快乐
第1楼2010/01/02
2、光谱分析法
-
分光光度法是食品分析中应用最广最多的方法之一,其中涉及可见、紫外、原子吸收等分光光度技术。
-
2.1 紫外-可见分光光度法
-
物质吸收波长范围在200~760nm区间的电磁辐射能而产生的分子吸收光谱称为该物质的紫外-可见吸收光谱,利用紫外-可见吸收光谱进行物质的定性、定量分析的方法称为紫外-可见分光光度法。其光谱是由于分子之中价电子的跃进而产生的,因此这种吸收光谱决定于分子中价电子的分布和结合情况。从20世纪50年代开始,又提出并发展了许多新的分光光度法,例如双波长分光光度法、导数分光光度法及三波长法等。这些近代定量分析方法的特点是不经化学或物理方法分离。就能解决一些复杂混合物中各组分的含量测定,在消除干扰,提高结果准确度方面起了很大的作用。其在食品分析领域应用相当广泛,特别是在测定食品中的铅、铁、铅、铜、锌等离子的含量中的应用。
-
2.2 原子吸收分光光度法
-
20世纪60~70年代原子吸收光谱仪日渐普及,随着用于准确测定生物样品中痕量矿物质的原子吸收方法的发展,为食品分析、食品营养、食品生物化学、食品毒理学等诸多领域的空前发展铺平了道路,特别是采用等离子体作为原子发射光谱的激光光源,导致了20世纪70年代后期开始的感应耦合等离子体发射光谱仪的商业化普及。因而在食品检测领域中占有重要的地位,即可测定食品中常规金属元素,如锌、铜等离子,又可精密测定锶、锗、硒等多种稀有元素。目前主要的研究热点是:各种新型原子化器、不同类型原子化机理、基体干扰及基体改进效应和各种联用技术等。
快乐
第2楼2010/01/02
2.3 荧光分光光度法
-
荧光分析也是近年来发展迅速的痕量分析方法,该方法操作简单、快速、灵敏度高、精密度和准确度好,并且线形范围宽,检出限低。以AFS-2201型双道原子荧光光谱仪为例,在对食品中的铅,进行原子荧光法测定时,检出限为0.3g/L,线形范围1.00~500g/L,回收率87%~98%。而对食品中硒用荧光法进行相关性研究测定时,发现变异系数为0.63%~0.66% ,平均回收率为95.1%。
-
2.4 近红外光谱分析法
-
近红外光谱分析技术是70年代以来发展起来的一项新颖的分析技术。这种方法省去了通常分析中的称量、定容和提取分离等烦琐步骤,一旦建立好合适的定标,就可以同时测定出同一样品中多个不同组分的含量。在食品分析中,即能有效地分析食品中防腐剂成分又能对粮食中的水分、蛋白质、脂肪、氨基酸、纤维素、灰分以及谷物加工品品质进行检测。而且这种方法已成为测量大豆蛋白质和脂肪含量及小麦蛋白质含量的美国官方比标准方法。
快乐
第3楼2010/01/02
3、色谱分析
-
3.1 气相色谱法
-
气相色谱是20世纪50~60年代发展起来的一种高效、快速分析方法。一般根据该法所用色谱柱的形式,可将起分为毛细管气相色谱和填充气相色谱两种类型。在食品分析检测中,凡在气相色谱仪操作许可的温度下,能直接或间接气化的有机物质,均可采用气相色谱仪进行分析测定,如蛋白质、氨基酸、核酸、糖类、脂肪酸、农残等。
-
特别近年来对气相色谱改进性测定,如采用顶空气相色谱法测定食品添加剂磷酸中氟含量,其方法处理简便,灵敏度高,与国家标准分析方法测得结果一致,准确度、精密度能够满足常规分析要求,同时该方法也可以检测保健食品中的抗氧化活性,结果显著。
-
3.2 液相及高效液相色谱法
-
通常所说的主层析、薄层层析或纸层析就是经典的液相色谱,而高效液相色谱是以经典的液相色谱为基础,以高压下的液体为流动相的色谱过程,其所用固定相颗粒度小(5~10m)、传质快、柱效高。
-
高效液相色谱法是食品分析的重要手段,特别是在食品组分分析(如维生素分析等)及部分外来物分析中,有着其它方法不可替代的作用。同时近年来很多新型专用的高效液相色谱仪不断问世,如氨基酸分析仪、糖分析仪等,分别在检测食品中的污染物、营养成分、添加剂、毒素等方面得以充分应用。
快乐
第5楼2010/01/02
4、质谱分析法
-
质谱仪是用一束电子流轰击被研究的物质,把形成的正离子碎片的图谱定量地记录下来,这种记录就是质谱图。而质谱分析法就是利用质谱图对被测物质进行组分的检测与鉴定。在食品分析中能够定性或定量地检测出食品中挥发性成分、糖类组成、氨基酸(蛋白质)、香味成分及有毒有害物质等成分。
-
别液-质联用的使用,更能有效地测定被测流出物中的痕量组分,能成功分析非挥发性的农药残留物、氨基酸、脂肪和糖类物质。而气-质联用也能较大程度地提高了分析效率,例如:在对食用油中矿物油的测定时,气-质联用在用皂化法测定表现为阳性的情况下,能够准确地分析出被测食用油中不含矿物油。
快乐
第7楼2010/01/02
6、生物芯片检测技术
-
生物芯片检测技术是一种全新的微量分析技术。基本技术包括方阵构建、样品制备、化学反应和结果检测。这项技术在食品微生物领域、食品卫生检测领域、食品毒理学、营养学、转基因产品检测中均有应用。其主要分类有蛋白质芯片、细胞芯片、组织芯片以及特别适用于检测转基因食品的基因芯片。
-
基因芯片又称DNA芯片或DNA微阵列,通常采用原位合成与合成点样法制作,其能以高信息量、高通量,同时检测、分析大量的DNA/RNA。此项技术是将大量的探针分子固定在支持物上,与标记的样品分子杂交,通过检测每个探针分子杂交信号的强度,对结果进行数据分析,可以获取样品分子的序列和数量信息,判断该样品是否含有转基因的成分,鉴定该食品是天然的还是转基因的,是否在安全的限度内。利用该技术可检测食用成品和鲜活的动植物材料,灵敏性强、自动化程度高、特异性强、假阳性低、简便快速。随着该技术的发展,成本的降低,此技术在将会来转基因食品的检测中必将处于里程碑的地位。
快乐
第8楼2010/01/02
7、其它方法
-
7.1、化学发光分析
-
化学发光分析较荧光分析更加灵敏,如直接测定氨基酸,灵敏度可达3×10-11mol/L,而且重现性较好。同时新的化学发光试剂和光增敏剂同免疫分析法结合后,增强了化学发光免疫分析技术迅速在基因分析、食品卫生监测等方面显示的极好的应用前景。
-
7.2、高效毛细管电泳(HPCE)
-
相对于经典电泳技术,HPCE具有高效、快速、简便、微量并可实现仪器化等优异特点,它不再局限于生物大分子分离测定,还可以在一次分析中实现阳离子、阴离子以及中性物质的分离。由此对食品中样品珍贵、基体复杂的生物大分子,HPCE技术更显出特有的分析能力与极大的应用前景。
-
7.3、生物传感技术
-
随着生物技术的日臻完善,生物传感器作为一种多学科交叉的高新技术日渐渗透到食品分析领域,并把热点集中在微型化、分子识别元件、感觉传感器(酸、甜、苦、辣、咸)、图像传感(颜色、外貌)等方面。如电子鼻在食品、饮料、酒类、烟草等方面的广泛应用。
-
总之,为适应食品工业发展的需要,食品仪器分析将在准确、灵敏的前提下,向着简易、快速、微量、可同时测量若干成分的小型化、自动化、智能化的方向发展。相信随着食品科学和仪器分析的不断发展,仪器分析取代传统的化学分析是必然的发展趋势。同时,食品企业应加强投入大型分析仪器并培养食品检验的专门人才,以适应我国加入WTO的需要。