仪器信息网APP
选仪器、听讲座、看资讯

检测器篇之TCD

气相色谱(GC)

  • TCD是一种通用的非破坏性浓度型检测器,理论上可应用于任何组分的检测,因此其应用非常广泛。

    但TCD在使用过程中经常会出现不出信号、基线波动、出杂峰等问题,损坏TCD检测器的情况也时有发生,以避免被污染或损坏呢?
    TCD检测器的原理为热敏电阻消耗电能所产生的热与载气热传导和强制对流等散失的热达到热动平衡,当载气中有组分进入热导池时由于组分的导热系数与载气不同,热平衡被破坏,热敏电阻温度发生变化,其电阻值也随之发生变化,惠斯顿电桥输出电压不平衡的信号,记录该信号从而得到色谱峰。
    根据TCD检测器自身的特性,可能污染或损坏TCD的原因主要有以下三点:
    ①热丝温度过高而烧断;
    ②酸类、卤代化合物、氧化性或还原性化合物,因腐蚀等作用使测量臂热丝的阻值改变;
    ③高沸点样品在检测器中或检测器出口连接管中冷凝。
    解决方案:
    ①热丝温度过高而烧断
    任何热丝都有一最高承受温度,高于此温度则容易烧断。热丝温度的高低是由载气种类、桥电流和池体温度决定的。如载气热导率小,桥电流和池体温度高,则热丝温度就高,反之亦然。


    一般商品色谱仪在出厂时,均附有此三者之间的关系曲线,按此调节桥电流,应能保证热丝温度不会太高。为了避免TCD检测器热丝被烧断,还应注意以下三点:
    a.在检测器通电之前,一定要确保载气已经通过了检测器;
    b.关机时一定要先关检测器电源,然后关载气;任何时候进行有可能切断通过TCD的载气流量的操作,都要关闭检测器电源;
    c.在长时间不使用TCD检测器时,应关闭电流,降低TCD检测器的温度。
    ②待测组分或载气中含有腐蚀性组分
    酸类、卤代化合物、氧化性或还原性化合物,因腐蚀等作用使测量臂热丝的阻值改变;避免样品损坏TCD检测器的热丝,特别是样品注入量很大时,尤为严重。
    因此,最好尽量避免用TCD做这些样品的分析,如果一定要做,则在保证能正常定量的前提下,尽量使样品浓度低些,桥流小些;或者选择具有耐腐蚀性的特殊TCD检测器。
    载气中若含氧,将使热丝长期受到氧化,有损其寿命,如果载气中含有水分,则会在检测器内冷凝,也会影响其分析;故通常载气和尾吹气应加净化装置,以除去氧气和水分。
    ③高沸点样品在检测器中或检测器出口连接管中冷凝。
    高沸点样品在检测器中或检测器出口连接管中冷凝,将使噪声和漂移变大,以至无法正常工作。在使用中为避免高沸点样品液化,需要注意以下三点:
    a.在色谱柱老化时应将检测器断开;
    b.检测器温度一般设定为比柱温高20-30℃;
    c.开机后,先将检测器、恒温箱和柱温等达到设定温度后,再开始进行样品分析。
    采用TCD作为检测器时,如何确定物质相对校正因子?
    由于同一检测器对不同物质的响应值不同,所以当相同量的不同物质通过检测器时,产生的峰面积(或峰高)不一定相等。
    为使峰面积能够准确地反映待测组分的含量,就必须先用已知量的待测组分测定在所用色谱条件下的峰面积,以计算该物质的绝对校正因子,但绝对校正因子只适用于这一个检测器。
    因为即使是换一个同一类型的检测器,甚至是换一个同一厂家生产的同一型号检测器,由于两个检测器的灵敏度总是有些差异,这就使等量的同一种物质在这两个检测器上的响应值有所不同,因此计算出的绝对校正因子也有所不同。
    另外,同一个检测器,随着使用时间和操作条件改变灵敏度也在改变。这些都使绝对校正因子在色谱定量分析中的使用有很大的局限性,为此引出了相对校正因子的概念。即某组分i的相对校正因子为组分i与标准物质s的绝对校正因子之比。通过相对校正因子,可以把各个组分的峰面积分别换算成与其质量相等的标准物质的峰面积,于是比较标准就统一了。这就是归一法求算各组分百分含量的基础。
    热导检测器是一种典型浓度型检测器,其绝对响应值与检测器构造、桥电流、组分和载气性质、载气流速和进样量等操作参数有关。但根据相对校正因子的定义可知,TCD检测器对不同物质的相对校正因子仅与待测组分、标准物质和载气相关,而与检测器构造和操作参数无关。
    采用TCD作为检测器时,确定物质相对校正因子通常有下面几种方式:
    ①从文献上查找相对校正因子
    ②实验测定相对校正因子
    对于某些比较特殊,在文献上查不到相对校正因子的物质或者为了更准确的测定某一物质的校正因子,通常采用实验测定的方法获得。但在用实验法测定物质的相对校正因子时,要注意配置标样的准确性,否则会出现试验测得校正因子与文献值相差甚大的情况。
    一些分析者测得的相对校正因子之所以与文献值不符, 并非操作参数的变动引起,而是由于测量误差造成,如标准物纯度不够、制样方法不当、室温下组分挥发、峰面积测量不准、得到的峰很不对称或分离不完全等。对于易挥发组分的分析, 制样的影响尤为显著。
    ③利用规律对校正因子进行估算
    目前能对校正因子进行估算的,只有气相色谱用的热导检测器和氢火焰离子化检测器。当从文献中查不到适当数据,又没有已知准确含量的样品进行测定时,可按相关参考书上介绍的方法进行估算,如同系物在热导检测器上的相对摩尔响应值(RMR)与其分子中的碳数或摩尔质量呈线性关系。但该方法在实际操作中应用不多。
    在采用TCD做检测器进行样品分析时,尤其是在线样品分析时,经常会出现由于水的干扰,导致样品峰与水的峰重叠,从而影响目标样品的分析,那么我们在实际操作过程中如何避免或者消除水对检测的干扰呢?
    TCD是一种通用的非破坏性浓度型检测器,理论上可应用于任何组分的检测。如果进入色谱柱的组分中含有水分,则TCD会检测到水分的峰。
    带入TCD的水分有两个来源,一是载气,二是样品。如果水的峰与目标样品的峰不重叠,对样品分析影响不大;但如果水的峰与目标样品的峰出现重叠,就会对目标样品的分析产生影响。
    为了避免水分带入TCD检测器,应在载气或样品进入色谱之前进行前处理,一般可采用一个吸收装置对水分进行吸收。
    对于吸收装置中的水分吸收剂,要根据载气和样品的特性而定,载气中的水分可采用气体清洁的水分过滤器,去除水分,消除水分干扰。样品中的水分用吸收剂,基本原则是吸收剂只吸收水分而不吸收载气或待测样品,如氨气中水分的吸收通常是采用碱石灰。
    在采用TCD做检测器进行样品分析时,有时样品色谱峰会是负峰,到底是什么原因造成的呢?
    热导池所以能够作为检测器,是依据不同的物质具有不同的导热系数。当被测组分与载气混合后,混合物的导热系数,与纯载气的导热系数大不相同。当通过热导池池体的气体组成及浓度发生变化时,就会引起池体上安装的热敏元件的温度变化,由此产生热敏元件阻值的变化,通过惠斯顿电桥进行测量,就可由所得信号的大小求出该组分的含量。
    采用TCD检测器进行样品分析时,如果样品导热系数大于载气导热系数,色谱峰就会呈现为负峰。
    采用TCD检测器进行样品分析时,如果色谱峰出现负峰,先查阅一下色谱载气与所测气体的的导热系数,如果样品导热系数大于载气导热系数,色谱峰就会呈现为负峰。这时需要做的是按照色谱说明书上的说明将TCD检测器的极性更换一下即可。
    如果所测多组分样品时色谱峰有正峰也有负峰,这是因为所测多组分中,部分物质的导热系数大于色谱载气的导热系数,部分组分的导热系数小于色谱载气的导热系数,这时如果更换TCD检测器的极性的话,原来的负峰变为正峰,原来的正峰变为了负峰,还是不能彻底解决问题。如果出现这种情况,并且确实需要对样品的全组分进行定量分析的话,就选择色谱工作站上数据处理中的“负峰处理”即可。
  • 该帖子已被版主-PAEs加2积分,加2经验;加分理由:分享
    +关注 私聊
  • PAEs

    第1楼2017/04/13

    应助达人

    楼主码字好辛苦

0
    +关注 私聊
  • zyl3367898

    第2楼2017/04/13

    应助达人

    是不是摘自哪本书上的。

0
    +关注 私聊
  • forth

    第3楼2017/04/14

    应助达人

    TCD和液相上的示差折光检测器有点像,都是通用型检测器,但好像配的都不多。

0
    +关注 私聊
  • zyl3367898

    第4楼2017/04/14

    应助达人

    如果所测多组分样品时色谱峰有正峰也有负峰,这是因为所测多组分中,部分物质的导热系数大于色谱载气的导热系数,部分组分的导热系数小于色谱载气的导热系数,这时如果更换TCD检测器的极性的话,原来的负峰变为正峰,原来的正峰变为了负峰,还是不能彻底解决问题。如果出现这种情况,并且确实需要对样品的全组分进行定量分析的话,就选择色谱工作站上数据处理中的“负峰处理”即可。
    这种情况常见。

0
猜你喜欢最新推荐热门推荐更多推荐
举报帖子

执行举报

点赞用户
好友列表
加载中...
正在为您切换请稍后...