仪器信息网APP
选仪器、听讲座、看资讯

【金秋计划】基于ISSR和SCoT分子标记的丹参遗传多样性评价及生境因子对丹酚酸和丹参酮的影响

  • 城头变幻大王骑
    2024/09/12
  • 私聊

中药/天然药检测

  • 优良的遗传基因是决定优质药用植物形成的基础和内在因素[1]。DNA分子标记可以从居群及分子的水平上来阐明优质药用植物产生的生物学本质[2],已有大量报道表明基于DNA分子标记的遗传多样性分析揭示了厚朴、肉苁蓉、甘草等道地药材独特药材品质是由当地独特的环境与药材基因型相互作用所产生的[3-6]。目前,已开发出包括扩增片段长度多态性(amplified fragment length polymorphism,ALFP)、简单重复序列(simple sequence repeats,SSR)、相关序列扩增多态性(sequence related amplified polymorphism,SRAP)、简单重复序列间区(inter-simple sequence repeat,ISSR)、目标起始密码子多态性(start codon targeted polymorphism,SCoT)、单核苷酸多态性(single nucleotide polymorphisms,SNP)在内的大量分子标记可用于药用植物研究[7-9],其中,ISSR和SCoT由于具有引物通用性、随机性、设计简单、重复性好等优势而更加适用于药用植物遗传多样性及亲缘关系分析[10, 11]。
    《神农本草经》中提出“土地所出,真伪新陈,并各有法”。特定的大气、水文、土壤等环境条件造就了不同的药材特性[12]。因此,为了增加药用植物中有效成分的含量,提高药材的品质,需要探索分析药用植物的品质与赖以生存的环境之间的联系[13]。例如,年平均气温、年日照时数、pH、Sr、Ca、S和交换性K等生态因子都是影响远志有效成分和生物活性的主要因素[14]。日照时数、相对湿度是影响黄芪中黄芪甲苷和黄芪多糖及黄酮类成分的关键因子[15]。除遗传因素和环境因素的影响外,药材的栽培、采收技术和产地的初加工等人文因素都会对药用植物的次生代谢产物有影响[16],近年来,随着野生资源的逐渐减少。栽培的中药材已经成为了常用中药的主要来源。大多药材栽培产区的药农在长期栽培过程中结合实践,积累了丰富的种植生产经验,有效的控制了药材的质量[17-18]。
    丹参Salvia miltiorrhiza Bge.隶属唇形科(Labiatae)鼠尾草属Salvia L.,为多年生草本植物[19],以其干燥根及根茎入药,用于治疗胸痹心痛、月经不调、疮瘍肿痛等病症[20]。丹参酮Ⅰ、丹参酮ⅡA、隐丹参酮等是丹参中主要的二萜类有效成分[21-22]。迷迭香酸、丹酚酸A、丹酚酸B等则是主要的酚酸类成分[23-24]。现代药理学认为,丹参酮类和丹酚酸类化合物(尤其是丹酚酸B)均具有较强的抗肿瘤、抗菌消炎、心脏保护等多种药理作用,临床上广泛应用于心脑血管疾病的治疗[25-26]。丹参一般栽种在海拔较低的丘陵地带,野生丹参常见于草丛、林下、山坡及溪谷旁[27]。其对环境的适应性较强,广泛的分布于我国华东、华中、华北、华南等地区,西北、西南的部分省区也有分布。四川、山东、陕西、河南是丹参栽培的传统道地产区,其中,四川中江所产丹参在各产区丹参中品质较佳,一直作为中药丹参出口的优质道地药材,大量出口于中国周边东南亚国家。
    近年以来,由于丹参长期的只种不选导致栽培品种退化,质量下降,使得道地性丧失。另一方面,由于过度采挖,导致野生资源遭到破坏,而临床需求量不断增大使得丹参资源日益紧缺、丹参的药材市场混杂,药材质量和数量难以保证,严重影响其疗效,制约其产业发展。因此,本研究以采自四川中江、陕西商州(镇安、山阳)、山东蒙阴(临朐、济阳、新泰、平邑)、河南伊川、山西曲沃等丹参主要栽培区的丹参样品以及栽培区土壤气候为研究对象,利用ISSR和SCoT标记对不同产区丹参进行遗传多样性评价,并结合有效成分、生态环境的分析,明确影响丹参品质的主导因子以及丹参种植的适宜环境,以期为丹参的高产稳产、优质及后续丹参扩大种植的产区选择提供理论依据。
    1 仪器与材料
    T100 PCR仪(美国Bio-Rad公司)、GelDoc XR凝胶成像系统(美国Bio-Rad公司)、DYY-7C型电泳仪(北京六一生物科技有限公司)、BCD-532WDPT型超低温冰箱(青岛海尔股份有限公司)、LC-20A型高效液相色谱(日本岛津公司)、CR22N型高速冷冻离心机(德国Eppendorf公司)、Thermo Scientific? iCAP? PRO XP ICP-OES(美国Thermo Fisher公司)等。本研究共采集22个丹参S. miltiorrhiza Bge.居群,每个居群随机选取3株植株分别取适量幼嫩叶片,用于丹参遗传关系的分析。选择部分产地丹参为代表测定丹参有效成分,同时采集丹参根际土壤,材料采集信息如表1、2所示。

    2 方法
    2.1 ISSR和SCoT分子标记分析
    使用植物DNA提取试剂盒(浙江兰博生物科技有限公司)提取四川、山东、陕西、河南、山西5个省22个居群66份材料的DNA。由擎科生物技术有限公司合成UBC加拿大哥伦比亚大学设计的ISSR引物和Collard & Mackill开发的36条SCoT引物[28-29]。2种分子标记的PCR反应体系均为10 μL 2×Taq PCR Master MIX Ⅱ(北京天根生物科技有限公司)、引物1 μL、模版DNA 1 μL、ddH2O补齐至总体积20 μL。ISSR标记的PCR扩增步骤为:94 ℃预变性10 min,39个循环下94 ℃变性30 s、48~59 ℃退火1 min、72 ℃延伸1 min,最后再设置72 ℃继续延伸10 min。SCoT标记的PCR扩增步骤为:94 ℃预变性5 min,36个循环下94 ℃变性30 s、52.9~59.7 ℃退火90 s、72 ℃延伸1 min,最后72 ℃继续延伸10 min。
    2.2 丹酚酸和丹参酮类成分测定
    按照《中国药典》2020年版[20]所规定的提取方法及色谱条件,提取不同居群丹参中的丹参酮Ⅰ、丹参酮ⅡA、隐丹参酮和丹酚酸B,并利用高效液相色谱法(HPLC)进行含量测定。
    2.3 气象指标调查
    在中国气象数据网(http://data.cma.cn)上查询极大风速、最低气压、最高气压、最高温度、平均气温、平均最高气温、平均气压、平均水气压、平均2 min风速、平均相对湿度、日降水量≥0.1 mm日数、日照时数、最大风速、最大日降水量和最小相对湿度等15个气象指标。
    2.4 土壤理化检测
    参照《土壤分析技术规范》(第二版)[30]中土壤样品的采集、处理与贮存,采用五点取样法,收集丹参种植土壤,混合均匀,自然风干,过筛备用。并参照其中方法测定土壤有机质(油浴加热重铬酸钾氧化-容量法)、颗粒组成(比重计法)、阳离子交换量(乙酸钙法)、全N(凯氏蒸馏法)、全P(氢氧化钠熔融—钼锑抗比色法)、全K(原子吸收分光光度法)、水解N(碱解扩散法)、有效P(碳酸氢钠法)、速效K(火焰光度计测定法[31])、全量铜、锰、锌、钠、钙、镁、硼、铝(电感耦合等离子体原子发射光谱法)。
    2.5 数据处理与分析
    利用Excel 2019、SPSS 19.0进行数据的统计和分析,本研究所有数据均保证3个生物重复和3个技术重复。对于扩增产物的电泳结果,有条带的记为“1”,无条带的记为“0”,通过Excel 2019统计扩增位点总数(total number of amplification bits,TB)和多态性位点数(number of polymorphic bits,PB)。采用非加权组算术平均法(UPGMA)进行聚类分析。使用POPGENE 1.32分析得到的存在/不存在数据矩阵,计算等位基因数(number of alleles,Na)、有效等位基因数(effective number of alleles,Ne)、Nei氏基因多样性指数(Nei’s gene diversity index,H)、香农信息指数(Shannon information index,I)、多态性百分比(percentage of polymorphic bits,PPB)等遗传参数。
    3 结果与分析
    3.1 ISSR和SCoT标记多态性分析
    本研究从42对ISSR引物中筛选出了14对扩增条带清晰,多态性好、重复性好的引物,用于后续ISSR多样性分析。共扩增出140条条带,其中有133条多态性条带,PPB达到95%,平均每对引物扩增得到10条条带。引物UBC 808、UBC 823、UBC 825、UBC 834扩增的条带数目最多,有12条,多态性条带也是12条,PPB为100%。引物UBC 841扩增得到的条带数目最少为7条,(图1-A,表3)。

    利用POPGENE 1.32计算,得到Na、Ne、H和I。其中UBC 811的Ne、H、I各项指数最高,分别为1.68、0.37和0.53。UBC 825的Ne、H、I各项指数最低,分别为1.19、0.14和0.26。Na、Ne、H和I平均值分别为1.95、1.41、0.24和0.37(表3)。
    从36对SCoT引物中共筛选出10个扩增条带清晰、重复性好的引物,用于扩增22个?丹参居群(66个样本)的DNA。共扩增出97条条带,其中93条为多态性条带,平均多态性率为95.88%(图1-B,表4)。SCOT 28引物的扩增条带数最低为7条,多态性条带也是7条,PPB为100%。SCOT 3引物的扩增条数最高(14条),多态性率为100%,表明SCoT引物也具有较高的多态性和信息量。SCoT 28的Ne、H、I各项指数最高,分别为1.70、0.40和0.58。SCoT 14的Ne、H、I各项指数最低,分别为1.33、0.19和0.31。Na、Ne、H和I平均值分别为1.96、1.51、0.30和0.45(表4)。

    3.2 不同居群丹参遗传多样性分析
    结合ISSR和SCoT标记计算不同居群丹参的遗传多样性参数,Na范围1.64~1.79,平均值为1.71,Ne为1.34~1.43,平均值为1.38。H为0.21~0.26,平均值为0.23,I为0.31~0.37,平均值为0.35。其中,山东产区各居群的杂合度较高,遗传多样性较为丰富,四川中江产区杂合度较低,遗传多样性较低,稳定性较强(表5)。

    3.3 不同丹参居群间遗传距离、PCA及聚类分析
    遗传距离是用来衡量居群之间亲缘关系的重要参数,遗传距离越小,代表居群间的亲缘关系越近。结合ISSR和SCoT标记,计算了居群间的遗传距离,如图2-A所示,方格颜色越蓝代表2个居群间的遗传距离越近,越红则越远。来自四川中江的5个居群(SCZJ-1、SCZJ-2、SCZJ-3、SCZJ-4、SCZJ-5)互相之间表现出较近的遗传距离,而其他居群间的遗传距离较远。PCA分析和UPGMA聚类分析均表明SCZJ-1、SCZJ-2、SCZJ-3、SCZJ-4、SCZJ-5聚到了一类,而山东产区的丹参居群混杂的聚到了河南、陕西产区的类群中(图2-B、C)。总体说明四川中江各居群间的遗传稳定性较强,亲缘关系较近,而山东各居群的遗传变异性较大,亲缘关系混杂。

    3.4 不同居群丹参有效成分含量测定
    测定了不同产区丹参中丹酚酸B、隐丹参酮、丹参酮Ⅰ、丹参酮ⅡA和总丹参酮的含量。色谱图见图3。各产地丹参的丹酚酸B含量均达到《中国药典》2020年版要求,其中,四川中江(SCZJ)的丹酚酸B含量远高于药典规定的3%,并且显著高于其他产区栽培丹参。陕西野生丹参(SXZA-Y、SXSY-Y)也具有较高的丹酚酸B含量,具体结果见图4。除了山西曲沃(SXQW)丹参酮总量未达到《中国药典》要求外,其他产地均达到《中国药典》的0.25%。此外,2个陕西野生丹参(SXZA-Y、SXSY-Y)的总丹参酮含量均未达到《中国药典》要求,且明显低于各产区栽培丹参。

    山东蒙阴(SDMY)的隐丹参酮、丹参酮Ⅰ以及总丹参酮含量均显著高于其他产区,并且,SDMY和山东济南(SDJN)的丹参酮ⅡA含量显著高于其他产区。此外,SCZJ、山东临朐(SDLQ)、山东新泰(SDXT)和河南伊川(HNYC)等产区也具有较高的丹参酮ⅡA含量。总体而言,SCZJ富含丹酚酸B,山东产区丹参的丹参酮含量普遍较高,而SXQW的丹参酮类化合物和丹酚酸B均显著低于其他产区。
    3.5 丹参产地气候资料收集与分析
    丹参各产地间的多个气象因子均有明显差异,其中,平均相对湿度在51.02%~80.91%,日降水量≥0.1 mm的天数在66~123 d,这2个气候因子均以四川中江最高,陕西商州次之,山西曲沃最低。最大日降水量32.0~151.8 mm,年日照时数在1 084.4~2 363.4 h,其中,四川中江和陕西商州的日照时数明显低于其他几个产地。平均气温在13.37~17.77 ℃,陕西商州最低,四川中江最高。平均最高气温(19.68~22.33 ℃)也是四川中江为最高,陕西商州为最低。山东产区最高气压、最低气压、平均气压、日照时数均高于其他产区,但其日降水量≥0.1 mm日数低于其他产区。山西曲沃产区的降水量最少,相对湿度最低(表6)。

    3.6 丹参种植土壤理化性质分析
    11个不同的产地中有6个产地为壤质黏土,2个产地为砂质壤土,2个产地为黏壤土,1个产地为砂质黏壤土。丹参种植土壤多为壤质黏土,没有过砂和过黏的土壤(表7)。进一步对不同产地丹参种植土壤的pH、有机质含量、阳离子交换量进行测定,结果显示SXQW丹参种植土壤pH最高(8.37),SDMY丹参种植土壤pH最小(6.75),不同产区土壤pH值介于6.75~8.37栽培产区丹参种植土壤pH值呈中性和弱碱性,由此可见,丹参在中性和微碱性的土壤中都可生长(图5-A)。丹参种植土壤中有机质含量以SDXT最高,为28.17 g/kg;以SXZA-Y最低,为7.15 g/kg,除了SDMY和SXZA-Y偏低外,有机质含量大多为10~20 g/kg(图5-B)。土壤阳离子交换量是衡量土壤肥力的指标和合理施肥的重要依据,本次研究结果表明不同采集地丹参种植土壤阳离子交换量均有显著性差异(P<0.05)。其中SXSY-Y土壤阳离子交换量最高,为20.482 cmol(+)/kg。除SDXT和SDPY 2个产地含量较低外,其他几个产地丹参种植土壤阳离子交换量均在10~20 cmol(+)/kg(图5-C)。

    3.7 不同产地丹参土壤中矿质元素分析
    通过对丹参种植土壤速效N、P、K的研究发现,不同产地丹参种植土壤碱解N含量差别较大,含量在3.80~66.85 mg/kg,其中,SXQW土壤碱解N含量最低(3.80 mg/kg),SCZJ和SDMY 2个产地土壤碱解N含量较其他产地丰富。土壤速效P质量分数处于27.61~63.29 mg/kg,11份土壤样品速效P含量均较丰富。土壤速效K研究结果表明,SXQW土壤速效K量极高,达到420.95 mg/kg。不同产地全N量在1.00~4.97 g/kg不等,全P量在0.19~0.67 g/kg,全K量在9.27~25.46 g/kg(表8)。进一步对不同采集地丹参种植土壤中的微量元素进行测定,8种无机元素中Ca的含量最高,Cu的含量最低。各产地中Na、Ca、B和Mg元素的变化范围很大,这不仅与土壤的理化性质有关,而且与植物自生营养的吸收以及代谢产物的合成有关。道地产区SCZJ产地的丹参种植土壤中Al、Mn、Ca、Mg等无机元素含量明显低于其他大部分产地,B含量高于其他产地(表9)。

    3.8 环境因子与丹参有效成分相关性
    丹参药材中的有效成分与气象因子之间呈现出不同程度的相关性,风速、气压等与丹参酮ⅡA、丹参酮Ⅰ、隐丹参酮呈显著(P<0.05)或极显著正相关(P<0.01)。日降水量≥0.1 mm日数与丹参酮Ⅰ含量呈显著负相关(P<0.05)。平均水气压、平均相对湿度、日降水量≥0.1 mm日数与丹酚酸B含量成显著(P<0.05)或极显著(P<0.01)正相关,日照时数与丹酚酸B含量成显著负相关(P<0.05)(图6-A)。同时,将土壤理化指标及矿质元素含量与丹参有效成分进行相关性分析,发现隐丹参酮含量与土壤质地中<0.002 mm粒径含量显著性负相关(P<0.05),丹酚酸B含量与土壤有机质呈显著性负相关(P<0.05)(图6-B)。隐丹参酮含量与丹参种植土壤中的Cu、Mg元素含量呈极显著(P<0.01)正相关,丹酚酸类化合物中的丹酚酸B含量与碱解N(HN)含量呈极显著性正相关(P<0.01),与K、速效K(AK)含量呈显著(P<0.05)或极显著负相关(P<0.01)(图6-C)。

    综上所述,风速、气压以及土壤中Cu、Mg元素含量是促进丹参酮类成分积累的主要环境因子,气压、湿度、降水量、以及土壤中碱解N含量主要促进了丹酚酸B含量的积累。同样的,过多的降水,土壤粒径过小也会抑制丹参酮的积累。日照过长、土壤中有机质含量或是钾离子含量过高则阻碍了丹酚酸B的积累。
    3.9 遗传因子与环境因子、有效成分之间的相关性
    平均水气压与Na、I之间呈显著负相关,平均相对湿度与Na显著负相关,与Ne和I极显著负相关。平均最高气温与H呈显著负相关,日降水量≥0.1 mm日数与Na和H显著负相关,与Ne和I极显著负相关。日照时数与Na、Ne和I极显著正相关,与H显著正相关(图7-A)。pH、阳离子交换量、有机质含量以及土壤粒径含量等指标与遗传因子之间均不具有显著相关性(图7-B)。土壤中的N与H呈显著正相关,而碱解氮(HN)与H呈显著负相关。Al与H显著正相关,Ca与Ne显著正相关,与H极显著正相关(图7-C)。I与丹参酮ⅡA含量显著正相关,丹参酮I与Na呈显著正相关,与Ne、H和I呈极显著正相关,I与隐丹参酮含量显著正相关,而丹酚酸B含量与H和I显著负相关(图7-D)。综上所述,水气压、湿度、气温、降水、日照等气候因子以及土壤中N、Al和Ca影响了丹参的遗传变异。不同居群丹参的遗传多样性越强可以促进丹参酮类成分的积累,而遗传稳定性越强则有助于丹酚酸B含量的积累。

    4 讨论
    ISSR和SCoT标记由于引物设计具有随机性和通用性的特点,在以往多种药用植物的研究中均表现出高的多态性[32-34]。本研究利用这2种标记对不同居群丹参遗传多样性进行分析,基于PPB、Na、Ne、H、I、Ht、Hs等指标发现ISSR和SCoT都具有丰富的多态性,说明了它们都是鉴别丹参亲缘关系的有力标记。结合ISSR和SCoT标记分析的不同居群丹参之间的遗传距离指数进行聚类分析,四川中江所有居群(SCZJ1~SCZJ5)单独聚到一类,在DNA水平和其他群体产生了较大的差异,是由于四川丹参花发育异常导致不结实,长期采取无性繁殖[35-36]。这种繁殖方式加速了四川丹参的地理隔离进程,阻碍了与其他产区丹参之间的基因交流。而四川丹参表现出的色朱味浓、皮细而肥壮、丹酚酸B含量高等独特的性状,与其在基因型上与其他产区丹参的差异密切相关。但是,长期单一的无性繁殖方式会导致其种性退化,因此,想要促进四川丹参产业的可持续性发展,应加强对四川丹参的品种选育和资源保护。
    温春秀等利用AFLP对几个丹参居群的遗传分化情况进行了研究,结果显示山东居群丹参的遗传多样性最丰富[37]。本研究得到的分析结果与其一致,山东产区丹参居群分布在不同聚类组中,并且其遗传距离和地理分布没有直接的相关性,显示山东丹参遗传变异较大,这可能是由于山东丹参栽培主要靠种子繁殖,同时丹参在山东种植区域分布很广,人工选育和引种的手段也是导致其遗传变异大,种质资源混杂的原因之一[38]。所以后续应加强山东丹参种植过程中的种子种苗选育过程,从而来保证其种质的稳定。
    药材道地性的形成往往是生态环境与基因型相互作用的结果,不同产地之间的气候类型存在一定差异,或许是造就不同产区丹参遗传变异以及质量差异的重要原因。在本研究中,风速、气压与丹参酮类成分含量呈显著正相关,降水量≥0.1 mm日数与丹参酮I含量呈显著负相关。可能是由于降水较少,植物易受到干旱胁迫,轻度的干旱胁迫能够促进丹参酮类成分的积累[39],且降水量≥0.1 mm日数与Na、Ne、H、I等遗传因子均显著负相关,而这些遗传因子与丹参酮类有效成分呈显著正相关,说明降水过多会制约丹参的遗传多样性,将不利于丹参酮类成分积累。但相对湿度不足的情况下,降水量过低则导致重度干旱,同时也会抑制有效成分的积累,这可能是山西产区有效成分偏低的原因。本研究还发现,水气压、相对湿度和日降水量≥0.1 mm日数与丹酚酸B含量呈显著正相关,日照时数与丹酚酸B含量呈显著负相关。已有研究表明,轻度的水分涝胁迫能显著提高丹酚酸B的含量,降低丹参酮的含量[40]。丹参是喜光植物,一定的日照时数有利于有机物的合成积累,但过长的日照时数则会引起土壤水分的蒸发,抑制丹参根系生长,因此日照时数保证的情况下,较少的日照时数和充足的降水量有利于植物根系的生长,从而导致分布在整个根的丹酚酸B含量的积累[41]。并且,水气压、相对湿度和日降水量≥0.1 mm日数与Na、Ne、H、I等遗传因子呈显著负相关,而这些遗传因子与丹酚酸B含量具有显著负相关关系。说明了这些气候因子可以增强丹参居群的遗传稳定性,从而促进丹酚酸B含量积累。总体而言,降水量、湿度和日照时数是影响丹参遗传变异和有效成分的主要气候因子,这与此前余彦鸽对野生丹参生态因子分析研究的结果相似[31]。其中,降水量介导了丹酚酸B和丹参酮含量积累的分流。因此,后期可根据当地的降水量、湿度和日照时数等条件判断是否适宜丹参种植。
    除气候因素外,由于不同的土壤类型中土壤质地及理化性质差异会引起土壤水、热、养分、通透性的不同,从而影响到植物根系水分及养分吸收,最终也会对药用植物的生长发育和产量、质量造成一定影响[42-43]。本研究中,土壤粒径<0.002 mm以后将不利于隐丹参酮的积累。这可能与植物成分在根系的分布类型有一定关系,水溶性成分相对于脂溶性成分的分布在全根中比较均匀,脂溶性丹参酮主要都集中在表皮上,所以更易受到土壤质地的影响。土壤中矿质元素是影响药用植物生长发育及次生代谢物积累的生态因子[44-46],中药材生长所需要的矿质元素主要有N、P、K等10多种[47]。本研究发现,隐丹参酮含量与无机元素Cu和Mg含量呈显著正相关,Cu和Mg是植物所需的微量元素,适量的Cu和Mg积累能促进药用植物中有效成分合成。丹酚酸B含量与碱解N呈显著性正相关,与K、速效K呈显著负相关,碱解N含量与H遗传因子显著负相关,而H与丹酚酸B含量显著负相关,说明碱解N能促进丹参遗传稳定性,从而促进丹酚酸B积累。为了确保丹酚酸B的积累,在丹参栽培过程中,应当适当增加N肥,减少K肥的追施。
    总体而言,探寻优良遗传基因,选育优良品种是保护丹参种质资源以及保证丹参产业可持续发展的重要手段。此外,选择适宜的气候土壤种植环境,合理施用肥料,也是改善丹参品质的有效方式。
猜你喜欢最新推荐热门推荐更多推荐
举报帖子

执行举报

点赞用户
好友列表
加载中...
正在为您切换请稍后...