我在故我思
第1楼2006/11/13
氮火焰离子化检测器晌应机理
FID的工作原理是以氢气在空气中燃烧为能源,载气(N2)携带被分析组分和可燃气(H2)从喷嘴进入检侧器,助然气(空气)从四周导人,被侧组分在火焰中被解离成正负离离子,在极化电压形成的电场中,正负离子向各自相反的电极移动,形成的离子流被收集极收、输出,经阻抗转化,放大器(放大107~1010倍)便获得可测量的电信号,FID离子化的机理近年才明朗化,但对烃类和非烃类其机理是不同的。
对烃类化合物而言:在火焰内燃烧的碳氮化合物中的每一个碳原子均定里转化成最基本的、共同的响应单位——甲烷,再经过下面的反应过程与空气中氧反应生成CHO+正离子和电子。
CH+O→CHO++e
所以,FID对烃是等碳响应,这是最主要的反应,成为电荷传送的主要介质。在电场作用下,正离子和电子e分别向收集极和发射极移动,形成离子流,但在碳原子中产生CH的概率仅有1/106,因此提高离子化效率是提高FID灵敏度最有效的途径,目前仍然有不少关于这方面的研究和报道。
对非烃类化合物,其响应机理比较复杂,随所含官能团的不同而异,基本规律是不与杂原子相连的碳原子均转化成甲烷。杂原子及其相连的碳原子(C杂)的转化产物见表2-8。
我在故我思
第2楼2006/11/13
由于杂原子可能进一步与C转生成氢火焰检测器不响应的CO、HCN,因此按相对质量响应值计,这些化合物的RRF值都很低,不符合等碳响应规律。
FID的灵敏度和稳定性主要取决于,②如何提高有机物在火焰中离子化的效率,②如何提高收集极对离子收集的效率。离子化的效率取决于火焰的温度、形状、喷嘴的材料、孔径;载气、氢气、空气的流量比等。离子收集的效率则与收集极的形状、极化电压、电极性、发射极与收集极之间距离等参数有关。一个好的检测器的结构设计是综合考虑以上各种因素,所以使用者在拆装清洗时必须按说明书要求,尤其是安装尺寸方面,严禁收集极、极化极、喷嘴与外壳短路,要求其绝缘电阻值大于1014Ω。另外,要求极化极必须在喷嘴出口平面中心,不适宜在火焰上,否则会造成嗓声增加;也不宜过低,极化极低于喷嘴,离子收集的效率会降低,检测器的灵敏度相应也降低。喷嘴通常采用内径0.4~0.6mm的金属或石英制成,但灵敏度高的仪器在喷嘴的选择上也有严格的要求。例如美国Agilent公司对FID的喷嘴就有六种型号供不同情况选用。美国Varian公司近年对FID进行改进、采用加金属帽的陶瓷喷嘴代替标准的金属喷嘴。除了能有效消除高温时金属对化合物的吸附造成色谱峰拖尾改善分辨率外,还能降低嗓声,提高仪器灵敏度。这项改进已获美国专利(USP.4999162)。
氢火焰离子化检测器的操作条件
火焰温度,离子化程度和收集效率都与载气、氢气、空气的流量和相对比值有关。其影响如下所述。
氢气流速的影响
氢气作为燃烧气与氮气(载气)预混合后进入喷嘴当氮气流速固定时,随着氢气流速的蹭加,输出信号也随之增加,并达到一个最大值后迅速下降。如图2-10所示。由图可见:通常氢气的最佳流速为40~60mL/min。有时是氢气作为载气,氮气作为补充气,其效果是一样的。
我在故我思
第3楼2006/11/13
氮气流速的影响
在我国多用N2作载气,H2作为柱后吹扫气进入检测器,对不同k值的化合物,氮气流速在一定范围增加时,其响应值也增加,在30mL/min左右达到一个最大值而后迅速下降,如图2-11所示。这是由于氮气流量小时,减少了火焰中的传导作用,导致火焰温度降低,从而减少电离效率,使响应降低;而氮气流量太大时,火焰因受高线速气流的干扰而燃烧不稳定,不仅使电离效率和收集效率降低,导致响应降低,同时噪声也会因火焰不稳定而响应增加。所以氮气一般采用流量在30mL/min左右,检测器可以得到较好的灵敏度。在用H2作载气时,N2作为柱后吹扫气与H2预混合后进入喷嘴,其效果也是一样的。
此外氮气和氢气的体积比不一样时,火焰燃烧的效果也不相同,因而直接影响FID的响应。从图2-12可知N2∶H2的最佳流量比为1~1.5。也有文献报道,在补充气中加一定比例NH3,可增加FID的灵敏度。
我在故我思
第4楼2006/11/13
空气流速的影响
空气是助燃气,为生成CHO+提供O2。同时还是燃烧生成的H2O和CO2的清扫气。空气流量往往比保证完全燃烧所需要的量大许多,这是由于大流量的空气在喷嘴周围形成快速均匀流场。可减少峰的拖尾和记忆效应。其影响如图2-13所示。
由图2-13可知空气最佳流速需大于300mL/min,一般采用空气与氢气该量比为1∶10左右。由于不同厂家不同型号的色谱仪配置的FID其喷口的内径不相同,其氢气、氮气和空气的最佳流量也不相同,可以参考说明书进行调节,但其原理是相同的。
检测器温度的影响
增加FID的温度会同时增大响应和噪声;相对其他检测器而言,FID的温度不是主要的影响因素,一般将检测器的温度设定比柱温稍高一些,以保证样品在FID内不冷凝;此外FID温度不可低于100℃,以免水蒸气在离子室冷凝,导致离子室内电绝缘下降,引起噪声骤增;所以FID停机时必须在100℃以上灭火(通常是先停H2,后停FID检测器的加热电流),这是FID检测器使用时必须严格遵守的操作。
我在故我思
第5楼2006/11/13
气体纯度
从FID检测器本身性能来讲,在常量分析时,要求氢气、氮气、空气的纯度为99.9%以上即可,但是在痕量分析时,则要求纯度高于99.999%,尤其空气的总烃要低于0.1µL/L,否则会造成FID的噪声和基线漂移,影响定量分析。
氢火焰离子化检测器选择性的改进
FID对烃类化合物有很高的灵敏度和选择性,一直作为烃类化合物的专用检测器。近年来在FID的基础上发展了几种新型的氢火焰离子化检测器,具有新的选择性;富氢FID(用于选择性检测无机气体和卤代烃);氢保护气氛火焰离子化检测器(简称HAFID,用于选择性检测有机金属化合物、硅化合物);氧专一性火焰离子化检测器(简称OFID,用于选择性检测含氧化合物)。
相对响应值
几乎所有挥发性的有机物在FID都有响应,尤其同类化合物的相对喻应值都很接近,一般不用校正因子就可以直接定量,而含不同杂原子的化合物彼此相对响应值相差很大,定量时必须采用校正因子。
与TCD不同的是:FID相对响应值与FID的结构、操作压力、载气、燃气与辅助气的流速都有关,所以引用文献数据时一定要注意试验条件是否一致。最可靠的方法是自己测定相应的校正因子。
我在故我思
第7楼2006/11/13
下面上传几篇相关的文献(PDF格式的):
氢火焰离子化检测器的灵敏度、稳定性与线性
摘要:对氢火焰离子化检测器的实验和理论研究表明,检测器的详细作用是十分复杂的,许多因素对检测器的主要性能都有复杂的影响,以下仅对这些问题作一些初步讨论。
氢火焰离子化检测器的灵敏度、稳定性与线性
我在故我思
第9楼2006/11/13
氢火焰离子化检测器校正因子的理论计算
摘 要:根据 FID 检测器工作原理 ,提出一种相对质量校正因子的计算公式。由该公式出发可以推导出相对摩尔响应值(RMR)与化合物碳数的线性关系式和有效碳数的近似计算方法 ,并赋予原计算方法中的参数以明确的含意 ,解决了参数之间的矛盾。新方法的计算值同文献数据吻合良好。
关键词 氢火焰离子化检测器 , 校正因子 , 有效碳数 , 相对摩尔响应值
氢火焰离子化检测器校正因子的理论计算
我在故我思
第10楼2006/11/13
填充柱使用尾吹气对FID 检测器灵敏度的影响
摘 要: 本文研究气相色谱填充柱在不同柱流量和不同浓度的苯系物样品 ,使用尾吹气对 FID 检测器灵敏度的影响 ,以确定分析仪器的最佳灵敏度。
关键词: 灵敏度 填充柱 尾吹气
填充柱使用尾吹气对FID 检测器灵敏度的影响