点实验室的宝日玛副教授利用太赫兹时域光谱技术对石盐体系进行了检测,根据石盐矿物的太赫兹波吸收系数随温度的变化关系,总结出石盐矿物的早成岩期、晚成岩期和近似变质阶段的成岩演化过程,实现了地质成岩成矿的太赫兹光谱表征与评价(如图1所示)。相关成果以“地质成岩成矿演化过程的太赫兹光谱研究”为题发表在近期出版的2015年第8期《中国科学: 物理学 力学 天文学》。  研究表明,盐?水体系中的流体包裹体包含了在自然界中保留的主要流体包裹体类型,能够提供古流体组成的物理化学信息。温度是成岩环境的重要因素之一,通过测试包裹体在成岩过程中的温度影响,能够为矿物演化评价提供详细的信息。  该项研究基于太赫兹光谱能够灵敏反映化合物结构与环境的指纹特性以及快速无损检测的特征,首次应用太赫兹时域光谱技术研究了不同温度生长的石盐晶体的光学性质,得到了石盐晶体的太赫兹吸收谱,建立了石盐矿物在温度环境下的演化模型,总结出石盐矿物的成岩过程,并通过理论模拟进一步验证了演化模型的正确性。  这一研究结果表明太赫兹技术可以成为地质成岩成矿演化过程评价的新方法,有望为环境演化、岩盐矿产成矿规律研究和含盐盆地地质成岩成矿演化过程的评价提供新的参考信息。
  • 中科院过程所杨超/张庆华:乳液聚合过程中乳胶粒度分布的测定方法
    在乳液聚合过程中,聚合产物粒度分布的演变过程反映了乳液聚合反应的进行程度,对实验的关键现象、聚合机理以及最终产物的性能均有很大影响。本文综述了乳液聚合过程中粒度分布的测量方法,包括现有的离线(off-line)、半在线(on-line)和在线测量(in-line)方法。对比分析了各种测量方法的原理、分辨率、性能、优缺点等。此外,还探讨了在线测量技术的困难和挑战,并给出了几种原理上可行的发展方向或解决方案。乳液聚合颗粒粒径一般小于500 nm,并且为了满足产品性能需求粒径分布可能会出现多峰,因此对测量方法的分辨率有较高要求;同时为满足生产过程中的实时调控,对粒径分布的测量时间提出更严格要求。为了缩短测量粒度分布的时间,开发了半在线和在线测量方法。离线测量方法需要手动采样等准备工作,它们主要包括(但不限于)光散射技术(例如,动态光散射,DLS)、显微镜技术(例如,扫描电子显微镜,SEM)和分离技术(例如,毛细管流体动力学分级,CHDF)。在所有的粒径分布测量方法中,尽管离线测量技术需要诸如采样等耗时的分析准备工作,其仍是使用最广泛的技术,但它不能实时反映乳胶的粒径分布。电子显微镜测量作为一种典型的离线测量方法,其测量结果是绝对且准确的,因此可以用作参考标准。目前,成熟的工业光学显微镜(例如共聚焦光学显微镜)的分辨率可以达到亚微米级(100 nm),其可以在一定的测量范围内代替电子显微镜进行离线粒径分布测量。以DLS为代表的光散射技术是一种相对方便的技术,在离线测量方法中测量时间最短,但不适用于测量多分散性体系。分离技术操作相对简单,适用于几乎所有的多分散体系,但是某些分离测量技术必须使用校准曲线。对于多分散体系,可以先使用分离技术将它们分为几个单分散组,然后再使用DLS技术进行精确测量。由于离线测量方法需要进行手动取样等准备工作,所以其非常耗时;为了缩短测量粒度分布的时间,开发了半在线和在线测量方法。与仅需要一个分析仪器的离线测量方法不同,半在线和在线测量方法通常需要一组设备来构成分析系统。半在线测量是将离线测量仪器连接到反应器以完成自动采样,稀释和其他准备工作。“自动连续在线监测聚合反应(ACOMP)”是一个具有代表性的半在线测量粒径分布系统。半在线测量在一定程度上缩短了测量时间,但仍然无法避免采样和其他准备步骤。在线测量技术不进行采样,其直接使用光学原理等技术来实时监测反应器中的乳液聚合过程以获取粒度分布。由于在线测量技术避免采样等耗时的准备工作,其测量时间进一步缩短;然而,乳液聚合过程中粒度分布的在线测量并不是一种“完善的”测量技术。目前,仅有少数报道尝试探索这种方法用于特定的乳液聚合体系,并且现在还没有成熟的商业应用工具。主要原因是现有仪器缺乏测量精度,无法在高浓度的多相系统中处理来自不同粒子相的重叠信号,或无法捕获运动粒子的清晰图像。论文给出了乳液聚合颗粒粒径分布在线测量的几种可行的发展方向和解决方案,如:(1)直接使用光学原理进行实时测量粒度分布,例如光散射技术。光源发出的激光直接与反应器中的聚合物颗粒相互作用,然后检测器接收光信号并完成光电转换,最后使用特定的算法对光电信号进行分析,以获得粒度分布。该方法的困难在于光散射技术的原理是基于单散射理论,因此对粒子浓度有特殊要求。如果使用此技术实时监控聚合物颗粒的粒度分布,则需修改反应配方以降低聚合物颗粒的浓度,以便消除来自不同颗粒的重叠信号。(2)使用光学显微镜对反应器中的胶乳直接成像并用高速相机拍摄,然后使用图像分析技术进行实时分析,从而实现在线监测粒度分布的演变。电子显微镜分析过程中样品不能含水,因此使用电子显微镜基本上不可能进行在线测量。高分辨率光学显微镜(例如共聚焦显微镜)对样品的要求比电子显微镜要少,因此有可能实现在线测量粒度分布。该测量方案的难点在于高速相机是否可以快速捕获高速移动的纳米级聚合物颗粒。同时,该方案的局限性在于它只能实时监测焦平面中的聚合物颗粒,并且对反应器有很高的要求(例如高透光率)。(3)尽管一些学者认为在线测量应该避免经验模型,但是软传感器技术是一种很有前景的在线测量技术。然而,这种方法的困难在于缺乏精确的在线测量设备去验证模型。一种可行的方法是全面且多方位研究特定乳液聚合反应体系以获得足够的粒度分布数据,然后与大数据或人工智能技术相结合,以预测或计算在新的工作条件下的粒度分布。作者及团队介绍张庆华,男,1980年12月生,中国科学院过程工程研究所副研究员、硕士生导师,中国科学院大学授课教师,中国化工学会过程强化委员会青年委员,中国化工学会混合与搅拌专业委员会委员。2005-2009年中国科学院过程工程研究所攻读博士学位,2019.2—2020.2美国Iowa State University访问学者(美国李氏基金资助),合作导师为国际著名多相流专家Rodney O Fox教授。主持或参加多项国家自然科学基金、863项目、国家重点研发计划等项目。发表论文30多篇,申请专利10余项,撰写专著一章(多相反应器模拟、放大和过程强化,第三章)。长期从事聚合反应工程、多相流的在线测量和数值模拟等研究工作。 杨超,男,1971年8月生,江苏睢宁人。研究员、博士生导师。2010年获国家杰出青年科学基金。科技部“中青年科技创新领军人才”。中国科学院绿色过程与工程重点实验室常务副主任、绿色化学工程研究部主任。1993年南京化工学院化工系毕业后硕博连读,1998年获博士学位(导师为时钧院士和徐南平院士)。1998—2000年中国科学院化工冶金研究所博士后,在陈家镛院士和毛在砂研究员指导下,从事多相过程数值模拟和反应工程研究。2005—2006年美国康奈尔大学高访(美国李氏基金资助)。2019年获国家科技进步二等奖,2016年获何梁何利基金科学与技术创新奖,2015年获国家技术发明二等奖,2014年获中国工程院光华工程科技奖-青年奖,2013年获中国化学会-巴斯夫公司青年知识创新奖,2012年获日本化学工学会亚洲研究奖(SCEJ Asia Research Award),2011年获中国青年科技奖、中国科学院青年科学家奖,2010年获茅以升科学技术奖——北京青年科技奖,2009年获国家自然科学二等奖。2012年被评为全国优秀科技工作者,2015年获评中国科学院先进工作者。已发表SCI论文150余篇,出版英文专著1本,申请专利60余件,计算软件著作权29项。 研究团队多年以来一直应用多相流体力学、传递原理、反应工程等多学科方法,依据机理及验证实验、理论分析、数学模型和数值计算方法,开展多相搅拌反应器、聚合反应器和结晶反应器等的流动、传递、反应和传热的实验和数值模拟相关研究,在计算流体力学和计算传递学新方法、多相传递和反应耦合数学模型和数值模拟、多相体系的测量方法以及搅拌釜反应器内新型桨和内构件设计等方面有丰富的工作积累。获得2009 年的国家自然科学二等奖、2015年的国家技术发明二等奖和2019年国家科技进步二等奖。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制