儒雅凤
第1楼2010/09/12
He
氦(舊譯作氜)是一种化学元素,它的化学符号是He,它的原子序数是2,是一种无色的惰性气体,放电时发深黄色的光。在常温下,它是一种极轻的无色、无臭、无味的单原子气体。氦气是所有气体中最难液化的,是唯一不能在标准大气压下固化的物质。氦的化学性质非常不活泼,一般状态下很难和其他物质发生反应。
液态氦在温度下降至2.18K时,性质会发生突变,粘度极小,成为一种超流体,能沿容器壁向上流动,热传导性为铜的800倍,成為導熱性能極佳的熱導體,其比热容、表面张力、压缩性都是反常的。这种异常的液体叫做液氦II,正常的液态氦气叫做液氦I。
在1868年的一次日食观测时,法国天文学家皮埃尔·詹逊首次在太阳的光谱中位于钠的谱线附近发现了这种发出黄色谱线的物质。1895年,美国地质学家希尔布兰德观察到钇铀矿放在硫酸中加热会产生一种不能自燃、也不能助燃的气体。他认为这种气体可能是氮气或氩气,但没有继续研究。拉姆赛(W.Ramsay)得知后,重复了实验,从钇铀矿中分离出了氦,又请英国光谱专家克鲁克斯帮助检验,首次证明了在地球上也存在这种元素。1895年3月,拉姆赛在《化学新闻》上首先发表了在地球上发现氦的简报,同年在英国化学年会上正式宣布这一发现。
在詹逊从太阳光谱中发现氦时,英人J. N. Lockyer和E. F. Frankland认为这种物质在地球上还没有发现,因此定名为“氦”(法文为hélium,英文为helium),源自希腊语hëios,意为“太阳”。
氦存在于整个宇宙中,按质量计占23%。但在自然界中主要存在于天然气体或放射性矿石中。在地球上的放射性矿物中所含有的氦是α衰变的产物。氦在某些天然气中含有在经济上值得提取的量,最高可以含有7%,在美国的天然气中氦大约有1%,在地表的空气中每立方米含有4.6立方厘米的氦,大约占整个体积的0.0005%,密度只有空气的7.2分之一,是除了氢以外密度最小的气体。
儒雅凤
第2楼2010/09/12
Li
1817年在瑞典的斯德哥尔摩,由 J.A. Arfvedson 发现。
来源:锂辉石、锂云母和盐湖等,可由电解氯化锂溶液而制得。
状态:软的银白色金属,是最轻的金属。
熔 点(℃):180.7 沸 点(℃):1342 密度(g/CC,300K):0.534
比 热/J/gK : 3.6 蒸发热/KJ/mol : 145.92 熔化热/KJ/mol: 3
导电率/106/cm : 0.108 导热系数/W/cmK: 0.847
锂,原子序数3,原子量6.941,是最轻的碱金属元素。元素名来源于希腊文,原意是“石头”。1817年由瑞典科学家阿弗韦聪在分析透锂长石矿时发现。自然界中主要的锂矿物为锂辉石、锂云母、透锂长石和磷铝石等。在人和动物机体、土壤和矿泉水、可可粉、烟叶、海藻中都能找到锂。天然锂有两种同位素:锂6和锂7。
金属锂为一种银白色的轻金属;熔点为180.54°C,沸点1342°C,密度0.534克/厘米³,硬度0.6。金属锂可溶于液氨。
锂与其它碱金属不同,在室温下与水反应比较慢,但能与氮气反应生成黑色的一氮化三锂晶体。锂的弱酸盐都难溶于水。在碱金属氯化物中,只有氯化锂易溶于有机溶剂。锂的挥发性盐的火焰呈深红色,可用此来鉴定锂。
锂很容易与氧、氮、硫等化合,在冶金工业中可用做脱氧剂。锂也可以做铅基合金和铍、镁、铝等轻质合金的成分。锂在原子能工业中有重要用途。
儒雅凤
第3楼2010/09/12
Be
铍[1],化学符号:Be。原子序数4,原子量9.012182,莫氏硬度:5.5 ,为一种钢灰色的稀有金属,是最轻的碱土金属元素,也是最轻的结构金属之一。电离能9.322电子伏特。呈灰白色,质坚硬。熔点1278±5℃。沸点2970℃,密度1.85克/立方厘米,铍离子半径0.31埃,比其他金属小得多。和锂一样,也形成保护性氧化层,故在空气中即使红热时也很稳定。不溶于冷水,微溶于热水,可溶于稀盐酸,稀硫酸和氢氧化钾溶液而放出氢。金属铍对于无氧的金属钠即使在较高的温度下,也有明显的抗腐蚀性。铍价态为正2价,可以形成聚合物以及具有显著热稳定性的一类共价化合物。
颜色和外表 银白色或钢灰色
用途
地壳含量 5×10-4 %
原子属性
原子量 9.01218 原子量单位
原子半径 112 pm
共价半径 90 pm
范德华半径 无数据
价电子排布 [氦]2s2
电子在每能级的排布 2,2
氧化价(氧化物) 2(两性的)
晶体结构 六角形
物理属性
物质状态 固态
熔点 1551 K(1278 °C)
沸点 3243 K(2970 °C)
摩尔体积 4.85×10-6m/mol
汽化热 292.40 kJ/mol
熔化热 12.20 kJ/mol
蒸气压 4180 帕
其他性质
电负性 1.57(鲍林标度)
比热 1825 J/(kg•K)
电导率 31.3×106/(米欧姆)
热导率 201 W/(m•K)
第一电离能 899.5 kJ/mol
第二电离能 1757.1 kJ/mol
第三电离能 14848.7 kJ/mol
元素在太阳中的含量:0.0001 (ppm)
声音在其中的传播速率:12870(m/S)
化学键能: (kJ /mol) Be-H 226 ,Be-O 523 ,Be-F 615 ,Be-Cl 293
晶胞参数:a = 228.58 pm ,b = 228.58 pm ,c = 358.43 pm ,α = 90° ,β = 90° ,γ = 120°
在没有特别注明的情况下使用标准基准单位单位和标准气温和气压
铍的化学性质活泼,已发现的铍的同位素共有8种,包括铍6,铍7,铍8,铍9,铍10,铍11,铍12,铍14,其中只有铍9是稳定的,其他同位素都带有放射性。在自然界中存在于绿柱石、硅铍石和金绿宝石矿中,铍分布于绿柱石及猫睛石中。含铍的矿石有许多透明的、色彩美丽的变种,自古以来是最名贵的宝石。在我国古代文献中记载着这些宝石,如猫精,或称猫精石、猫儿眼、猫眼石,也就是我们现在称的金绿玉。这些含铍的矿石基本上都是绿柱石的变种。可由电解熔融的氯化铍或氢氧化铍而制得。它能形成致密的表面氧化保护层,即使在红热时,铍在空气中也很稳定。铍即能和稀酸反应,也能溶于强碱,表现出两性。铍的氧化物、卤化物都具有明显的共价性,铍的化合物在水中易分解,铍还能形成聚合物以及具有明显热稳定性的共价化合物。
金属铍对液体金属的抗腐蚀性,与通用的综合剂乙二胺四乙酸(EDTA)的反应并不强,这在分析上是很重要的。铍可以形成聚合物以及具有显著热稳定性的一类共价化合物。铍用来制造飞机上用的合金、伦琴射线管、铍铝合金、青铜。也用作原子反应堆中的减速剂和反射剂。高纯度的铍又是快速中子的重要来源。这对设计核反应堆的热交换器是重要的,主要用作核反应堆的中子减速剂。铍铜合金被用于制造不发生火花的工具,如航空发动机的关键运动部件、精密仪器等。铍由于重量轻、弹性模数高和热稳定性好,已成为引人注目的飞机和导弹结构材料。
铍具有毒性。每一立方米的空气中只要有一毫克铍的粉尘,就会使人染上急性肺炎——铍肺病。我国冶金行业已经使一立方米空气中的铍的含量降低到十万分之一克以下,**地解决了铍中毒的防护问题。跟铍相比,铍的化合物的毒性更大,铍的化合物会在动物的组织和血浆中形成可溶性的胶状物质,进而与血红蛋白发生化学反应,生成一种新的物质,从而使组织器官发生各种病变,在肺和骨骼中的铍,还可能引发癌症。
铍透X射线的能力最强,有“金属玻璃”之称。其合金是航空,航天,军工,电子,核能等领域不可替代的战略金属材料。铍青铜是铜合金中性能最优良的弹性合金,具有良好的导热,导电,耐热,耐磨,耐腐蚀,无磁性,弹性滞后小,冲击时不产生火花等优点,被广泛应用于国防,仪表,仪器,计算机,汽车,家电等工业中。铍铜锡合金被用于制造在高温下工作的弹簧,此种弹簧在红热状态下仍保持良好的弹性和韧性;氧化铍可用于高温热电偶的耐热填充物。
例如:适用于吹气模(风咀,剪口,模腔)及注塑模(模芯,模腔,顶针,塑孔栓,热流道系统配件及作镶件使用)。
应用例:塑胶模、冲压模、橡胶模、拉拔模、压铸模等。
铍的发现简史:
绿宝石亦称祖母绿,翠绿晶莹,光彩夺目,是宝石中的珍品。它含有一种重要的稀有金属铍。铍的希腊文原意就是“绿宝石”的意思。绿宝石是绿柱石矿的变种。
1798年,法国化学家沃克兰(Vauquelin Niclas Louis, 1763-1829)对绿柱石和祖母绿进行化学分析时发现了铍。但是,单质铍在三十年后的1828年由德国化学家维勒(Friedrich Woler, 1800-1882)用金属钾还原熔融的氯化铍而得到的。
克拉普罗特曾经分析过秘鲁出产的绿玉石,但他却没能发现铍。柏格曼也曾分析过绿玉石,结论是一种铝和钙的硅酸盐。18世纪末,化学家沃克兰应法国矿物学家阿羽伊的请求对金绿石和绿柱石进行了化学分析。沃克兰发现两者的化学成分完全相同,并发现其中含有一种新元素,称它为Glucinium,这一名词来自希腊文glykys,是甜的意思,因为铍的盐类有甜味。沃克兰在1798年2月15日在法国科学院宣读了他发现新元素的论文。由于钇的盐类也有甜味,后来维勒把它命名为Beryllium,它来源于铍的主要矿石──绿柱石的英文名称beryl。
其它解释
铍在作战时主要用于直刺和砍杀。秦以前铍首多用青铜铸造。汉代多用铁制,铍首比秦代铜铍显著加长,增强了杀伤的效能。关于铍的最早记载见于《左传》襄公十七年(公元前556年)"贼六人以铍杀诸卢门"。战国至汉初,战场上较普遍地使用铍。西汉军队有"长铍都尉"一职,可见铍在作战中的地位。西汉中期以后,铍的使用减少,并逐渐从战场上消失。
似剑而长大得多。《说文》载:“铍,大钺也。一日,剑如刀装者。”考古发现有长柲的锋如长剑的兵器,所谓剑刀装者,实际是剑如矛装柄,此即古称之铍。铍见于战国时期,以前多误称为剑。
儒雅凤
第4楼2010/09/12
B
硼(B),原子序数5,原子量10.811。
发现史:尽管人们很久以前就和硼打交道,如古代埃及制造玻璃时已使用硼砂作熔剂,古代炼丹家也使用过硼砂,但是硼酸的化学成分19世纪初还是个谜。 1808年,英国化学家戴维(Sir Humphry Davy, 1778—1829)在用电解的方法发现钾后不久,又用电解熔融的三氧化二硼的方法制得棕色的硼。同年法国化学家盖-吕萨克(Joseph-Louis Gray-Lussac,1778—1850)和泰纳(Louis Jacques Thenard,1777—1857)用金属钾还原无水硼酸制得单质硼。 硼被命名为Boron,它的命名源自阿拉伯文,原意是“焊剂”的意思。说明古代阿拉伯人就已经知道了硼砂具有熔融金属氧化物的能力,在焊接中用做助熔剂。硼的元素符号为B,中译名为硼。
儒雅凤
第5楼2010/09/12
C
碳是一种非金属元素,位于元素周期表的第二周期IVA族。拉丁语为Carbonium,意为“煤,木炭”。碳化合物一般从化石燃料中获得,然后再分离并进一步合成出各种生产生活所需的产品,如乙烯、塑料等。碳可以说是人类接触到的最早的元素之一,也是人类利用得最早的元素之一。自从人类在地球上出现以后,就和碳有了接触,由于闪电使木材燃烧后残留下来木炭,动物被烧死以后,便会剩下骨碳,人类在学会了怎样引火以后,碳就成为人类永久的“伙伴”了,所以碳*代就已经知道的元素。发现碳的精确日期是不可能查清楚的,但从拉瓦锡(Lavoisier A L 1743—1794法国)1789年编制的《元素表》中可以看出,碳是作为元素出现的。
碳的存在形式是多种多样的,有晶态单质碳如金刚石、石墨;有无定形碳如煤;有复杂的有机化合物如动植物等;碳酸盐如大理石等。 单质碳的物理和化学性质取决于它的晶体结构。高硬度的金刚石和柔软滑腻的石墨晶体结构不同,各有各的外观、密度、熔点等。
常温下单质碳的化学性质不活泼,不溶于水、稀酸、稀碱和有机溶剂;不同高温下与氧反应,生成二氧化碳或一氧化碳;在卤素中只有氟能与单质碳直接反应;在加热下,单质碳较易被酸氧化;在高温下,碳还能与许多金属反应,生成金属碳化物。碳具有还原性,在高温下可以冶炼金属。碳是一种很常见的元素,它以多种形式广泛存在于大气和地壳之中。碳单质很早就被人认识和利用,碳的一系列化合物——有机物更是生命的根本。碳是生铁、熟铁和钢的成分之一。 碳能在化学上自我结合而形成大量化合物,在生物上和商业上是重要的分子。生物体内大多数分子都含有碳元素。
1985年由美国德克萨斯州罗斯大学的科学家发现。 富勒烯中的碳原子是以球状穹顶的结构键合在一起
同位素碳14由美国科学家马丁·卡门和塞缪尔·鲁宾于1940年发现。
六角金刚石由美国科学家加利福德·荣迪尔和尤苏拉·马温于1967年发现。
单斜超硬碳由美国科学家邦迪和卡斯伯于1967年实验发现,其晶体结构由吉林大学李全博士和导师马琰铭教授于2009年理论确定。
儒雅凤
第6楼2010/09/12
N
氮,NITROGEN,源自mitron和gen,意为“硝石的形成”,1772年发现;在空气中占百分之七十八体积的气体。氮的性质并不活泼,然而它的化合物却包括麻醉用的“笑气”、TNT**、各种肥料以及胺基酸等──后者是蛋白质的构成基础。对于生物来说,氮是不可缺少的。
对大气的研究导致了氮的发现,氮的发现不是一个人做的。早在1771─1772年间,瑞典化学家舍勒(Scheele K W,1742—1786)就根据自己的实验,认识到空气是由两种彼此不同的成分组成的,即支持燃烧的“火空气”和不支持燃烧的“无效的空气”。1772年英国科学家卡文迪什(Cavendish H,1731—1810)也曾分离出氮气,他把它称为“窒息的空气”。在同一年,英国科学家普利斯特里(Priestley J,1733—1804)通过实验也得到了一种既不支持燃烧,也不能维持生命的气体,他称它为“被燃素饱和了的空气”,意思是说,因为它吸足了燃素,所以失去了支持燃烧的能力。
但是,无论是舍勒,还是卡文迪什和普利斯特里,都没有及时公布他们发现氮的结论。因此,在现在一般化学文献中,都认为氮在欧洲首先是由苏格兰医生、植物学家、化学家丹尼尔·卢瑟福(Rutherford D,1749—1819)发现的。1772年9月,丹尼尔·卢瑟福发表了一篇极有影响的论文,叫《固定空气和浊气导论》,该文原稿现保存在英国博物馆。在论文中他描述了氮气的性质,这种气体不能维持动物的生命,既不能被石灰水吸收,又不能被碱吸收,有灭火的性质,他称这种气体为“浊气”或“毒气”。这里所讲的“固定空气”即今天的二氧化碳气。
在18世纪70年代,氮并没有真正被发现和理解为一种气体化学元素。D·卢瑟福和普利斯特里、舍勒等人一样,受当时燃素说的影响,他并没有认识到“浊气”是空气的一个组成成分。浊气、被燃素饱和了的空气、窒息的空气、无效的空气等名称都没有被接受作为氮的最终名称。
氮这个名称是1787年由拉瓦锡和其他法国科学家提出的,今天的“氮”的拉丁名称Nitrogenium来自英文Nitrogen,是“硝石的组成者”的意思。化学符号为N。我国清末化学启蒙者徐寿在第一次把氮译成中文时曾写成“淡气”,意思是说,它“冲淡”了空气中的氧气。
氮在地壳中的质量分数是0. 46%,绝大部分氮是以单质分子N2的形式存在于空气中。除了土壤中含有一些铵盐、硝酸盐外,氮以无机化合物形式存在于自然界是很少的,而氮却普遍存在于有机体中,是组成动植物体的蛋白质和核酸的重要元素。
单质氮在常况下是一种无色无臭的气体,在标准情况下的气体密度是1.25g·dm-3,熔点63K,沸点75K,临界温度为126K,它是个难于液化的气体。在水中的溶解度很小,在283K时,一体积水约可溶解0.02体积的N2。
N2分子具有很大的稳定性,将它分解为原子需要吸收941.69kJ/mol的能量。N2分子是已知的双原子分子中最稳定的。
儒雅凤
第7楼2010/09/12
O
氧元素是由英国化学家约瑟夫·普利斯特里与瑞典药剂师及化学家舍勒于1774年分别发现。但是普利斯特里却支持燃素学说。 另有说法认为氧气首先由中国人马和首先发现。[1] 1777年,法国化学家拉瓦锡提出燃烧的氧化学说,指出物质只能在含氧的空气中进行燃烧,燃烧物重量的增加与空气中失去的氧相等,从而推翻了全部的燃素说,并正式确立质量守恒定律。从严格意义上讲,发现氧元素的为瑞典化学家舍勒,而确定氧元素化学性质的为法国化学家拉瓦锡氧气通常条件下是呈无色、无臭和无味的气体,密度1.429克/升,1.419克/立方厘米(液),1.426克/立方厘米(固),熔点-218.4℃,沸点-182.962℃,在-182.962℃时液化成淡蓝色液体,在-218.4℃时凝固成雪状淡蓝色。固体在化合价一般为0和-2。电离能为13.618电子伏特。除惰性气体外的所有化学元素都能同氧形成化合物。大多数元素在含氧的气氛中加热时可生成氧化物。有许多元素可形成一种以上的氧化物。氧分子在低温下可形成水合晶体O2.H2O和O2.H2O2,后者较不稳定。氧气在空气中的溶解度是:4.89毫升/100毫升水(0℃),是水中生命体的基础。氧在地壳中丰度占第一位。干燥空气中含有20.946%体积的氧;水有88.81%重量的氧组成。除了O16外,还有O17和O18同位素。
儒雅凤
第8楼2010/09/12
氟 F(Fluorine)
氟的发现,被认为是上个世纪最困难的任务之一。自 1768 年马格拉夫发现 HF 以后,到 1886 年法国化学家莫瓦桑(H.Moissan)制得单质 F2 经历了
118 年之久。这其中不少科学家为此不屈不挠地辛勤劳动,很多人由此而中剧毒,有的甚至贡献了他们宝贵的生命。
1529 年德国化学家阿格里科尔(G.Agricol)确认萤石的存在,人们开始认识氟的存在。
1670 年德国纽伦堡的艺术家斯瓦恩哈德(Schwanhard)发明用萤石和硫 酸作为玻璃工业的刻蚀剂。
1764 年马格拉夫(S.A.Marggraf)研究了硫酸与萤石的反应。
1780 年瑞典化学家舍勒在研究硫酸与萤石作用时,他断言生成的酸是一种无机酸,称之为萤石酸,并预言在这种酸中,含有一种新的活泼元素。当时曾被称为“不可驯服的”“不可捉摸”的元素。从这以后,许多化学家致力于分离这个未知元素。但一次一次失败了。先后有德、英、瑞典、比利时、法国的化学家参加了研究工作。仅在法国就经历了四代人,总共106 年。为了征服元素氟,先后有四位化学家由于氟中毒而献出了生命,其中有爱尔兰科学院成员托玛克·洛克斯(Tomac Noks)兄弟俩、比利时化学家路易埃(P.Louie)、法国化学家杰罗·玛尼克莱(J.malikre);有的化学家如戴维、莫瓦桑等由于在研制过程中受氟的危害得了重病而过早地去世。
1886 年法国人莫瓦桑在总结前人经验基础上,在铂制 U 形管中,用铂铱 合金作电极,在-23℃下,电解干燥的氟氢化钾,终于第一次制得单质氟。 这一成果轰动了当时法国科学院,也是当时世界化学领域的一个重大事件。 莫也因此而被授予 1906 年度诺贝尔化学奖。但由于有害气体的毒害,长期劳 累,莫瓦桑于获奖的次年便去世,年仅 55 岁。
关于氟的命名,早在 1810 年德国化学家戴维 (H.Davy)与安培(A.M.Aupere)就曾建议用希腊字“Fluo”表示这个未知元素,含“流动” 之意。因含氟矿物称为萤石或氟石,远古时代,人们在金属冶炼过程中就知 道用萤石作熔剂。萤石和矿石在一起加热时,会使杂质生成流动性的矿渣而 与金属分离,因此将其称为 fluores,拉丁语“流动”(fluere)之意。元 素氟“Fluorine”,自萤石(fluor)中制得因此而得名。
法语从 HF 的性质 又赋予氟元素“破坏的”原意。
儒雅凤
第9楼2010/09/12
Ne
氖的发现Ne:
莱姆塞在发现氩和氦后,研究了它们的性质,测定了它们的原子量。接着他考虑它们在元素周期表中的位置。因为,氦和氩的性质与已发现的其他元素都不相似,所以他提议在化学元素周期表中列入一族新的化学元素,暂时让氦和氩作为这一族的成员。他还根据门捷列夫提出的关于元素周期分类的假说,推测出该族还应该有一个原子量为20的元素。 在1896~1897年间,莱姆塞在特拉威斯的协助下,试图用找到氦的同样方法,加热稀有金属矿物来获得他预言的元素。他们试验了大量矿石,但都没有找到。最后他们想到了,从空气中分离出这种气体。但要将空气中的氩除去是很困难的,化学方法基本无法使用。只有把空气先变成液体状态,然后利用组成它成分的沸点不同,让它们先后变成气体,一个一个地分离出来。把空气变成液体,需要较大的压力和很低的温度。而正是在19世纪末,德国人林德和英国人汉普森同时创造了致冷机,获得了液态空气。1898年5月24日莱姆塞获得汉普森送来的少量液态空气。莱姆塞和特拉威斯从液态空气中首先分离出了氪。接着他们又对分离出来的氩气进行了反复液化、挥发,收集其中易挥发的组分。1898年6月12日他们终于找到了氖(neon),元素符号Ne,来自希腊文neos(新的)。
儒雅凤
第10楼2010/09/12
Na
钠的发现Na
在19世纪初,伏特(Volta A.G. 1745—1827,意)发明了电池后,各国化学家纷纷利用电池分解水成功。英国化学家戴维(Davy H. 1778—1829)坚持不懈地从事于利用电池分解各种物质的实验研究。他希望利用电池将苛性钾分解为氧气和一种未知的“基”,因为当时化学家们认为苛性碱也是氧化物。它先用苛性钾的饱和溶液实验,所得的结果却和电解水一样,只得到氢气和氧气。后来他改变实验方法,电解熔融的苛性钾,在阴极上出现了具有金属光泽的、类似水银的小珠,一些小珠立即燃烧并发生**,形成光亮的火焰,另一些小珠不燃烧,只是表面变暗,覆盖着一层白膜。他把这种小小的金属颗粒投入水中,即起火焰,在水面急速奔跃,发出刺刺的声音。就这样,戴维在1807年10月6日发现了金属钾,几天之后,他又从电解苛性钠中获得了金属钠。
戴维将钾和钠分别命名为Potassium和Sodium,因为钾是从草木灰(Potash),钠是从天然碱——苏打(Soda)中得到的,它们至今保留在英文中。钾和钠的化学符号K,Na分别来自它们的拉丁文名称Kalium和Natrium。