芳香化合物分析

仪器信息网芳香化合物分析专题为您整合芳香化合物分析相关的最新文章,在芳香化合物分析专题,您不仅可以免费浏览芳香化合物分析的资讯, 同时您还可以浏览芳香化合物分析的相关资料、解决方案,参与社区芳香化合物分析话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

芳香化合物分析相关的耗材

  • 绿百草科技专业提供分析芳香剂/芳香烃化合物的色谱柱
    绿百草科技专业提供分析芳香剂/芳香烃化合物的色谱柱 Kromasil Eternity PhenylHexyl 货号为:Eternity-2.5-PheHex 4.6× 50 关键词:Kromasil Eternity PhenylHexyl色谱柱,Eternity-2.5-PheHex 4.6× 50,芳香剂/芳香烃化合物,绿百草科技 绿百草科技专业提供Kromasil Eternity PhenylHexyl色谱柱。货号为Eternity-2.5-PheHex 4.6× 50的Kromasil Eternity PhenylHexyl色谱柱可用来分析芳香烃类化合物,流动相是乙腈/水=50:50,流速是1.2mL /min。绿百草科技可提供详细的操作条件和谱图。 需要详细的信息请和绿百草科技联系:010-51659766 登录网站获得更多产品信息: www.greenherbs.com.cN
  • D3606应用 芳香化合物分析专用柱
    D3606 应用色谱柱 (2 支柱套件)1、D3606 应用色谱柱 (2 支柱套件) 能完全分离乙醇和苯,分离度值 3.00。2、D3606 应用色谱柱 (2 支柱套件) 准确定量苯和甲苯。3、D3606 应用色谱柱 (2 支柱套件) 完全调配好的2支柱套件—开封即可使用。4、D3606 应用色谱柱 (2 支柱套件) 在ASTM 方法附录中指出D3606 柱可以替代 TCEP 柱—用该柱按照ASTM 方法要求分离苯和乙醇,可以达到更好的分离度。按照ASTM方法D3606-07的技术规范来设定,对包含乙醇的火花点火燃料中的苯和甲苯进行定量分析。D3606 应用色谱柱(2 支柱套件)**柱 1: 6' (1.8 m), 1/8" 外径,2.0 mm 内径,非极性Rtx-1柱 2: 16' (4.9 m),1/8" OD, 2.0 mm内径,专用填料*订货时请在仪器构型货号后面添加后缀号。注意: 柱子的起始 2英寸管将是空的,用于容纳进样针。订购完全填充的色谱柱(不包括柱头)加后缀 -901。*-810 后缀亦包括位于检测器一侧的1 段1?2"空管。**这个柱套件的设计适用于阀进样和针进样。柱1配置了一个2英寸长的空管,以助于柱头进样。柱1和柱2的入口是有区别的。 注意: 柱2的入口是通过具有连接阀的适合方向来区别的 。按照ASTM D3606-10(已修订)方法采用D3606应用柱分析含乙醇的汽油色谱柱 D3606 应用柱 (2 支柱套件). 柱1: 6’ (1.8 m), 1/8” 外径, 2.0 mm 内径, 非极性Rtx-1 柱2: 16' (4.9 m), 1/8" 外径, 2.0 mm内径,专用填料(货号83606-800)样品 含乙醇的汽油,带内标 (IS)稀释剂:进样 样品阀样品环路体积: 1.5 μL阀温度: 150 °C柱温箱柱温: 135 °C (维持 12分钟)载气 氦气,恒流流速: 20.0 毫升/分钟检测器 TCD @ 200 °C注意 2.38 分钟反吹(每个气相系统都必须检测的)色谱峰1. 乙醇2. 苯3. 2-丁醇(IS)4. 甲苯乙醇和苯分离度极好切断时间 = 2.38 分钟D3606的应用 炼油厂汽油样品检测图谱
  • Supelco SUPELCOWAX 10 气相毛细管柱 气相色谱柱 (脂肪酸甲酯、食品、香料和香味化合物、醇类和芳香类化合物分析柱)
    Supelco SUPELCOWAX 10 气相色谱柱 气相毛细管柱(脂肪酸甲酯、食品、香料和香味化合物、醇类和芳香类化合物分析柱)货号25025-U 应 用: 本产品以最常见的极性固定相Carbowax 20M为基础。这种极性柱适合于分析脂肪酸甲酯(FAMEs),食品、香料和香味化合物、醇类和芳香类化合物。该柱是通用极性柱的首选 U S P代码: 满足USP G16的要求 固 定 相: 键合;聚乙二醇 温度范围: 35° C~280° C 订货信息: 产品编号 长度(m) 内径(mm) 膜厚(&mu m) 25025-U 5 0.10 0.10 25026-U 10 0.10 0.10 24343 15 0.10 0.10 24169 30 0.20 0.20 24170 60 0.20 0.20 24077 15 0.25 0.25 24079 30 0.25 0.25 24081 60 0.25 0.25 23308-U 100 0.25 0.25 24284 30 0.25 0.50 24285-U 60 0.25 0.50 24078 15 0.32 0.25 24080-U 30 0.32 0.25 24082 60 0.32 0.25 24083 15 0.32 0.50 24084 30 0.32 0.50 25085-U 60 0.32 0.50 24211 30 0.32 1.00 24212 60 0.32 1.00 25324 15 0.53 0.50 25325 30 0.53 0.50 25385 60 0.53 0.50 25300-U 15 0.53 1.00 25301-U 30 0.53 1.00 25391 60 0.53 1.00 25375-U 30 0.53 2.00 25376 60 0.53 2.00 23327-U 30 0.75 1.00

芳香化合物分析相关的仪器

  • 51i型总碳氢化合物分析仪应用火焰离子检测器测量总碳氢化合物 特点:l 火焰离子检测技术l 量程可选l 实时修正总碳氢的读数 51i型总碳氢化合物分析仪结合火焰离子检测器技术、菜单式操作系统和先进的诊断功能,为用户提供了非常卓越的灵活性和可靠性。51i型总碳氢化合物分析仪有低温和高温两种配置供选择。 51i型总碳氢化合物分析仪应用火焰离子检测器(FID)测量有机气体。火焰离子检测器是一种在实验室和行业中使用了很多年的众所周知的技术。火焰离子检测器能非常有效地进行有机化合物的分析,它可以提供比较宽的线性范围和灵敏度。 这台结合当代先进技术的分析仪具有网络连接端口和能存储更多数据的闪存。新增的网络接口使得远程控制更为方便,允许用户远程下载分析结果。 新增的“软键” 功能可使用户根据需要设定按键的功能,从而直接进入到常用的菜单和功能。增大的液晶显示屏可以容纳更多信息,除始终显示分析结果以外,还可以同时显示其它的操作菜单、运行状态等信息。 技术规格: 预置量程0 – 1, 10, 100, 1000, 5000, 10000 ppmc用户量程0 – 1 至 10000 ppmc零点噪音0.025 ppmc RMS(10秒平均时间)最低检出限0.050 ppmc (10秒平均时间)零点漂移(24小时) 0.50 ppmc跨度漂移(24小时)2%量程或0.20 ppmc (取大值)响应时间(90%)15秒(1秒平均时间)精度2.0%读数或0.1 ppmc (取大值)线性±2%跨度(当浓度在跨度的10%到150%之间时)采样流量0.75 - 1.50升/分钟助燃气流量150 - 300毫升/分钟除烃空气燃气流量10 - 35毫升/分钟氢气或50 - 120毫升/分钟 H2/He混合气体工作温度15 - 35℃电源要求100VAC,115VAC,220 - 240VAC +/- 10%,50/60Hz,420W尺寸/重量425 mm (W)×219 mm (H) ×584 mm (D);22.7 kg输出可选电压,RS232/RS485,TCP/IP,10个状态继电器,断电指示0-20或4-20mA隔离电流输出(可选件)输入16 路数字输入(标准),8 路0-10VDC 模拟量输入(选项)
    留言咨询
  • 55i 型甲烷/非甲烷碳氢化合物分析仪应用气相色谱技术实现甲烷和非甲烷碳氢化合物的完全分离和分别测量测量范围从C1到C12以上没有可能被毒化或消耗的催化剂量程可调自动点燃FID的火焰和检测火焰状态量程0-5,50,500 ppm 或 0-10,100,1000 ppm 或0-20,200,2000 ppm或0-50,500,5000ppm零点噪声0.025 ppm RMS (300秒平均时间)最低检测限0.050 ppm CH4跨漂(24小时)2%跨点分析时间(90%)约70秒精度2%读数或是50ppb(取大值)
    留言咨询
  • 51i 型总碳氢化合物分析仪采用氢火焰离子检测技术低维护量的火焰离子器技术自动优化燃料和空气混合比例四个独立的温度控制区域故障诊断功能可显示仪器的各项工作状态参数量程1,10,100,1000,5000,10000 ppmc噪声0.025 ppmc (10秒平均时间)最低检测限0.05 ppm carbon零漂(24小时)0.50 ppm准确度2% 读数值或±0.1ppm(取大值)响应时间15秒(满量程90%,1秒平均时间)采样流量0.75-1.5LPM燃料气体25毫升/分钟高纯度氢气或110毫升/分钟氢气、氦气混合气
    留言咨询

芳香化合物分析相关的方案

  • 多功能纤维固相微萃取分析洗衣粉中的芳香化合物
    固相微萃取纤维的选择是一个复杂的过程,与SBSE不同,SPME纤维涂层的可选范围很广,并且涂层的选择较为复杂。如何选择最佳的纤维涂层,取决于待分析物基质的复杂性。通常,当你研究一种新基质或类型的样品时,很难选择最合适的纤维涂层。所以,需要对不同的纤维进行测试,手动更换纤维将会耗费大量的实验时间。FLEX多功能进样平台中的MFX选项具有自动置换纤维的功能,大大节省了实验时间。本实验通过优化选择最佳纤维涂层来萃取洗衣粉中的芳香化合物。
  • 利用手动 SPME 和 Agilent 5975T LTM GC/MSD 测定土壤中的挥发性芳香化合物
    本应用介绍利用车载 Agilent 5975T LTM GC / MSD 检测土壤中的 13 种挥发性芳香族化合物的现场解决方案。该方案需手动固相微萃取法对样品进行预处理。Agilent 5975T LTM GC/MSD 的车载性能使其能够用于现场样品的测定,同时省下了土壤样品的处理时间和 储存空间。测试结果证明,这种解决方案是可行的,对现场检测土壤中的挥发性有机化合物非常有效。方法对于土壤样品的最低检出限为 1.0 µ g/kg。
  • 金属/沸石催化剂催化乙醇转化为芳香族化合物
    研究了沸石负载过渡金属催化乙醇转化为芳香族化合物的反应。以Zn/沸石、Cu/沸石和Co/沸石为过渡金属,采用浸渍法制备了催化剂。采用X射线衍射(XRD)、比表面积分析(BET和BJH)等方法,用重量法、FTIR光谱和热重分析(TGA-Linseis STA PT 1600)对催化剂进行了表征。在固定床反应器中,在350℃和常压下进行了乙醇与芳香族化合物的反应。Zn/沸石催化剂的芳烃含量最高,约为97.39%(v/v),对乙苯的选择性最高。

芳香化合物分析相关的论坛

  • 【原创】如何确定几个芳香化合物成分的激发波长和发射波长

    大家好!! 昨天对我要的几个芳香化合物进行HPLC 紫外检测,结果仪器灵敏度不高或者成分含量偏低,得到的紫外信号接近定量限,想试试荧光检测。由于在荧光方面知识欠缺,不知道如何合理的确定这几个芳香化合物成分的激发波长和发射波长,请大家帮忙!!

芳香化合物分析相关的资料

芳香化合物分析相关的资讯

  • 综述l芳香化合物连续硝化应用进展(二)
    综述l芳香化合物连续硝化应用进展(二)康宁反应器技术收录于话题#危化反应-硝化18个康宁用“心”做反应让阅读成为习惯,让灵魂拥有温度编前语上文我们通过多个案例,介绍了应用微通道反应器实现一取代和二取代苯型芳香烃为底物的硝化反应的研究进展。在进入本文正文(即本篇综述第二部分内容)前,小编需要补充的是:在硝化等危化工艺连续化研究成果越来越多的现阶段,如何将研究成果应用于实际,实现硝化工艺的工业化放大生产更是行业关注的焦点。康宁反应器技术经过13年的工业化应用研究与推广,在微通道反应器工业化生产领域的应用实现了突破性进展,在全球已经拥有上百家工业化用户,累计安装的年通量已超过80万吨。康宁AFR多套工业化硝化装置始终保持24/7连续稳定安全运行。江苏中丹化工成功采用康宁反应器连续硝化,显著提升了关键中间体生产的本质安全水平,装置稳定运行一年多,得到了客户和地方政府的高度认可。康宁反应器技术和益丰生化环保股份有限公司合作,打造了年通量万吨级全自动全连续微反应硝化生产装置。与传统工厂相比,其亩均产出提升了10倍,运行费用减低20%以上。… … 还有更多硝化、重氮化、氧化、加氢等工业化项目成功实现并稳定运行,帮助客户实现了巨大的经济效益和社会效益。如果您想要了解更多,欢迎您直接留言或电话联系我们!电话:021-22152888-1469您也可以扫描右二维码了解更多康宁AFR应用案例。接下来让我们进入正文——以多取代苯型芳香烃及其它苯型芳香烃为底物的硝化反应二硝基萘的连续化合成倪伟等[9]以萘和95%硝酸为原料,在微通道反应器中研究了二硝基萘的连续化合成工艺(图9),考察了硝酸浓度、反应温度、反应物料比对反应的影响并进一步优化了反应条件。结果:在最佳条件下单硝化产物n(对硝基氯苯)∶n(邻硝基氯苯)=1:0.56,与釜式反应器相比,副产物明显减少,转化率明显提高,生产能力提高了4个数量级,并且可以实现工艺的连续化操作。1-甲基-4,5-二硝基咪唑硝化合成1-甲基-4,5-二硝基咪唑(4,5-MDN1)是一种性能良好的高能钝感炸药和极具应用价值的熔铸炸药载体。在传统釜式反应器中进行N-甲基咪唑硝化反应时剧烈放热,为控制反应温度需缓慢逐滴加料,反应时间长,产物收率低。刘阳艺红等[10]在微通道反应器为核心的反应体系中进行了4,5-MDN1的合成研究(图12),利用微通道反应器的高传热特性快速提高4,5-MDN1的收率。工业生产中,可通过增加微通道反应器数量来热量,维持恒定的反应温度,在减少混合酸用量的同时,显著提高了提高产量,具有广阔的发展前景。1-甲基-3-丙基-1H-吡唑-5-羧酸硝化反应Panke等[11]采用微通道反应器对1-甲基-3-丙基-1H-吡唑-5-羧酸进行了硝化反应研究(图13)。微通道反应器优秀的传热性能性使反应温度稳定在90℃,避免了100℃脱羧副反应的发生,硝化产物是合成西地那非的重要中间体。结语微通道反应器在芳香化合物的硝化反应中表现出了极大的优势:选择性高、安全性高、转化率高、反应时间短、数增放大、可建立动力学模型等,使得芳香化合物的硝化由传统的间歇式生产转为连续化生产成为可能。尽管微通道反应器还存在一定的局限性,但随着微化工技术的发展,微通道反应器会更加安全化、智能化和连续化,其在芳香化合物的硝化反应中的应用会越来越广泛,硝化反应这类具有污染大、放热强、选择性差的反应也将随之得到优化。参考文献:[1] 化学与生物工程. 2021,38(02).[9] 南京工业大学学报 (自 然 科 学 版),2016,38(3):120-125[10] 现代化工,2018,38(6):140-143.[11] Synthesis, 2003(18): 2827-2830.
  • 综述 l 芳香化合物连续硝化应用进展(一)
    综述 l 芳香化合物连续硝化应用进展(一)康宁用“心"做反应让阅读成为习惯,让灵魂拥有温度芳香化合物的硝化是常用的生产工艺,目前化工领域普遍采用的硝化方法是以混合酸作硝化剂、在釜式反应器中进行间歇式反应,在生产的各个环节都存在着资源、环境、安全、能源等问题。微通道反应器相对于釜式反应器拥有持液量少,换热效率高,传质效率好,过程可控等诸多优势,能有效解决硝化反应中的传质,换热,安全性等问题。随着微化工技术的发展,越来越多地被用于芳香化合物的硝化反应。小编将分两部分向读者介绍微通道反应器在芳香化合物硝化反应中应用进展的综述[1],希望可以对您有所启发和帮助。微通道反应器在以苯型芳香烃为底物的硝化反应中的应用1以一取代苯型芳香烃为底物的硝化反应氯苯的硝化氯苯的硝化为快速强放热反应,在传统釜式反应器中,反应液搅拌不均匀、反应放出的热量无法及时导出、反应温度不能精确控制,导致副反应发生,不能保障生产安全。微通道反应器具有良好的传热、传质能力,可以有效解决上述问题。余武斌等[2]利用微通道反应器研究了反应温度、原料配比、体积流速等主要因素对氯苯硝化(图1)的选择性、转化率的影响。结果:在最佳条件下单硝化产物n(对硝基氯苯)∶n(邻硝基氯苯)=1:0.56,与釜式反应器相比,副产物明显减少,转化率明显提高,生产能力提高了4个数量级,并且可以实现工艺的连续化操作苯甲醇硝化合成邻硝基C7H6O和间硝基C7H6O硝基C7H6O是许多精细化学品的重要中间体。Russo等[3]采用微通道反应器在高温和强酸条件下,由苯甲醇合成邻硝基C7H6O和间硝基C7H6O(图2);并将动力学模型应用在该工艺开发过程,通过优化反应条件来提高反应选择性。结果:在最佳条件下反应温度提高到68℃,邻硝基C7H6O和间硝基C7H6O的收率分别提高到42%和96%,这是传统釜式反应器不可能达到的,该方法为硝基C7H6O的工业化生产提供了一个很好的选择。三氟甲氧基苯的硝化4-(三氟甲氧基)硝基苯(NFBM)是三氟甲氧基苯胺的原料,是农药、药品和液晶材料的中间体。在用混合酸硝化三氟甲氧基苯的反应(图3)中, Wen等[4]应用微通道反应器进行工艺开发,基于其优异的传热性能和低滞留率,提出了一个准均相反应动力学模型,用于研究三氟甲氧基苯连续硝化的动力学和传质特性;并应用动力学模型对高硫酸强度下的反应进行了预测。结果:实验收率与模型预测值吻合较好。表明在未来的数字化生产中,微通道反应器有着广阔的发展前景。2以二取代苯型芳香烃为底物的硝化反应3-氟三氟甲苯硝化Chen等[5]在连续流微通道反应器中,以3-氟三氟甲苯为反应物、混合酸为硝化剂合成了5-氟-2-硝基三氟甲苯(图4);通过建立传热平衡模型来探索反应条件。结果:在最佳条件下的收率可达96.4%。该方法具有工艺安全性高、合成过程中杂质可控等优点,对促进未来微通道反应器在工业上的应用具有重要意义。连续安全合成邻硝基对叔丁基苯酚邻硝基对叔丁基苯酚是一种重要的有机化工中间体和化工原料。传统工艺是以对叔丁基苯酚为原料,在搪瓷反应釜中与稀硝酸进行硝化反应得到。该工艺反应剧烈放热,反应时间长,生产安全性较差。尚朝辉等[6]针对上述问题开发了一种在微通道反应器中连续安全合成邻硝基对叔丁基苯酚的方法(图5),通过加热柱塞泵实现对叔丁基苯酚的连续进料,在微通道反应器中实现对叔丁基苯酚和高浓度硝酸连续快速硝化。结果:在最佳条件下,对叔丁基苯酚的转化率达到98.7%,邻硝基对叔丁基苯酚的收率达到79.9%。在提高反应选择性的同时也提高了反应安全性。选择性快速硝化1-甲基-4-(甲基磺酰基)苯1-甲基-4-(甲基磺酰基)-2-硝基苯是合成除草剂甲基磺草酮的重要原料。Yu等[7]采用微通道反应器选择性快速硝化1-甲基-4-(甲基磺酰基)苯(图6)。结果:如果您想要了解更多硝化应用案例,欢迎您直接留言
  • 使用ASTM方法对碳氢化合物的单一组分分析(DHA)
    在石油化工行业的各种分析实验室里,为了对一个特定的样品里的单个组分进行分析和鉴定以及对碳氢化合物的混合物进行表征,通常会用到碳氢化合物的单一组分分析(DHA)这种分离技术。多组分分析主要是检测汽油中的主体组分:石蜡,烯烃,萘和芳香族化合物和其他分子中碳原子数介于1到13的的可燃烧化合物,以确定汽油样品的总体质量。我们在这篇文章里所用到的氢气发生器设备是 Peak Precision 500 Hydrogen Trace Generator.对汽油中包含的易燃烧组分进行分析对于汽油的质量控制十分有必要。由于汽油样品的成分复杂,各组分的特性十分接近,为了将各个组分分离开,通常需要很长的色谱柱(100米)。碳氢化合物的单一组分分析的时候,多种方法通常会被用到,依据这些方法要用到的柱箱升温速率和色谱柱长度不同而将这些方法分开。这些方法各有利弊,有些方法对低沸点化合物的响应灵敏,分辨率高;有些方法对分子量大,出峰很晚的化合物有很好的分辨率。由于分析方法的性质复杂,再加上使用很长的色谱柱,在用氦气作载气的时候,气相色谱的测试时间往往会超过两个小时。但是,用氢气来做载气可以极大的提高测试的速度,因为氢气的高线性速率让它做载气时十分高效。这对石油分析实验室而言,无疑是一个十分吸引人的优点,因为样品的高通量意味着实验室的赢利水平提升。用氢气来做载气可加快气相色谱的分析速率,再加上当前氦气的供应紧张,价格上涨,这意味着那些从氦气切换到氢气做载气的气相色谱实验室不仅赢利水平会增加,同时分析的结果可以符合行业的标准。这篇应用文献阐明用氦气作载气时,按照ASTM的标准检测方法D67291来分析汽油样品的结果和利用毕克科技的Precision氢气发生器Trace生产出来的氢气未经过过滤来做载气,按照ASTM标准检测方法D67291 附录X2的汽油样品分析结果时的对比。通过对比,我们可以看到气相色谱跑样时间的减少,同时,对特定组分的分离效果保持不变。 结果与讨论对汽油进行碳氢化合物的单一组分分析显示:混合物中最后一个洗脱出来的化合物-正十五烷,当用氢气来替代氦气做载气时,它的出峰时间从125分钟减少到74分钟。(如图1所示)尽管分析的时间不同,但是,对汽油中的主要组分的分析(石蜡,烯烃,萘和芳香族化合物)显示使用氢气和氦气作载气时,测量出来的主要组分含量差异不明显。尽管用氢气来做载气时需要更高的气体流速,但是,在大多数情况下混合物的各组分分离的效果依旧很不错,甚至在某些时候,分离的效果得到了改善。对1-甲基环戊烯和苯的分离和检测,在汽油样品分析中有严格的规定,因为苯的碎片物质的分析十分重要。用氢气做载气的时候,尽管该有机物的洗脱时间变短了,但是,气相色谱对此有机物的分离效果却提高了。(如图2所示)对于甲苯和2,3,3-三甲基戊烷的分离,在用氦气作载气时可以实现,用氢气做载气时,这两个物质同时出峰(如图3所示)用氢气做载气时,若要将这两种物质进行分离,需对方法进行改进。用氢气或氦气作载气的时候,气相色谱对十三烷和1-甲基萘的分离效果都很好,不相上下。(如图4所示)碳氢化合物的单一组分分析结果显示,利用氢气做载气时,按照ASTM标准方法 D6729 附录X2的方法来进行汽油样品的分析既可以极大地减少分析的时间,同时,对特定关键组分的分离效果和分辨率依旧十分理想。表1 指定的ASTM标准检测方法在装有100米长毛细色谱柱高分辨率气相色谱仪的协助下,可以确定发动机燃料中易燃物的单一组分的含量。(ASTM 国际2002) 表2 对汽油中主要组分的定量分析及结果图1 利用氦气和氢气分别做载气时,对汽油样品进行碳氢化合物单一组分分析时的气相色谱图图2 利用氢气和氦气分别做载气时,对1-甲基环戊烯和苯的分离效果对比图3 利用氢气和氦气分别做载气时,对甲苯和2,3,3-三甲基戊烷的分离效果对比图4 利用氢气和氦气分别做载气时,对十三烷和1-甲基萘的分离效果对比 参考1. 指定的D6729-01标准检测方法需要用到装有100米长毛细色谱柱高分辨率的气相色谱仪,来确定发动机燃料中的易燃物的单一组分。 ASTM国际2002.2. 指定D6729-01附录X2,用氢气来做载气时,碳氢化合物的分析数据。ASTM国际2004
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制