单层分析

仪器信息网单层分析专题为您整合单层分析相关的最新文章,在单层分析专题,您不仅可以免费浏览单层分析的资讯, 同时您还可以浏览单层分析的相关资料、解决方案,参与社区单层分析话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

单层分析相关的耗材

单层分析相关的仪器

  • 单层石墨烯机械剥离分散设备,石墨烯分散设备,石墨烯剥离设备,石墨烯锂电池分散机,石墨烯防腐涂料分散机,石墨烯分散技术,双层石墨烯浆料分散机一、单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。是世上蕞薄却也是蕞坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光,导热系数高达5300 W/mK,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/Vs,又比纳米碳管或硅晶体高,而电阻率只约10-6 Ωcm,比铜或银更低。二、单层石墨烯高剪切分散机设备原理石墨烯高剪切分散机的线速度达21M/S,由3级可调间隙的锥形定子和4级高速旋转的锥形转子形成研磨模块,根据生产要求,剪切研磨间隙可从0.01mm至2mm无级调速,定转子每一级上的凹槽一级比一级精细,深度,方向的不同增加了流体的揣流。当物料经过的时候,形成强有力的挤压、剪切、乳化、粉碎、混合、分散均质及研磨作用。从而得到精细超微粒乳化研磨的较高效益。锥形定子外围、出料腔体及密封件部位有循环水冷却,可根据用户的特殊要求提供多功能的可空转式运作。石墨烯研磨分散机结合乳化机与胶体磨的特长,具有吸、消泡能力。使石墨烯浆料在设备的高线速度下形成湍流,在定转子间隙里不断的撞击,破碎,研磨,分散,均质,从而得出超细的颗粒(当然也需要合适的分散剂做助剂)。综合以上几点可以得出理想的导电石墨烯浆料。 (洽谈:)三、石墨烯分散难点石墨烯研究所在开发石墨烯的过程中,遇到如何将石墨更好的细化,以及细化后团聚问题,成为大的难点。四、SID石墨烯高剪切分散机及解决方案石墨烯高剪切分散机具有非常高的剪切速度和剪切力,粒径约为0.2-2微米可以确保高速分散乳化的稳定性。SDH3是一种三级高剪切在线分散机,用于生产非常精细的乳液和悬浮液。工作腔内的剪切力大大增加了物料的输送,加快了单分子和高分子物质的溶解速度。三级定转子组合(分散头)确保液滴或粒度小且分布范围很窄。此工艺可以使单次混合的混合物长时间保持稳定,尤其是混合乳化液时。SID希德/SDH3系列研磨分散机,可以很好的解决这两个问题.SDH3系列的胶体磨(锥体磨) 分散头的组合,可以先将石墨混合物(配入溶剂和分散剂)研磨细化,然后再经过分散头,进行分散。这样既可以细化又可以避免团聚的现象,为石墨烯行业提供了强有力的设备力量。五、石墨烯高剪切分散机剥离过程石墨烯高剪切分散机液相直接剥离法制备,石液相直接剥离法制备墨烯,,液相直接剥离法,石墨烯研磨分散机,德国液相直接剥离法制备石墨烯研磨分散机,SID液相直接剥离法制备石墨烯研磨分散机是是利用剪切力、摩擦力或冲击力将粉体由大颗粒粉碎剥离成小颗粒。分散:纳米粉体被其所添加溶剂、助剂、分散剂、树脂等包覆住,以便达到颗粒完全被分离、润湿、分布均匀及稳定目的。液相直接剥离法制备石墨烯研磨分散机通常直接把石墨或膨胀石墨((一般通过快速升温至1000℃以上把表面含氧基团除去来获取)加在某种有机溶剂或水中, 借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。coleman等参照液相剥离碳纳米管的方式将石墨分散在n-甲基吡咯烷酮(nmp)中, 超声1h后单层石墨烯的产率为1%, 而长时间的超声(462h)可使石墨烯浓度高达1.2mg/ml, 单层石墨烯的产率也提高到4%[17]。 他们的研究表明, 当溶剂的表面能与石墨烯相匹配时, 溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量, 而能够较好地剥离石墨烯的溶剂表面张力范围为40~50mj/m2;[18]把石墨直接分散在邻二氯苯(表面张力:36.6mj/m2)中, 超声、离心后制备了大块状(100~500nm)的单层石墨烯;[利用液?液界面自组装在三甲烷中制备了表面高度疏水、高电导率和透明度较好的单层石墨烯。为提高石墨烯的产率, 近 等发展了一种称为溶剂热插层(制备石墨烯的新方法,该法是以eg为原料, 利用强极性有机溶剂乙腈与石墨烯片的双偶极诱导作用来剥离、分散石墨, 使石墨烯的总产率提高到10%~12%。同时, 为增加石墨烯溶液的稳定性, 人们往往在液相剥离石墨片层过程中加入一些稳定剂以防止石墨烯因片层间的范德华力而重新聚集。设 备 参 数功率500W电源220V,50/60Hz流量范围 (H?O)1-15L/min处理粘度1000CP速度范围10000-28000rpm温度120℃转速显示刻度/数显转速控制无级接触物料材质SS316L、FKM标准工作腔不锈钢无夹套工作腔标准工作头20DG机械密封材质SiC、FKM、陶瓷进、出口外径14(软管接口)工序类型在线处理底座材质SS304外形尺寸477×120×122重量~6kg包装纸箱
    留言咨询
  • 单层摇床 400-860-5168转3974
    单层摇床一、仪器简介: 单层摇床是大型摇床在原有的基础上重新设计了光路、电路和外形结构,采用大功率直流盘式电机,功率大,可靠性好。有变通调速和数显恒速二种供科研单位及生化实验室人员选择。所有夹具都配有:专用不锈钢夹具。托盘用不锈钢制作,质量好,防腐蚀性能好。 二、仪器用途: 本仪器是为大专院校,科研机构,化工等单位的实验室,生产的同类产品的先进摇床。造型美观,转速可任意调节和设定。三、技术参数:1、 单层敞开式摇床采用大功率直流盘式电机,功率大2、 有模拟调速和数显恒速二种供用户选择3、单层摇床采用专用不锈钢夹具。托盘用不锈钢制作4、500ml×20只、1000ml×12只5、250ml×48只、100ml×72只6、数量可根据用户需要任意选配7、可以根据用户带数显测速四、仪器型号:EYC-1单层摇床采用大功率直流盘式电机,功率大 有模拟调速和数显恒速二种供用户选择,专用不锈钢夹具。500ml× 20只 6000EYC-2双层摇床采用大功率直流盘式电机,功率大 有模拟调速和数显恒速二种供用户选择专用不锈钢夹具。500ml× 20只 /每层9800EYC-3三层摇床振荡方式:圆周型采用大功率直流盘式电机,功率大 有模拟调速和数显恒速二种供用户选择专用不锈钢夹具。托盘用不锈钢制作工作尺寸:850×550mm单层高度:30mm振荡幅度:50mm三层的夹具,可以根据用户的要求选择不锈钢专用夹具,也可以选择:弹簧万能夹具。250ml× 60只/一层  18000WY-2311KA大容量恒温振荡器1620×1300×730,温度范围:室温~60℃精度≤±0.5℃,回旋36000WY-2311KB大容量恒温振荡器1620×1300×730,温度范围:室温~60℃精度≤±0.5℃,往复38000WY-2010KA立式双门回旋摇床托盘尺寸:800×500(mm)2块,温度范围:10~50℃温控精度:≤±0.5℃,回旋30000WY-2010KB立式双门往复摇床托盘尺寸:800×500(mm)2块,温度范围:10~50℃温控精度:≤±0.5℃,往复32000WY-2010K大型恒温摇瓶柜托盘尺寸:800×500(mm)2块,温度范围:10~50℃温控精度:≤±0.5℃回旋46000WY-2211K微量振荡培养箱振板尺寸: 300×230×210(H))温度范围: 室温~60℃温控精度: ±0.5℃振荡速度: 10~250rpm回转5000WY-2411K叠式恒温摇床托盘尺寸(mm):800×500温度范围:室温~60℃精度≤±0.5℃,回旋42000WY-9511K双层空气恒温振荡器上层弹簧网架下层500ml×16内容尺寸(mm):400×500×110上400×500×220下室温~60℃,回旋7400WY-9311K落地恒温摇床托盘尺寸:800*500温度范围:室温-60℃,回旋14800
    留言咨询
  • 不锈钢单层储罐是不锈钢储罐系列中最简单的一款不锈钢储存容器,就是罐体是单层的,具有在位储存,清洗等功能。不锈钢单层储罐可以是原料储罐、成品储罐或中间缓冲储罐。不锈钢单层储罐也叫储液罐,储存罐,暂存罐,缓冲储罐或者不锈钢单层贮罐。不锈钢单层储罐特点:u 不锈钢储罐是用于生物制药,食品饮料,实验室科研等,全部按照GMP标准设计制造,采用上下椭圆封头圆弧过渡,光滑无死角。u 筒体和封头及接管的焊接部分采用全自动焊接技术,内外夹焊,焊接牢固,无渗漏。焊接制造完毕后进行水压和气压试验,保证设备无渗漏。u 所有罐体的管口、筒体与封头等焊接处精细打磨抛光,无焊接痕迹。u 所有罐体内表面精细打磨,光亮无加工痕迹,内表面镜面抛光Ra≤0.4um。u 单层储罐的自动控制系统:可采用工业触摸屏,人机画面,可全自动控制压力、液位、流量,可以精确计量,可以对液位进行高低报警。u 监视系统:实时监视系统液位、压力、流量等参数的数据及历史曲线,进行数据保存记录。u 工艺配方存储功能:可存储500组固定或者用户自定义工艺配方。u 远程控制系统:可远程监控罐体压力、液位、流量,最远监控距离1.5KM。u 手机APP:可手机监控罐体压力、液位、流量等参数。u 可根据用户工艺要求进行控制模式定制。选型指南:储罐选型依据:1. 单层储罐体容积选择。2. 工艺控制要求:如压力、液位等相关过程参数控制要求。3. 场地设备安装要求:如设备体积、占地面积及管道安装配合。4. 洁净等级要求:根据需要选择是否需要CIP及SIP系统。选配: ★灭菌过滤器 ★SIP管道阀★液位控制系统 ★冷却系统★ 压力控制系统 ★远程控制系统★蒸汽发生器 ★CIP系统★过氧化氢发生器 ★手机APP不锈钢单层储罐性能指标一览表型号直径(mm)设备容积(L)外形尺寸(直径*高度mm)功能说明SCD-30φ30030300*1000液位控制:全自动液位控制,自动补液及排液,安全可靠(选配)。压力控制:全自动恒压控制,可自动补压泄压(选配)。流量测量:采用进口流量计,测量可靠。控制系统:PLC+触摸屏(7寸工业触摸屏)。远程控制系统:远程监控设备,最远距离1.5KM(选配)。U盘存储功能:可使用U盘将温度、压力、流量等相关数据导出,进行数据分析。(选配)手机APP:可手机监控温度、液位、流量、压力等,实现随时随地监控设备(选配)。CIP全自动清洗系统:可实现无死角,全方位清洗(选配)。 SCD-50φ40050400*1100SCD-100φ500100500*1200SCD-200φ600200600*1500SCD-300φ700300700*1600SCD-500φ800500800*1700SCD-1000φ100010001000*2200SCD-2000φ130020001300*2700SCD-3000φ150030001500*3000SCD-5000φ170050001700*3400SCD-6000φ170060001700*3800SCD-8000φ180080001800*4300SCD-10000φ1800100001800*4800
    留言咨询

单层分析相关的试剂

单层分析相关的方案

单层分析相关的论坛

  • 【资料】单层过滤器的工作原理

    单层过滤器用于各类液体进行过滤、澄清、提纯处理等操作,它采用螺纹状结构、用优质的材料制造,不仅可以抗腐蚀而且还很耐用。单层过滤器可以根据不同的过滤介质及生产要求,更换不同的过滤材料,直接用微孔滤膜即能达到无菌过滤的目的。  单层过滤器的工作原理  1、用3~5%碳酸钠溶液反复冲洗,再用清水冲,然后消毒测PH值达许可范围。  2、检查单层过滤器的硅胶圈是否放置平整,以防漏水可将薄质的滤材用蒸馏水湿润后贴在滤板上,滤板则要放在硅胶圈内,装好滤材盖好上盖。  3、单层过滤器适用过滤介质:滤纸、、微孔滤膜、超滤膜、纱布、麻布、棉布等各种过滤材料。  4、逐渐打开进液阀至所需压力,排出空气即可过滤,一般工作压力0.1~0.2Мрa。  5、单层过滤器采用微孔滤膜精滤时,料液必须先用较粗滤材,经过预滤后使用,以免堵塞微孔滤膜,影响过滤质量。

单层分析相关的资料

单层分析相关的资讯

  • 研究|具有超低热导率的宽直接带隙半导体单层碘化亚铜(CuI)
    01背景介绍自石墨烯被发现以来,二维(two-dimensional, 2D)材料因其奇妙的特性吸引了大量的研究兴趣。特别是二维形式的材料由于更大的面体积比可以更有效的性能调节,通常表现出比块体材料更好的性能。迄今为止,已有许多具有优异性能的二维材料被报道和研究,如硅烯、磷烯、MoS2等,它们在电子、光电子、催化、热电等方面显示出应用潜力。在微电子革命中,宽带隙半导体占有关键地位。例如,2014年诺贝尔物理学奖材料氮化镓(GaN)已被广泛应用于大功率电子设备和蓝光LED中。此外,氧化锌(ZnO)也是一种广泛应用于透明电子领域的n型半导体,其直接宽频带隙可达3.4 eV。在透明电子的潜在应用中,n型半导体的有效质量通常较小,而p型半导体的有效质量通常较大。然而,人们发现立方纤锌矿(γ-CuI)中的块状碘化铜是一种有效质量小的p型半导体,具有较高的载流子迁移率,在与n型半导体耦合的应用中很有用。例如,γ-CuI由于其较大的Seebeck系数,在热电中具有潜在的应用。二维材料与块体材料相比,一般具有额外的突出性能,因此预期单层CuI可能比γ-CuI具有更好的性能。作为一种非层状I-VII族化合物,CuI存在α、β和γ三个不同的相。温度的变化会导致CuI的相变,即在温度超过643 K时,从立方的γ-相转变为六方的β-相,在温度超过673 K时,β-相进一步转变为立方的α-相。因此,不同的条件下,CuI的结构是很丰富的。超薄的二维γ-CuI纳米片已于2018年在实验上成功合成 [npj 2D Mater. Appl., 2018, 2, 1–7.]。然而,合成的CuI纳米片是非层状γ-CuI的膜状结构,由于尺寸的限制,单层CuI的结构可能与γ-CuI薄膜中的单层结构不同。因此,需要对单层CuI的结构和稳定性进行全面研究。在这项研究中,我们预测了单层CuI的稳定结构,并系统地开展电子、光学和热性质的研究。与γ-CuI相比,单层CuI中发现直接带隙较大,可实现超高的光传输。此外,预测了单层CuI的超低热导率,比大多数半导体低1 ~ 2个数量级。直接宽频带隙和超低热导率的单层CuI使其在透明和可穿戴电子产品方面有潜在应用。02成果掠影近日,湖南大学的徐金园(第一作者)、陈艾伶(第二作者)、余林凤(第三作者)、魏东海(第四作者)、秦光照(通讯作者),和郑州大学的秦真真、田骐琨(第五作者)、湘潭大学的王慧敏开展合作研究,基于第一性原理计算,预测了p型宽带隙半导体γ-CuI(碘化亚铜)的单层对应物的稳定结构,并结合声子玻尔兹曼方程研究了其传热特性。单层CuI的热导率仅为0.116 W m-1K-1,甚至能与空气的热导率(0.023 W m-1K-1)相当,大大低于γ-CuI (0.997 W m-1K-1)和其他典型半导体。此外,单层CuI具有3.57 eV的超宽直接带隙,比γ-CuI (2.95-3.1 eV)更大,具有更好的光学性能,在纳米/光电子领域有广阔的应用前景。单层CuI在电子、光学和热输运性能方面具有多功能优势,本研究报道的单层CuI极低的热导率和宽直接带隙将在透明电子和可穿戴电子领域有潜在的应用前景。研究成果以“The record low thermal conductivity of monolayer Cuprous Iodide (CuI) with direct wide bandgap”为题发表于《Nanoscale》期刊。03图文导读图1. 声子色散证实了CuI单层结构的稳定性。单层CuI(记为ML-CuI)几种可能的结构:(a)类石墨烯结构,(b)稳定的四原子层结构,(c)夹层结构。(d)稳定的γ相快体结构(记为γ-CuI)。(e-h)声子色散曲线对应于(a-d)所示的结构。给出了部分状态密度(pDOS)。通过测试二维材料的所有可能的结构模式,发现除了如图1(b)所示的弯曲夹层结构外,单层CuI都存在虚频。平面六边形蜂窝结构中的单层CuI,类似于石墨烯和三明治夹层结构,如图1(a,c)所示作为对比示例,其中声子色散中的虚频揭示了其结构的不稳定性[图1(e,f)]。因此,通过考察单层CuI在不同二维结构模式下的稳定性,成功发现单层CuI具有两个弯曲子层的稳定结构,表现出与硅烯相似的特征。优化后的单层CuI晶格常数为a꞊b꞊4.18 Å,与实验结果(4.19 Å)吻合较好。而在空间群为F3m的闪锌矿结构中,得到的优化晶格常数a=b=c=6.08 Å与文献的结果(5.99-6.03 Å)吻合较好。此外,LDA泛函优化得到的单层CuI和γ-CuI的晶格常数分别为4.01和5.87 Å,为此后续计算都基于更准确的PBE泛函。通过观察晶格振动的投影态密度,发现Cu和I原子在不同频率下的贡献几乎相等。此外,光学声子分支之间存在带隙[图1(g)],这可能导致先前报道的光学声子模式散射减弱。相反,在γ-CuI中不存在声子频率带隙[图1(h)]。图2. 热导率及相关参数的收敛性测试。(a)原子间相互作用随原子距离的变化。(b)热导率对截断距离的收敛性。彩色椭圆标记收敛值。(c)热导率相对于Q点的收敛性。(d)单层CuI和γ-CuI的热导率随温度的函数关系。在稳定结构的基础上,比较研究了单层CuI和γ-CuI的热输运性质。基于原子间相互作用的分析验证了热导率的收敛性[图2(a)]。如图2(b)所示,热导率随着截止距离的增加而降低,其中出现了几个阶段。热导率的下降是由于更多的原子间相互作用和更多的声子-声子散射。注意,当截止距离大于6 Å时,热导率仍呈下降趋势,说明CuI单层中长程相互作用的影响显著。这种长程的相互作用通常存在于具有共振键的材料中,如磷烯和PbTe。通过收敛性测试,预测单层CuI在300 K时的热导率为0.116 W m-1K-1[图2(c)],这是接近空气热导率的极低值。单层CuI的超低热导率远远低于大多数已知的半导体。此外,计算得到的γ-CuI的热导率为0.997 W m-1K-1,与Yang等的实验结果~0.55 W m-1K-1基本吻合,值得注意的是Yang等人的实验结果测量了多晶态γ-CuI。此外,单层CuI和γ-CuI的热导率随温度的变化完全符合1/T递减关系[图2(d)]。考虑到温度对热输运的影响,今后研究声子水动力效应对单层CuI热输运特性的影响,特别是在低温条件下,可能是很有意义的。图3. 单层CuI和γ-CuI在300 K的热输运特性。(a)群速度,(b)相空间,(c)声子弛豫时间,(d) Grüneisen参数,(e)尺寸相关热导率的模态分析。(f)平面外方向(ZA)、横向(TA)和纵向(LA)声子和光学声子分支对热导率的贡献百分比。超低导热率的潜在机制可能与重原子Cu和I有关,也可能与单层CuI的屈曲结构有关。声子群速度[图3(a)]和弛豫时间[图3(c)]都较小,而散射相空间[图3(b)]较大。总的来说,单层CuI (1.6055)的Grüneisen参数的绝对总值显著大于γ-CuI (0.4828)。即使在低频下Grüneisen参数没有显著差异[图3(d)],单层CuI和γ-CuI的声子散射相空间却相差近一个数量级,如图3(b)所示。因此,低频声子弛豫时间的显著差异[图3(c)]在于不同的散射相空间。此外,单层CuI的声子平均自由程(MFP)低于γ-CuI,如图3(e)所示。因此,在单层CuI中产生了超低的热导率,这将有利于电源在可穿戴设备或物联网的应用,具有良好的热电性能。此外,详细分析发现,光学声子模式在单层CuI[图3(f)]中的较大贡献是由于相应频率处相空间相对较小,这是由图1(g)所示的光学声子分支之间的带隙造成的。图4. 单层CuI的电子结构。(a)单层CuI和(h)γ-CuI的电子能带结构,其中电子局部化函数(ELF)以插图形式表示。(b-d)单层CuI和(i)γ-CuI的轨道投影态密度(pDOS)。(e)透射系数,(f)吸收系数,(g)反射系数。在验证了CuI单层结构稳定的情况后,进一步研究其电子结构,如图4(a)所示。利用PBE泛函,预测了单层CuI的直接带隙,导带最小值(CBM)和价带最大值(VBM)都位于Gamma点。PBE预测其带隙为2.07 eV。我们利用HSE06进行了高精度计算,得到带隙为3.57 eV。如图4 (h)所示,单层CuI的带隙(3.57 eV)大于体γ-CuI的带隙(2.95 eV),这与Mustonen, K.等报道的3.17 eV非常吻合,使单层CuI成为一种很有前景的直接宽频带隙半导体。此外,VBM主要由Cu-d轨道贡献,如图4(b-d)的pDOS所示。能带结构、pDOS和ELF揭示的电子特性的不同行为是单层CuI和γ-CuI不同热输运性质的原因。电子结构对光学性质也有重要影响。如图4(e-g)所示,在0 - 7ev的能量范围内,单层CuI的吸收系数[图4(f)]和折射系数[图4(g)]不断增大,说明单层CuI在该区域的吸收和折射能力增强。相应的,随着透射系数的减小,单层CuI的光子传输能力[图4(e)]也变弱。当光子能量大于7 eV时,CuI的吸收和折射系数开始显著减弱,最终在8 eV的能量阈值处达到一个平台。值得注意的是,与声子的吸收和传输能力相比,单层CuI对光子的反射效率较低,最高不超过2%。对于光子吸收,单层CuI的工作区域在5.0 - 7.5 eV的能量范围内,而可见光的光子能量在1.62 - 3.11 eV之间。显然,CuI的主要吸收光是紫外光,高达20%。
  • 单层石墨烯一维褶皱到扭转角可控的多层石墨烯的转变机理研究获进展
    近年来,转角石墨烯受到国内的关注。转角石墨烯所具有的大周期莫尔晶格(Moiré pattern)及其所带来的能带折叠效应可以诱导出丰富、新奇的电子结构。尤其是在一些特殊的小角度上,电子结构中所出现的平带会衍生出较多不寻常的现象,如超导、强关联、自发铁磁性等。       目前,多数研究采用机械剥离和逐层转移的物理方法对转角石墨烯样品进行制备,而该方法存在条件苛刻、产出率低、界面污染等问题。为发展更加高效的制备技术,科学家通过对化学气相沉积法中衬底的设计,陆续突破了几种类型的转角石墨烯的规模化制备难题。然而,关于多层石墨烯的转角周期的可控制备方面,尚无比较普适的解决办法。       近日,中国科学院深圳先进技术研究院、上海科技大学、中国科学院上海微系统与信息技术研究所、中国人民大学和德国慕尼黑工业大学,寻找到一种石墨烯的折纸方法,可实现高层间周期的转角石墨烯的可控制备。研究发现,铂金表面生长的石墨烯会形成一定的褶皱,褶皱长大后向两旁倒下,并在一些位置撕裂形成一个四重的螺旋位错中心。褶皱倒下时会折叠其一侧的石墨烯,带来与褶皱的“手性”角(也就是褶皱的方向与石墨烯晶向的夹角)具有两倍关系的单层转角。科学家称之为“一维手性到二维转角的转化关系”,并利用折纸模型对该现象进行了形象的演示。该研究进一步探讨了所形成的螺旋位错再生长带来的新奇现象,并发现各层石墨烯会随着再生长形成具有周期性的四层转角结构,其中第1、3层与原始石墨烯的晶向相同,而2、4层的晶向由褶皱手性角所决定。因此研究提出了一种新的周期转角多层石墨烯的制备方法,即通过控制石墨烯褶皱形成的方向,制备具有特殊层间转角周期的多层石墨烯。该方法可用于多种可以形成褶皱的其他二维材料。      相关研究成果以《通过石墨烯螺旋的一维到二维的生长将手性转化为转角》(Conversion of Chirality to Twisting via 1D-to-2D Growth of Graphene Spirals)为题,发表在《自然-材料》(Nature Materials)上。研究工作得到国家自然科学基金、中国科学院和国家重点研发计划等的支持。图1. 石墨烯折纸现象的记录与演示。(a-d)原位ESEM实验所记录的褶皱形成、倒下和再生长的过程;(e-h)相应过程的示意图;(i-l)利用折纸模型演示褶皱的形成、倒下和再生长。图2. 螺旋位错附近的再生长过程。(a-d)原位SEM实验所记录的多个反向螺旋位错附近的再生长过程;(e-h)动力学蒙特卡洛对该过程的模拟演示;(i)原子尺度分辨率STM所表征的石墨烯褶皱“手性”角;(j-l)利用折纸模型演示褶皱倒下时形成的螺旋位错及下层石墨烯出现的转角;(m-t)螺旋位错再生长所带来的四层周期转角结构示意图。图3. 石墨烯螺旋的再生长和合并。(a-f)原位ESEM实验所记录的褶皱出现到最终生长成多层转角石墨烯的全过程;(g)TEM表征下的多层转角石墨烯;(h)原子分辨率的多层转角石墨烯表征图;(i-k)动力学蒙特卡洛对该过程的模拟。      图4. 多层螺旋石墨烯和多层堆垛石墨输运性质的区别。(a)原子力显微镜观察到的螺旋位错中心;(b-d)输运性质检测时的实验设置;(e-g)多层螺旋石墨烯和多层堆垛石墨的电阻和磁阻随温度变化的关系。
  • 上海光机所在单层MoS2偶次谐波的频移方面取得进展
    近期,中国科学院上海光学精密机械研究所强场激光物理国家重点实验室研究团队,在利用强场激光驱动单层MoS2的偶次谐波频移方面取得进展。相关研究成果以Frequency shift of even-order high harmonic generation in monolayer MoS2为题,发表在《光学快报》(Optics Express)上。固体材料中的高次谐波辐射是重要的探测物质基本性质的光谱学技术,已被用于重建晶体能带结构、探测Berry曲率和检测拓扑相变等方面的研究。近年来,二维层状材料备受关注,为进一步研究高次谐波产生带来新的契机。由于材料仅有单个或少数个原子层厚度,其空间尺度远小于驱动激光的波长,可有效避免非线性传输的影响,因而成为探讨激光场驱动超快动力学的理想材料。其中,单层二硫化钼(MoS2)因非中心对称结构和显著的非线性引起了科学家的广泛关注。此前,该团队在MoS2的HHG光谱中,观察到偶次谐波表现出异常增强,并将其归因于贝里联络控制不同半周期间的光谱干涉 。此外,量子轨迹分析表明跃迁偶极矩相位和贝里联络会调制释放光子的能量和动量,但目前尚无实验观察证实。   研究团队利用实验室自建的中红外激光光源激发单层MoS2产生高次谐波光谱发现,当驱动激光偏振沿扶手方向时,偶次谐波中心频率会产生显著移动,且频移的谐波能量与单层MoS2带隙能量相接近。此外,研究还发现相邻级次的偶次谐波频移方向相反,即6次谐波红移,而8次谐波蓝移的现象。该团队基于半导体布洛赫方程和电子轨道鞍点计算,揭示了频移产生的微观物理机制,证实了偶次谐波的频移现象主要来自带间极化过程。理论分析进一步表明,跃迁偶极矩相位和贝利联络共同调制电子-空穴对复合的时刻和动量,导致相邻半周期释放光子的频率变化,进而改变不同谐波级次的中心频率,最终引起MoS2光谱六次红移和八次蓝移。该研究揭示了跃迁偶极矩相位和Berry联络在非中心对称材料强场光学响应方面具有重要作用,有助于从根本上剖析非中心对称材料中的超快载流子动力学。图1. 模拟的高次谐波光谱再现了实验观测。图2. (a)带间光谱不同级次的频移,(b)谐波频移随晶体方位角的依赖关系。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制