Dr.Karl H. Norris,近红外光谱分析技术,诺贝尔奖
作者:cxlyuli,从事近红外光谱分析技术的研究和应用工作
摘要:本文扼要综述了近红外光谱分析技术的发展里程,主要介绍了Dr. Karl H. Norris对近红外光谱分析技术做出的贡献,并汇总了与近红外光谱相关的诺贝尔奖获得者的贡献。
2019年7月17日被誉为“近红外光谱之父”的Dr. Karl H. Norris去世,享年98岁。7月18日收到国际知名光谱学家日本Ozaki教授发来的邮件:“We share the deep sadness for Dr. KarlNorris. I think his contribution truly corresponds to Nobel Prize. Although we lost the great scientist, we have to keep his great split not onlyin NIR spectroscopy but also in science and engineering. His contribution ismuch wider than NIR spectroscopy. ”Ozaki教授评价Dr.Karl Norris的贡献可以与获得诺贝尔奖的科学家媲美。Ozaki教授的这段话让我萌发写一篇小随笔的冲动,随后系统整理了多年积累的相关文献,几经脉络的调整,终成这篇小文。
一、Dr.Karl H. Norris之前的情况
近红外光是人们发现的第一个非可见光区域,由英国物理学家赫歇耳(F.W.Herschel,1739-1822)发现。赫歇耳是一位天文学家,他通过自己磨制镜片制作的天文望远镜发现了天王星。赫歇耳制作了400多个望远镜提供给天文爱好者使用,其中有些人抱怨通过望远镜观测星体会灼痛眼睛。于是,他设计了一个实验来研究太阳光线的热效应(图1)。赫歇耳利用1666年牛顿发现的三棱镜分光现象将太阳光色散成不同颜色的光,然后用温度计逐一测量不同颜色光的热量,在偶然情况下他发现在红色光之外仍存在更大强度的热量,他断定在红光之外仍存在不可见的光,他用拉丁文称之“红外”(Infra-red)。由于赫歇耳用的棱镜是玻璃制成的,其吸收了中红外区域的辐射,实际上该波段是近红外(Near Infrared,NIR),波长范围大致位于700~1100nm范围内,因此,在一些文献中常把这段短波近红外区域称为Herschel区。
首先,Karl Norris创造性地将传统光谱分析中的吸光度(A=log1/T)用log1/R代替,这明显不符合朗伯-比尔定律,没有任何理论基础,受到当时大多数光谱学家的一致反对。值得庆幸的是Karl Norris不是光谱学家,他是一位农业工程师,以解决实际应用问题为研究导向。Karl Norris的结果非常积极,log1/R与水分存在较强的相关关系。随着研究的深入,他们发现两波长测量谷物水分时会受样品中其他成分的干扰,例如小麦中的蛋白质,大豆中的油脂等。Karl Norris又创新性地将多个波长的吸光度通过多元线性回归(MLR)方法建立预测方程,显著提高了预测谷物水分的准确度。之后很短的时间内,Karl Norris意识到近红外光谱还可以测量这些干扰物的含量,例如蛋白质、油分等。经过Norris的努力,筛选出了6个关键波长(1680nm、1940nm、2100nm、2230nm、2310nm),为随后开发商品化的滤光片仪器奠定了坚实的基础(图5)。为降低颗粒粒度对漫反射光谱的影响,Karl Norris采用导数方法对光谱进行处理,并提出了Karl Norris滤波方法。
1974年瑞典化学家S Wold和美国华盛顿大学的B R Kowalski教授创建了化学计量学学科(Chemometris)。化学计量学是将数学、统计学、计算机科学与化学结合而形成的化学分支学科,其产生的基础是计算机技术的快速发展和分析仪器的现代化。计算机使仪器的控制实现了自动化,且更加精密准确,同时使数据分析变得相对简单了,可以用来处理更为复杂的定量或定性程序。遗憾的是,化学计量学产生初期并没有与近红外光谱在农业中的应用结合起来。是Karl Norris的不懈努力使化学计量学家逐渐重视这一技术,为近红外光谱技术的崛起起到了推波助澜的作用。一些基于主成分分析的化学计量学方法开始被大家所采用,如主成分回归和偏最小二乘等,这显著提高了近红外光谱分析结果的准确性和可靠性,这也是近红外分析理论体系的重要组成部分,是其基本达到了理论与实践的统一。在上世纪九十年代中期,人工神经网络方法已经出现在用于近红外光谱分析的化学计量学商品化软件中。
1984年,T Hirschfeld与B R Kowalski在美国《Science》杂志上发表了题为“Chemical Sensing in Process Analysis”的文章,文中多次提到近红外光谱技术的。Kowalski受美国国家科学基金会(NSF)和21家企业共同资助,在美国华盛顿大学建立了过程分析化学中心(Center for Process Analytical Chemistry,CPAC),后更名为过程分析与控制中心(Center for Process Analysis and Control,CPAC)。该研究中心的核心任务是研究和开发以化学计量学为基础的先进过程分析仪器及分析技术,使之成为生产过程自动控制的组成部分,为生产过程提供定量和定性的信息,这些信息不仅用于对生产过程的控制和调整,而且还用于能源、生产时间和原材料等的有效利用和最优化,近红外光谱是其中一项关键的技术。与CPAC合作的这些企业都是当时化工和石化等领域知名的大企业,这意味着近红外光谱技术已开始从农业应用领域转向工业过程分析领域。与此同时,一些知名的仪器制造商也开始研制新型的近红外光谱仪器,近红外光谱仪器市场和应用研究从此开始呈现出百花齐放的局面。
另外,Dr. Karl H. Norris还是将近红外光谱技术用于医学领域的先行者之一,始终从事和指导近红外光谱在这一领域的研究和应用工作。
三、与近红外光谱相关的诺贝尔奖
下面介绍几个与近红外光谱技术相关的诺贝尔奖。
迈克尔逊干涉仪是1883年美国物理学家迈克尔逊(Albert Abraban Michelson)和莫雷(Edward Williams Morley)合作,为研究“以太”而设计制造出来的精密光学仪器。实验结果否定了“以太”的存在,动摇了经典物理学的基础,为狭义相对论的建立铺平了道路。因发明精密光学仪器和借助这些仪器在光谱学和度量学的研究工作中所做出的贡献,迈克尔逊被授予了1907年度诺贝尔物理学奖。目前,迈克尔逊干涉仪广泛应用于近红外光谱仪器和中红外光谱仪器。
2017年诺贝尔物理学奖授予3位美国科学家Rainer Weiss、Barry C. Barish和Kip S. Thorne,获奖理由是“对LIGO探测器和引力波观测的决定性贡献”。LIGO全称“激光干涉引力波天文台(Laser Interferometer Gravitational-WaveObservatory)”,LIGO项目的成就在于,当引力波到达地球时,两台大型激光干涉仪成功地检测到了这种比原子核还要小数千倍的细微变化(导致的空间变化程度最大值为10-21,相当于1亿千米的长度内产生一个原子大小(10-10米)的变化)。LIGO的干涉仪是迈克尔逊干涉仪在18世纪80年代的巨型版本,创新性的技术和工程将LIGO的干涉仪延伸到1120公里,使LIGO的干涉仪比迈克尔逊所使用的大144000倍,以保证有足够的灵敏度检测到引力波。2015年9月14日,LIGO探测器首次捕获到宇宙中的引力波,这次的引力波信号由两个黑洞相互碰撞而产生,经过了13亿光年才到达地球。
1 W FMcClure. 204 Years of near Infrared Technology: 1800-2003. Journal of NearInfrared Spectroscopy,2003,11(6):487~518
2 F EFowle. The Spectroscopic Determination of Aqueous Vapor. Astrophysical Journal,1921,35(3):149~162
3 K H Norris.Early History of near Infrared for Agricultural Applications. NIR news,1992,3(1):12~13
4 T Davies.Happy 90th Birthday to Karl Norris, Father of NIR Technology. NIR news,2011,22(4):3~16
5 SKawano. Past, present and future near infrared spectroscopy applications forfruit and vegetables. NIR news,2016,27(1):7~9
6 GBatten. An appreciation of the contribution of NIR to agriculture. Journal ofNear Infrared Spectroscopy,1998,6(1):105~114
7 R DRosenthal,D RWebster. On-line system sorts fruit on basis of internal quality. Food Technol,1973,27(1):52~56,60
8 K HNorris,P C Williams. Optimization ofMathematical Treatments of Raw Near-Infrared Signal in the Measurement ofProtein in Hard Red Spring Wheat. I. Influence of Particle Size. Cereal Chem,1984,61(2):158~165
9 K HNorris. When Diffuse Reflectance Became the Choice for Compositional Analysis.1993,4(5):10~11
10 G LBosco,l James. waters symposium 2009 onnear-infrared spectroscopy. Trends in Analytical Chemistry,2010,29(3):197~208
11 T Davies.The history of near infrared spectroscopic analysis: Past, present and future -"From sleeping technique to the morning star of spectroscopy".Analusis,1998,26(4):17~19
12 J S Shenk.Early History of Forage and Feed Analysis by NIR 1972-1983. NIR news,1993,4(1):12~13
13 F EBartonII. Near Infrared Equipment through the Ages and into the Future. NIR news,2016,27(1):41~44
14 T Davies.NIR Instrumentation Companies: The Story So Far. NIR news,1999,10(6):14~15
15 K H Norris.NIR is Alive and Growing. NIR news,2005,16(7):12
16 K H Norris.NIR-spectroscopy From a small beginning to a major performer. Cereal FoodsWorld,1996,41(7):588
17 K JKaffka. Near Infrared Technology in Hungary and the Influence of Karl H. Norrison Our Success. Journal of Near Infrared Spectroscopy,1996,4(1):63~67
18 MIwamoto,S Kawano,YOzaki. An Overview of Research and Development of near Infrared Spectroscopy inJapan. Journal of Near Infrared Spectroscopy,1995,3(4):179~189
19 K HNorris. History of NIR. Journal of Near Infrared Spectroscopy,1996,4(1):31~37
20 PGeladi,E Dåbakk. An Overview of ChemometricsApplications in near Infrared Spectrometry. Journal of Near InfraredSpectroscopy,1995,3(3):119~132
21 J JWorkman. A Review of Process near Infrared Spectroscopy: 1980-1994. Journal ofNear Infrared Spectroscopy,1993,1(4):221~245
22 A M CDavies. The History of near Infrared Spectroscopy 1. The First NIR Spectrum. NIRnews,1991,2(2):12
23 R Miller.Professor Harry Willis and the History of NIR Spectroscopy. NIR news,1991,2(4):12~13
24 K B Whetsel.The First Fifty Years of Near-Infrared Spectroscopy in America. NIR news,1991,2(3):4~5
25 K B Whetsel.American Developments in near Infrared Spectroscopy (1952-70) . NIR news,1991,2(5):12~13
26 D Miskelly,JRonalds,DM Miskellya,J A Ronaldsb. Twenty-One Years of NIR inAustralia: A Retrospective Account with Emphasis on Cereals. NIR news,1994,5(2):10~12
27 B Osborne.Twenty Years of NIR Research at Chorleywood 1974-1993. NIR news,1993,4(2):10~11
28 F E BartonII. Progress in near Infrared Spectroscopy: The People, the Instrumentation,the Applications. NIR news,2003,14(2):10~18
29 P C Williams.The Phil William's Episode. NIR news,1992,3(2):3~4
30 P E KDonaldson. In Herschel's Footsteps. NIR news,2000,11(3):7~8
31 K I Hildrum,TIsaksson. Research on near Infrared Spectroscopy at MATFORSK 1979-1992. NIRnews,1992,3(3):14
32 C Paula,JM Montesb,P Williams. Near Infrared Spectroscopyon Agricultural Harvesters: The Background to Commercial Developments. NIR news,2008,19(8):8~11
33 G D Battena,AB Blakeneyb,S Ciavarellaca,VB McGratha. NIR Helps Raise Crop Yields and Grain Quality. NIR news,2000,11(6):7~9
34 J ReevesIII,SR Delwiche. Near Infrared Research at the Beltsville Agricultural ResearchCenter (Part 1): Instrumentation and Sensing Laboratory. NIR news,2005,16(6):9~12
35 J ReevesIII. Near Infrared Research at the Beltsville Agricultural Research Center(Part 2) . NIR news,2005,16(8):12~13
36 I Foskett.The Art and Science of Interference Filters. NIR news,1993,4(1):3~5
37 R F Goddu.Determination of Unsaturation by Near-Infrared Spectrophotometry. AnalyticalChemistry,1957,29(12):1790~1794
38 R LMeeker,FE Critchfield,E T Bishop. Water determination by nearinfrared spectrophotometry. Analytical Chemistry,1962,34(11):1510~1511
39 R T O’Connor.Near-infrared absorption spectroscopy—a new tool for lipid analysis. Journal ofthe American Oil Chemists' Society,1961,38(11)641~648
40 W A Patterson.Non-Dispersive Types of Infrared Analyzers for Process Control. AppliedSpectroscopy,1952,6(5):17~23
41 J RHart,CGolumbic,K H Norris. Determination of moisturecontent if seeds by near-infrared spectrophotometry of their methanol extracts.Cereal Chem,1962,39(2):94~99
42 K BWhetsel. Near-Infrared Spectrophotometry. Applied Spectroscopy Reviews,1968,2(1):1~67
43 J A Jacquez,WMcKeehan,J Huss,J MDmitroff,H F Kuppenheim. Integration Sphere for MeasuringDiffuse Reflectance in the Near Infrared. J. Opt.Soc. Am.,1955,45(10):781-0
44 D L Wetzel.Near-Infrared reflectance analysis sleeper among spectroscopic techniques.Analytical Chemistry,1983,55(12):1165A~1176A
45 F WMcClure. Near-infrared spectroscopy. the giant is running strong. AnalyticalChemistry,1994,66(1):43A~53A.
46 P Williams.John Shenk's Retirement: Some Tributes from His Friends, Colleagues andStudents. NIR news,2005,16(2):6~12
47 P Flinn.A Giant of a Man: In Memory of John Stoner Shenk II, 1933-2011. NIR news,2011,22(7):4~5
48 T Davies.Karl's London Marathon. NIR news,2002,13(3):3
49 D W Hopkins.What is a Norris Derivative? NIR news,2001,12(3):3~5
50 G E Ritchie.Investigating NIR Transmittance Measurements through the Use of the NorrisRegression (NR) Algorithm: Part 1: How Do We Come to “Norris Regression”? NIRnews,2002,13(1):4~6
51 P Williams.Twenty-Five Years of near Infrared Technology—What Were the Milestones? NIRnews,1997,8(1):5~6
52 W F McClure.Breakthroughs in NIR Spectroscopy: Celebrating the Milestones to a ViableAnalytical Technology. NIR news,2006,17(2):10~11
53 J L Gonczy.Developments in Hungary 1970-1990. NIR news,1993,4(3):3~4
54 T Fearn.Chemometrics for NIR Spectroscopy: Past Present and Future. NIR news,2001,12(2):10~12
55 TDavies. Looking Back… Looking Forward: My Hopes for 2020. NIR news,2006,17(7):3~4
56 P Williams.Near Infrared Technology in Canada. NIR news,1995,6(4):12~13
57 THirschfeld,J B Callis,B RKowalski. Chemical Sensing in Process Analysis. Science,1984,226(4672):312~318
58 THirschfeld. Salinity Determination Using NIRA. Appl. Spectrosc.,1985,39(4):740~741
59 D ABurns,EW Ciurczak. Handbook of Near-Infrared Analysis(ThirdEdition),MarcelDekker Inc,New York,2007
60 M Ferrari,KH Norris,M G Sowa. Medical near InfraredSpectroscopy 35 Years after the Discovery. Journal of Near InfraredSpectroscopy,2012,20(1):vii~ix
61 J T Kuenstnerb,KH Norris. Spectrophotometry of Human Hemoglobin in the near Infrared Regionfrom 1000 to 2500 nm. NIR news,1994,2(2):59~65
62 K H Norris.Moving NIR into the Next Century. NIR news,1999,10(1):4~5
63吴敏,胡高峰,姚文坡,干振华,徐达军,黄亚萍,汪长岭.近红外光谱在医学应用方面的最新进展.中国医疗设备,2017,32(6):109~113
64 薛凤家编著.诺贝尔物理学奖百年回顾.北京:国防工业出版社出版,2003
65 李丽.时空向度的现代探索-诺贝尔物理学奖获得者100年图说.重庆:重庆出版社,2006
66 郭奕玲,沈慧君.诺贝尔物理学奖一百年.上海:上海科学普及出版社,2002
67 吴润,彭蜀晋.光谱分析方法的演变与百年诺贝尔奖.化学教育,2014,35(16):58~64
68 中国仪器仪表学会近红外光谱分会.《回望继承凝聚奋进—我与近红外故事文集》,北京:化学工业出版社,2017
作者:cxlyuli,从事近红外光谱分析技术的研究和应用工作。