省部重点实验室
第1楼2012/03/03
RNA提取与RT-PCR
RNA提取与RT-PCR
在做Northern等杂交实验、构建cDNA文库、获取能够编码真核生物蛋白的基因、获得RNA病毒基因时,会用到RNA提取和RT-PCR技术。
真核生物的基因组是DNA,为什么不直接从DNA PCR得到我们需要的基因呢?因为真核生物的基因含有大量的非编码区,称为内元(intron),真正编码蛋白的区段是被这些内元隔开的,这些编码区叫做外元(exon)。真核生物的DNA转录成为RNA之后,经过剪切和拼接,去掉这些非编码区,才形成成熟的mRNA,由mRNA再翻译成蛋白质。
所以,如果直接从真核生物的基因组DNA获取目的基因,克隆再表达,试图获取目的蛋白的思路是行不通的,因为获取的DNA里面会含有非编码区。要表达真核生物的基因并表达出相应的蛋白,只能通过提取其mRNA并RT-PCR这条颇费周折的途径。
1.RNA的提取
RNA的提取其实原理很简单:通过变性剂破碎细胞或者组织,然后经过氯仿等有机溶剂抽提RNA,再经过沉淀,洗涤,晾干,最后溶解。但是由于RNA酶无处不在,随时可能将RNA降解,所以实验中有很多地方需要注意,稍有疏忽就会前功尽弃。
1.1 分离高质量RNA
成功的cDNA合成来自高质量的RNA。高质量的RNA至少应保证全长并且不含逆转录酶的抑制剂,如EDTA或SDS。RNA的质量决定了你能够转录到cDNA上的序列信息量的最大值。一般的RNA纯化方法是使用异硫氰酸胍/酸性酚的一步法。
一般不必使用oligo(dT)选择性分离poly(A)+RNA。不管起始模板是总RNA还是poly(A)+ RNA,都可以检测到扩增结果。另外,分离poly(A)+RNA会导致样品间mRNA丰度的波动变化,从而使信息的检出和定量产生偏差。然而,当分析稀有mRNA时,poly(A)+RNA会增加检测的灵敏度。
1.2 RNA提取的最大影响因素-RNA酶
在所有RNA实验中,最关键的因素是分离得到全长的RNA。而实验失败的主要原因是核糖核酸酶(RNA酶)的污染。由于RNA酶广泛存在而稳定,可耐受多种处理而不被灭活,如煮沸、高压灭菌等,RNA酶催化的反应一般不需要辅助因子。因而RNA制剂中只要存在少量的RNA酶就会引起RNA在制备与分析过程中的降解,而所制备的RNA的纯度和完整性又可直接影响RNA分析的结果,所以RNA的制备与分析操作难度极大。
在实验中,一方面要严格控制外源性RNA酶的污染;另一方面要最大限度地抑制内源性的RNA酶。外源性的RNA酶存在于操作人员的手汗、唾液等,也可存在于灰尘中。在其它分子生物学实验中使用的RNA酶也会造成污染。这些外源性的RNA酶可污染器械、玻璃制品、塑料制品、电泳槽、研究人员的手及各种试剂。而各种组织和细胞中则含有大量内源性的RNA酶。
1.3 常用的RNA酶抑制剂
*焦碳酸二乙酯(DEPC):是一种强烈但不彻底的RNA酶抑制剂。它通过和RNA酶的活性基团组氨酸的咪唑环结合使蛋白质变性,从而抑制酶的活性。
*异硫氰酸胍:目前被认为是最有效的RNA酶抑制剂,它在裂解组织的同时也使RNA酶失活。它既可破坏细胞结构使核酸从核蛋白中解离出来,又对RNA酶有强烈的变性作用。
*氧钒核糖核苷复合物:由氧化钒离子和核苷形成的复合物,它和RNA酶结合形成过渡态类物质,几乎能完全抑制RNA酶的活性。
*RNA酶的蛋白抑制剂(RNasin):从大鼠肝或人胎盘中提取得来的酸性糖蛋白。RNasin是RNA酶的一种非竞争性抑制剂,可以和多种RNA酶结合,使其失活。
*其它:SDS、尿素、硅藻土等对RNA酶也有一定抑制作用。
1.4 防止RNA酶污染的措施、RNA提取之前需要注意和准备的工作
*尽可能在实验室专门辟出RNA操作区,离心机、移液器、试剂等均应专用。RNA操作区应保持清洁,并定期进行除菌。
*操作过程中应始终戴一次性橡胶手套和口罩,并经常更换,以防止手、臂上的细菌和真菌以及人体自身分泌的RNase带入各种容器内或污染用具。尽量避免使用一次性塑料手套。塑料手套不仅常常给操作带来不便,而且塑料手套的多出部分常常将器具有RNase处传递到RNase-free处,扩大污染。
*尽量使用一次性的塑料制品,避免共用器具如滤纸、tips、tubes等,以防交叉污染。例如,从事RNA探针工作的研究者经常使用RNase H、T1等,在操作过程中极有可能造成移液器、离心机等的污染。而这些污染了的器具是RNA操作的大敌。
*关于一次性塑料制品,建议使用厂家供应的出厂前已经灭菌的tips和tubes等。多数厂家供应的无菌塑料制品很少有RNase污染,买来后可直接用于RNA操作。用DEPC等处理的塑料制品,往往由于二次污染而带有RNase,从而导致实验失败。
*所有的玻璃器皿均应在使用前于180℃的高温下干烤6hr或更长时间。
*无法用DEPC处理的用具可用氯仿擦拭若干次,这样通常可以消除RNase的活性。
*配制溶液用的乙醇、异丙醇、Tris等应采用未开封的新瓶装试剂。
*塑料器皿可用0.1% DEPC水浸泡或用氯仿冲洗(注意:有机玻璃器具因可被氯仿腐蚀,故不能使用)。
*有机玻璃的电泳槽等,可先用去污剂洗涤,双蒸水冲洗,乙醇干燥,再浸泡在3% H2O2 室温10min,然后用0.1% DEPC水冲洗,晾干。
*配制的溶液应尽可能的用0.1% DEPC,在37℃处理12hr以上。然后用高压灭菌除去残留的DEPC。不能高压灭菌的试剂,应当用DEPC处理过的无菌双蒸水配制,然后经0.22μm滤膜过滤除菌。
1.5 RNA提取的一般步骤
RNA提取的一般步骤是:破碎组织→分离RNA→沉淀RNA→洗涤RNA→融解RNA→保存RNA
破碎组织和灭活RNA酶可以同步进行,可以用盐酸胍、硫氰酸胍、NP-40、SDS、蛋白酶K等破碎组织,加入β-ME可以抑制RNA酶活性。
分离RNA一半用酚、氯仿等有机溶剂,加入少量异戊醇,经过此步,离心,RNA一般分布于上层,与蛋白层分开。
沉淀RNA一般用乙醇、3M NaAc(pH-5.2)或异丙醇。
洗涤RNA使用70%乙醇洗涤,有时,为避免RNA被洗掉,此步可以省掉,洗涤之后可以晾干或者烤干乙醇,但是不能过于干燥,否则不易溶解。融解RNA一般使用TE。
保存RNA应该尽量低温。为了防止痕量RNase的污染,从富含RNase的样品(如胰脏、肝脏)中分离到的RNA需要贮存在甲醛中以保存高质量的RNA,对于长期贮存更是如此。从大鼠肝脏中提取的RNA,在水中贮存一个星期就基本降解了,而从大鼠脾脏中提取的RNA,在水中保存3年仍保持稳定。另外,长度大于4kb的转录本对于痕量RNase的降解比小转录本更敏感。为了增加贮存RNA样品的稳定性,可以将RNA溶解在去离子的甲酰胺中,存于-70℃。用于保存RNA的甲酰胺一定不能含有降解RNA的杂物。来源于胰脏的RNA至少可以在甲酰胺中保存一年。当准备使用RNA时,可以使用下列方法沉淀RNA:加入NaAc至0.3M,12,000×g离心5分钟。
1.6RNA抽提新方法-TRIZOL法
TRIZOL试剂是直接从细胞或组织中提取总RNA的试剂。它在破碎和溶解细胞时能保持RNA的完整性。加入氯仿后离心,样品分成水样层和有机层。RNA存在于水样层中。收集上面的的水样层后,RNA可以通过异丙醇沉淀来还原。在除去水样层后,样品中的DNA和蛋白也能相继以沉淀的方式还原。乙醇沉淀能析出中间层的DNA,在有机层中加入异丙醇能沉淀出蛋白。共纯化DNA对于样品间标准化RNA的产量十分有用。
TRIZOL是有毒物,接触皮肤或者不慎吞服,会导致灼伤,一旦接触皮肤后立即以大量的洗涤剂和清水清洗。TRIZOL在室温下能稳定保存12个月。尽管如此,为达到最佳效果,建议保存在2-8°C的环境下。
2.RT-PCR
RT-PCR是指将逆转录(Reverse Transcription;RT)反应和PCR (Polymerase Chain Reaction)反应组合在一起的方法。
2.1 RT-PCR的原理
RT-PCR将以RNA为模板的cDNA合成同PCR结合在一起,提供了一种分析基因表达的快速灵敏的方法。RT-PCR用于对表达信息进行检测或定量。另外,这项技术还可以用来检测基因表达差异或不必构建cDNA文库克隆cDNA。RT-PCR比其他包括Northern印迹、RNase保护分析、原位杂交及S1核酸酶分析在内的RNA分析技术,更灵敏,更易于操作。
RT-PCR的模板可以为总RNA或poly(A)+选择性RNA。逆转录反应可以使用逆转录酶,以随机引物、oligo(dT)或基因特异性的引物(GSP)起始。RT-PCR可以一步法或两步法的形式进行。在两步法RT-PCR中,每一步都在最佳条件下进行。cDNA的合成首先在逆转录缓冲液中进行,然后取出1/10的反应产物进行PCR。在一步法RT-PCR中,逆转录和PCR在同时为逆转录和PCR优化的条件下,在一只管中顺次进行。
2.2 RT-PCR的步骤
⑴在冰浴离心管里面加入模板RNA 4uL,引物2uL,去离子水5uL,混匀,离心3-5秒;
⑵70度水浴5分钟,冰浴30秒(此处是为了使引物和模板正确配对);
⑶加入5×反应液4uL,RNase抑制剂1uL,dNTP 2uL(这些应该先配好,然后分再装到每一管),混匀;
⑷37度水浴5分钟,加入1uL AMV-RT反转录酶,混匀;
⑸37度水浴1小时(此步是反转录过程);
⑹70度10分钟结束反应(此处是灭活酶活性,避免对后续实验产生干扰),产物置冰上进行下一步PCR实验,余下的-70度保存。
2.3 RT-PCR的引物设计
RT-PCR引物设计和一般PCR引物设计可以遵循同样的原则。细心地进行引物设计是PCR中最重要的一步。理想的引物对只同目的序列两侧的单一序列而非其他序列退火。设计糟糕的引物可能会同扩增其他的非目的序列。设计理想的引物都有以下共同的特点,而设计失败的引物则各有各的缺点:
* 典型的引物18到24个核苷长。引物需要足够长,保证序列独特性,并降低序列存在于非目的序列位点的可能性。但是长度大于24核苷的引物并不意味着更高的特异性。较长的序列可能会与错误配对序列杂交,降低了特异性,而且比短序列杂交慢,从而降低了产量。
* 选择GC含量为40%到60%或GC含量反映模板GC含量的引物。
* 设计5'端和中间区为G或C的引物。这会增加引物的稳定性和引物同目的序列杂交的稳定性。
* 避免引物对3'末端存在互补序列,这会形成引物二聚体,抑制扩增。
* 避免3'末端富含GC。设计引物时保证在最后5个核苷中含有3个A或T。
* 避免3'末端的错误配对。3'端核苷需要同模板退火以供聚合酶催化延伸。
* 避免存在可能会产生内部二级结构的序列,这会破坏引物退火稳定性。
目的序列上并不存在的附加序列,如限制位点和启动子序列,可以加入到引物5'端而不影响特异性。当计算引物Tm值时并不包括这些序列,但是应该对其进行互补性和内部二级结构的检测。
引物的稳定性依赖于储存条件。应将干粉和溶解的引物储存在-20℃。以大于10μM浓度溶于TE的引物在-20℃可以稳定保存6个月,但在室温(15℃到30℃)仅能保存不到1周。干粉引物可以在-20℃保存至少1年,在室温(15℃到30℃)最多可以保存2个月。
2.4 引物退火温度
引物的另一个重要参数是熔解温度(Tm)。这是当50%的引物和互补序列表现为双链DNA分子时的温度。Tm对于设定PCR退火温度是必需的。在理想状态下,退火温度足够低,以保证引物同目的序列有效退火,同时还要足够高,以减少非特异性结合。合理的退火温度从55℃到70℃。退火温度一般设定比引物的Tm低5℃。
根据所使用的公式及引物序列的不同,Tm会差异很大。因为大部分公式提供一个估算的Tm值,所有退火温度只是一个起始点。可以通过分析几个逐步提高退火温度的反应以提高特异性。开始低于估算的Tm 5℃,以2℃为增量,逐步提高退火温度。较高的退火温度会减少引物二聚体和非特异性产物的形成。为获得最佳结果,两个引物应具有近似的Tm值。引物对的Tm差异如果超过5℃,就会由于在循环中使用较低的退火温度而表现出明显的错误起始。如果两个引物Tm不同,将退火温度设定为比最低的Tm低5℃。或者为了提高特异性,可以在根据较高Tm设计的退火温度先进行5个循环,然后再根据较低Tm设计的退火温度进行剩余的循环。这使得在较为严谨的条件下可以获得目的模板的部分拷贝。
2.5 提高逆转录保温温度
较高的保温温度有助于RNA二级结构的打开,增加了反应的产量。对于多数RNA模板,在没有缓冲液或盐的条件下,将RNA和引物在65℃保温,然后迅速置于冰上冷却,可以消除大多数二级结构,从而使引物可以结合。然而某些模板仍然会存在二级结构,即使热变性后也是如此。较高的保温温度也可以增加特异性,尤其是当使用基因特异性引物(GSP)进行cDNA合成时。如果使用GSP,确保引物的Tm值与预计的保温温度相同。不要在高于60℃时使用oligo(dT)和随机引物。随机引物需要在增加到60℃前在25℃保温10分钟。除了使用较高的逆转录温度外,还可以通过直接将RNA/引物混合物从65℃变性温度转到逆转录保温温度,并加入预热的2×的反应混合物提高特异性(cDNA热启动合成)。这种方法有助于防止较低温度时所发生的分子间碱基配对。使用PCR仪可以简化RT-PCR所需的多种温度切换。
2.6 促进逆转录的添加剂
包括甘油和DMSO在内的添加剂加到第一链合成反应中,可以减低核酸双链的稳定并解开RNA二级结构,最多可以加入20%的甘油或10%的DMSO而不影响或MMLV的活性。AMV也可以耐受最多20%的甘油而不降低活性。为了在逆转录反应中最大限度提高RT-PCR的灵敏度,可以加入10%的甘油并在45℃保温。如果1/10的逆转录反应产物加入到PCR中,那甘油在扩增反应中的浓度为0.4%,这不足以抑制PCR。
在逆转录反应中经常加入RNase抑制剂以增加cDNA合成的长度和产量。RNase抑制剂要在第一链合成反应中,在缓冲液和还原剂(如DTT)存在的条件下加入,因为cDNA合成前的过程会使抑制剂变性,从而释放结合的可以降解RNA的RNase。蛋白RNase抑制剂仅防止RNase A,B,C对RNA的降解,并不能防止皮肤上的RNase,因此尽管使用了这些抑制剂,也要小心不要从手指上引入RNase。
使用无RNaseH活性(RNaseH-)的逆转录酶:逆转录酶催化RNA转化成cDNA,不管是M-MLV还是AMV,在本身的聚合酶活性之外,都具有内源RNaseH活性。RNaseH活性同聚合酶活性相互竞争RNA模板与DNA引物或cDNA延伸链间形成的杂合链,并降解RNA:DNA复合物中的RNA链。被RNaseH活性所降解的RNA模板不能再作为合成cDNA的有效底物,降低了cDNA合成的产量和长度。因此消除或大大降低逆转录酶的RNaseH活性将会大有裨益。RNaseH-的MMLV逆转录酶及RNaseH-的AMV,比MMLV和AMV能得到更多量和更多全长。RT-PCR灵敏度会受cDNA合成量的影响。RT-PCR产物的大小受限于逆转录酶合成cDNA的能力,尤其是克隆较大的cDNA时。RNaseH-的逆转录酶可以显著提高长RT-PCR产物的产量,同时增加了热稳定性,所以反应可以在高于正常的37-42℃的温度下进行。
2.7 RNaseH处理
在PCR之前使用RNaseH处理cDNA合成反应可以提高灵敏度。对于某些模板,据认为cDNA合成反应中的RNA会阻止扩增产物的结合,在这种情况下,RNaseH处理可以增加灵敏度。一般当扩增较长的全长cDNA目标模板时,RNaseH处理是必需的,比如低拷贝的。对这种困难模板,RNaseH的处理加强了或AMV合成的cDNA所产生的信号。对于多数RT-PCR反应,RNaseH处理是可选的,因为95℃保温的PCR变性步骤一般会将RNA:DNA复合物中的RNA水解掉。
2.8 小量RNA检测方法的提高
当仅有小量RNA时,RT-PCR尤其具有挑战性。在RNA分离过程中加入的作为载体的糖元有助于增加小量样品的产量。可以在加入Trizol的同时加入无RNase的糖元。糖元是水溶性的,可以同RNA保持在水相中以辅助随后的沉淀。对于小于50mg的组织或106个培养细胞的样品,无RNase糖元的建议浓度为250μg/ml。
2.9 一步法同两步法RT-PCR的比较
两步法RT-PCR比较常见,在使用一个样品检测多个mRNA时比较有用。然而一步法RT-PCR具有其他优点。一步法RT-PCR在处理大量样品时易于操作,有助于减少残余污染,因为在cDNA合成和扩增之间不需要打开管盖。一步法可以得到更高的灵敏度,最低可以达到0.1pg总RNA,这是因为整个cDNA样品都被扩增。对于成功的一步法RT-PCR,一般使用反义的基因特异性引物起始cDNA合成。
2.10 增加RT-PCR特异性
第一链cDNA合成的起始可以使用三种不同的方法,各种方法的相对特异性影响了所合成cDNA的量和种类。
随机引物法是三种方法中特异性最低的。引物在整个转录本的多个位点退火,产生短的,部分长度的cDNA。这种方法经常用于获取5'末端序列及从带有二级结构区域或带有逆转录酶不能复制的终止位点的RNA模板获得cDNA。为了获得最长的cDNA,需要按经验确定每个RNA样品中引物与RNA的比例。随机引物的起始浓度范围为50到250ng每20μl反应体系。因为使用随机引物从总RNA合成的cDNA主要是核糖体RNA,所以模板一般选用poly(A)+RNA。
Oligo(dT)起始比随机引物特异性高。它同大多数真核细胞mRNA 3'端所发现的poly(A)尾杂交。因为poly(A)+RNA大概占总RNA的1%到2%,所以与使用随机引物相比,cDNA的数量和复杂度要少得多。因为其较高的特异性,oligo(dT)一般不需要对RNA和引物的比例及poly(A)+选择进行优化。建议每20μl反应体系使用0.5μg oligo(dT)。oligo(dT)12-18适用于多数RT-PCR。ThermoScript RT-PCR System提供了oligo(dT)20,因为其热稳定性较好,适用于较高的保温温度。
基因特异性引物(GSP)对于逆转录步骤是特异性最好的引物。GSP是反义寡聚核苷,可以特异性地同RNA目的序列杂交,而不象随机引物或oligo(dT)那样同所有RNA退火。用于设计PCR引物的规则同样适用于逆转录反应GSP的设计。GSP可以同与mRNA3'最末端退火的扩增引物序列相同,或GSP可以设计为与反向扩增引物的下游退火。对于部分扩增对象,为了成功进行RT-PCR,需要设计多于一个反义引物,因为目的RNA的二级结构可能会阻止引物结合。建议在20μl的第一链合成反应体系中使用1pmol反义GSP。
2.11 提高逆转录保温温度
为了充分利用GSP特异性的全部优点,应该使用有较高热稳定性的逆转录酶。热稳定逆转录酶可以在较高温度保温以增加反应严谨性。比如,如果一个GSP退火温度为55℃,那么如果使用AMV或M-MLV在低严谨性的37℃进行逆转录,GSP所带有的特异性就没有完全利用。然而某些特别的逆转录酶可以在50℃或更高进行反应,这就会消除较低温度时产生的非特异性产物。为获得最大的特异性,可以将RNA/引物混合物直接从65℃变性温度转移到逆转录保温温度。这有助于防止低温时分子间碱基配对。使用PCR仪可以简化RT-PCR所需的多种温度转换。
2.12 减少基因组DNA污染
RT-PCR所遇到的一个潜在的困难是RNA中沾染的基因组DNA。使用较好的RNA分离方法,如Trizol,会减少RNA制备物中沾染的基因组DNA。为了避免产生于基因组DNA的产物,可以在逆转录之前使用扩增级的DNaseⅠ对RNA进行处理以除去沾染的DNA。将样品在2.0mM EDTA中65℃保温10分钟以终止DNaseⅠ消化。EDTA可以螯合镁离子,防止高温时所发生的依赖于镁离子的RNA水解。
为了将扩增的cDNA同沾染的基因组DNA扩增产物分开,可以设计分别同分开的外显子退火的引物。来源于cDNA的PCR产物会比来源于沾染的基因组DNA的产物短。另外对每个RNA模板进行一个无逆转录的对照实验,以确定一个给定片段是来自基因组DNA还是cDNA。在无逆转录时所得到的PCR产物来源于基因组。
省部重点实验室
第2楼2012/03/03
RT-PCR经验浅谈(ZT)
做RNA病毒基因的RT-PCR成败的关键首先在于RNA模板的制备。本人三年前做过一个正链RNA病毒全基因组分段扩增,设计方案是将全基因组分成7个片段,0.6kb-3.3kb不等,分别进行RT-PCR扩增,刚开始的三个月,我们课题组三个人辛辛苦苦,什么招都想过了,结果连一个片段都没有拿到。后来有一个周末,我一个人安安静静做了一天,PCR跑胶的结果足以让我兴奋一个月:一下子隐隐约约出了3个片段!!!紧接着把胶里的弱带切下,水溶并后做二次扩增(注:跑胶总会吧,在UV下,参照marker,将特异性高,且与预期大小相同的DNA带切出,放在一个ep管里,加入适量无菌水,用枪头将胶反复搅碎,高速离心,小心吸取2ul上清用作模板,进行第二次PCR扩增)很快,三个预期的片段都得到了理想的扩增。不到一个月,12kb的全基因组各片段全部收归囊下。
我这次成功的关键在于:提取RNA时,收集沉淀这一步。离心速度不要低于13000rpm(r=5cm),提高离心速度、延长离心时间,在离心前的沉淀也尽可能在低温下长时间进行,这些时我本人总结出来的经验。在后来的实验中,几乎每次RT-PCR都非常顺利,除了材料本身就没有目标基因。
这一次谈一下逆转录酶和逆转录反应的问题,在一般的逆转录反应中,较常用的是MMLV(鼠源的)和AMV(禽源的)两种,现在更有各家公司推出的耐热的(50-60度)、超长片段的逆转录酶,这方面具有专长的数gibco(现在并购于invitrogen)。
我们实验室使用的一般是MMLV,鼠源的酶,虽然活性比较低一点,但是对应的RNaseH活性也很低,在长时间的逆转录过程中,不会造成模板的降解,获得cDNA的几率大,适用于较长的cDNA链的合成。对于从细胞培养物中利用RT-PCR方法扩增mRNA丰度低的基因也很有效。但是AMV也有其自身的优点,酶的活性很高,扩增1kb以下的基因时比较常用,我知道临床上血液检测中有时使用AMV,省时,也省试剂。
另外,MMLV逆转录反应的条件比较好掌握,反应液的组分简单,AMV的反应液有的需要添加焦磷酸钠(这种试剂不好找到)。
反应温度最好每次都控制不变,MMLV我每次都使用37度,虽然mannual上说使用特异性引物可以升到42度进行逆转录反应,但是有一次42度没有扩增结果,改为37度却扩出了所需要的带(使用的20mer特异性引物),从此以后我一直使用37度,后来的结果也还可以。
长片段逆转录,比如某些RNA病毒的全基因组RT-PCR扩增,10kb左右,可以选用上面提到的耐热、RNaseH-的逆转录酶,可能比较贵一点,但是很多文献报到能够得到很好的扩增,本人尝试过,说实话,可能没有太认真去优化条件,很遗憾连设计的6kb都没有得到扩增产物。由此,我建议大家不要轻易尝试这个方法,一则扩增的难度确实存在,另外,扩增的忠实性不能得到很好的保证。不同的实验目的也不一样,一下子得到这样长的片段,后续的改造也很困难。
还有一个需要指出的问题是,有些同行喜欢一下子提很多RNA,加保护剂如RNase inhibiter等,冻存,以后长期使用,我不推荐这样做。RNA在低量存在时非常容易降解,任何保存方法都比不上不保存^_^,我的做法是马上做RT,不吃饭也要做上去,为了省去日后不尽的麻烦,切记切记!