仪器信息网APP
选仪器、听讲座、看资讯

葛根芩连汤成分间自组装纳米粒改善伊立替康所致肠毒性作用研究

  • 城头变幻大王骑
    2024/09/12
  • 私聊

中药/天然药检测

  • 中药汤剂是中医临床用药的重要形式,由于中药成分复杂多样,化学成分存在游离态、结合态、络合态等多种化学结构形态,因此,汤液常包含了真溶液、胶体溶液、混悬液等多种相态分散体系。现代对中药汤剂质量的研究大多集中于汤液中化学成分的种类和含量,但中药成分在煎煮过程中极易发生相互作用,成分间产生范德华力、氢键、静电作用、π-π堆积等物理相互作用,或美拉德反应、氧化反应、水解反应等化学反应[1],从而形成成分聚集体,影响汤液中中药成分的形态和含量。近年来,研究者发现中药汤剂中普遍存在纳米级颗粒[2],尤其是中药成分在煎煮过程经非共价键作用力自组装形成的颗粒、凝胶、纤维等聚集体,常表现出抗炎、镇痛、抗菌等生物活性[3]。如完茂林等[4]研究发现,22种中草药水煎液中均存在大量纳米级颗粒;Zhang等[5]研究发现黄连解毒汤(Huanglian Jiedu Decoction,HJD)中产生的聚集物主要由黄芩苷和小檗碱相互作用形成;Li等[6]证实了小檗碱可分别与黄芩苷、汉黄芩苷通过静电作用和疏水作用共同驱动自组装成纳米粒;Tian等[7]发现通过大黄酸氢键分层、小檗碱π-π堆积与静电相互作用,形成小檗碱在内、大黄酸在外的核-壳纳米结构。除此之外,有研究者证实HJD水煎中化学成分结合而产生的聚集物具有确切的抗神经细胞损伤和抑制神经细胞凋亡的作用,且聚集物的效果优于上清液[5];葛根芩连汤(Gegen Qinlian Decoction,GQD)的组成性聚集物比可溶性成分具有更强的降血糖和抗氧化活性[8]。关于中药汤剂成分互作形成纳米聚集体与其药效作用具有相关性,有待于进一步深入探索。
    GQD出自东汉张仲景所著的《伤寒杂病论》,该方由君药葛根、臣药黄连、黄芩,佐使药甘草组成[9],主要包括黄酮类、生物碱类、三萜类及三萜皂苷类等成分。GQD临床常用于治疗急性肠炎、细菌性痢疾、肠伤寒、胃肠型感冒等属表证未解,里热甚者,现代研究发现其具有解热抗菌、抗炎止泻、降糖调脂、抗心律失常、抗缺氧和增强免疫功能等药理作用[10-11]。抗肿瘤药物伊立替康(CPT-11)[12]临床应用过程常引起患者严重肠毒性,即迟发性腹泻,导致病人产生脱水、营养不良、电解质失衡、感染等症状,进而可能导致肾功能障碍、心脏疾病或免疫破坏,甚至死亡。目前,临床常用洛派丁胺、醋托啡烷、布地奈德等药物缓解腹泻[12-14],但效果并不理想。课题组前期研究证实,GQD可显著缓解CPT-11所致的迟发性腹泻,通过降低小鼠腹泻发生率和死亡率,减轻小鼠肠道损伤,抑制炎症因子及降低肠道酶活性等来发挥减毒作用[15-16],但其药效物质基础及作用方式有待于深入研究。
    基于中药汤剂中广泛存在成分间相互作用形成聚集体,本研究拟选用源自GQD的6种有效成分(小檗碱、巴马汀、汉黄芩苷、黄芩苷、葛根素、甘草酸),考察成分间组合形成自组装纳米粒的能力和特性,同时基于GQD有效缓解CPT-11肠毒性的药理作用,考察制备得到的几种自组装纳米粒药效作用,从成分互作角度揭示GQD物质基础与药效的相关性,为揭示中药配伍煎煮科学内涵提供新思路。
    1 仪器与材料
    1.1 仪器与试剂
    Agilent1260型高效液相色谱仪,美国安捷伦科技有限公司;DF-101S型集热式恒温加热磁力搅拌器,上海邦西仪器科技有限公司;Litesizer 500型纳米粒度及ζ电位分析仪,上海安东帕商贸有限公司;HT7800型透射电子显微镜,日立高新技术(上海)国际贸易有限公司;Scientz-10N型冷冻干燥机,宁波新芝生物科技有限公司;A50型紫外分光光度计,翱艺仪器上海有限公司;Thermo Scientific Nicolet iS5型傅里叶红外光谱仪,美国赛默飞世尔科技公司;MK3型酶标仪,芬兰雷勃集团公司;Fresco17型冷冻离心机,美国Thermo Scientific公司;UPR-Ⅱ-10T型优普系列超纯水器,四川优普超纯科技有限公司。
    盐酸伊立替康(CPT-11),批号A0813A,质量分数≥99%,大连美仑生物技术有限公司;对照品小檗碱(批号AZBI1408)、汉黄芩苷(批号AF21110611)、黄芩苷(批号AZCD1316)、葛根素(批号AFBL0953)、巴马汀(批号AFCB0951)、甘草酸(批号AFCE1008),质量分数≥98%,成都埃法生物科技有限公司;肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α,批号20230804)、白细胞介素-1β(interleukin-1β,IL-1β,批号20230628)、IL-10(批号20230628)的酶联免疫吸附(ELISA)试剂盒,成都诺舟生物技术有限公司;Bradford蛋白浓度测定试剂盒,批号032023230523,碧云天生物技术有限公司;水为实验室超纯水;甲醇、甲酸、磷酸,色谱纯,上海西格玛奥德里奇贸易有限公司;四氢呋喃、丙酮,色谱级,成都市诺尔施科技有限责任公司。
    1.2 动物
    ICR种雄性小鼠,体质量(20±2)g,购自斯贝福(北京)生物技术有限公司,生产许可证:SCXK(京)2019-0010。动物实验均按照中国国家科学技术委员会颁布的“实验动物管理条例”和成都中医药大学动物实验伦理委员会批准的议定书(批准文号2020DL-126)规范执行。
    2 方法与结果
    2.1 组分纳米粒的制备
    GQD中有黄连、黄芩、葛根、甘草4种药味,黄连代表性有效成分小檗碱和巴马汀,黄芩代表性有效成分汉黄芩苷和黄芩苷,葛根代表性有效成分葛根素,甘草代表性有效成分甘草酸。采用溶剂挥发法,分别制备小檗碱-汉黄芩苷自组装纳米粒(berberine-wogonoside nanoparticles,Ber-Wog NPs)、小檗碱-葛根素自组装纳米粒(berberine-puerarin nanoparticles,Ber-Pue NPs)、黄芩苷-葛根素自组装纳米粒(baicalin-puerarin nanoparticles,Bai-Pue NPs)、黄芩苷-巴马汀自组装纳米粒(baicalin-palmatine nanoparticles,Bai-Pal NPs)、黄芩苷-甘草酸自组装纳米粒(baicalin-glycyrrhizic acid nanoparticles,Bai-GA NPs)。
    精密称定小檗碱3.36 mg溶解于磷酸盐缓冲液(phosphate buffered saline,PBS),精密称定汉黄芩苷4.60 mg溶解于四氢呋喃,按照两者物质的量比为1∶1,将有机相缓慢匀速滴加至水相,边滴加边搅拌,滴加完毕后于在磁力搅拌器上37℃恒温400 r/min搅拌1 h,待有机溶剂挥尽后,0.45 μm微孔滤膜滤过,即得Ber-Wog NPs。同法,制备Ber-Pue NPs、Bai-Pue NPs、Bai-Pal NPs、Bai-GA NPs。
    2.2 组分纳米粒的表征
    2.2.1 组分纳米粒理化性质 如图1所示,所形成的5种纳米粒均为透明溶液,其中Ber-Wog NPs、Ber-Pue NPs、Bai-Pal NPs呈淡黄色,Bai-Pue NPs和Bai-GA NPs呈无色,且静置稳定性较好。取10 μL样品溶液于碳膜铜网上,静置1 min后将多余液体从铜网边缘除去,将3%磷钨酸水溶液滴加1滴至铜网表面,负染2 min后用滤纸吸附多余染料,待液体挥干后采用透射电子显微镜(transmission electron microscope,TEM)拍摄其形态,结果见图1,TEM显示5种纳米粒均呈现出球状型。量取1 mL纳米溶液,采用Litesizer 500纳米粒度仪测定纳米溶液粒径分布,如表1所示,结果显示5种纳米粒平均粒径均在200 nm左右,多分散指数(polydispersity index,PDI)均小于0.25,粒径分布较均匀,分散性较好。

    2.2.2 包封率与载药量的测定
    (1)小檗碱、巴马汀、葛根素的HPLC色谱条件[17]:色谱柱为Sunfire C18柱(150 mm×3.0 mm,3.5 μm)。流动相为水-甲醇,检测波长:346 nm(小檗碱、巴马汀),250 nm(葛根素);体积流量1 mL/min;进样量10 μL;柱温25 ℃;梯度洗脱:0~10 min,30%甲醇;10~15 min,30%~82%甲醇;15~18 min,82%~85%甲醇;18~20 min,85%~30%甲醇。
    (2)甘草酸的HPLC色谱条件[18]:色谱柱为Sunfire C18柱(150 mm×3.0 mm,3.5 μm);流动相为0.1%磷酸水溶液-甲醇(25∶75);检测波长250 nm;体积流量1.0 mL/min;进样量10 μL;柱温25 ℃;等度洗脱20 min。
    (3)黄芩苷、汉黄芩苷的HPLC色谱条件[19]:色谱柱为Sunfire C18柱(150 mm×3.0 mm,3.5 μm);流动相为0.1%甲酸水溶液-甲醇(35∶65);检测波长280 nm;体积流量1.0 mL/min;进样量20 μL;柱温30 ℃;等度洗脱10 min。
    (4)包封率与载药量的测定:分别精密量取0.5 mL Ber-Wog NPs、Ber-Pue NPs、Bai-Pue NPs、Bai-Pal NPs、Bai-GA NPs于超滤离心管中,在超速离心机上以30 000 r/min,离心半径为4.44 cm,超速离心20 min。取外管滤液0.2 mL,用甲醇定容至2 mL,超声20 min(频率40 kHz、功率100 W),按上述色谱条件测定游离药物质量浓度。
    另取未经离心的纳米溶液0.2 mL,至2 mL量瓶中,按照“2.2.2”项下方法操作测定样品中小檗碱、汉黄芩苷、黄芩苷、葛根素、巴马汀、甘草酸的含量,根据公式计算包封率和载药量,结果如表2所示。
    包封率=(投入药量-游离药量)/投入药量
    载药量=(投入药量-游离药量)/投入总药量

    2.2.3 组分自组装纳米的光谱特性
    (1)紫外光谱测定:分子发生相互作用后,会影响共轭基团电子排布,因此可根据紫外可见光谱的变化推测物质相互作用规律[20]。
    采用紫外-可见吸收光谱在200~500 nm对自组装纳米进行扫描,并与2种游离成分的光谱进行对比。结果如图2所示,小檗碱的特征吸收峰在228、263、344 nm,汉黄芩苷的特征吸收峰在205、273 nm,Ber-Wog NPs在206、271、343 nm处出现较强吸收峰,具有与游离小檗碱和汉黄芩苷的特征,但Ber-Wog NPs的吸收峰出现从游离汉黄芩苷273~271 nm的微小蓝移,从游离小檗碱的344~343 nm的微小蓝移,表明小檗碱和汉黄芩苷在Ber-Wog NPs中存在非共价键作用。

    同理,Ber-Pue NPs紫外光谱也具有游离小檗碱和葛根素的特征吸收峰,但存在从游离小檗碱的228、263、344 nm吸收峰蓝移至204、262、331 nm处,而游离葛根素的203、252 nm红移,表明小檗碱和葛根素在Ber-Pue NPs中存在非共价键作用。Bai-Pue NPs紫外光谱也具有游离黄芩苷和葛根素的特征吸收峰,但存在从游离黄芩苷的286、317 nm吸收峰蓝移至206、271、316 nm处,而游离葛根素的203、252 nm红移,表明黄芩苷和葛根素在Bai-Pue NPs中存在非共价键作用。
    Bai-Pal NPs在205、275、329 nm处出现较强吸收峰,具有游离黄芩苷和巴马汀的特征吸收峰,但存在从游离黄芩苷的286 nm吸收峰蓝移至275 nm处,317 nm红移至329 nm处,而游离巴马汀的201、274 nm红移至205、275 nm处,341 nm蓝移至329 nm处,表明黄芩苷和葛根素在Bai-Pue NPs中存在非共价键作用。Bai-Ga NPs紫外光谱也具有游离黄芩苷和甘草酸的特征吸收峰,但存在从游离黄芩苷的286、317 nm吸收峰蓝移至271、316 nm处,而游离甘草酸的258 nm红移,表明黄芩苷和甘草酸在Bai-GA NPs中存在非共价键作用。由此可得,5种制剂自组装纳米粒存在两两成分间非共价键相互作用。
    (2)傅里叶红外光谱的测定:采用傅里叶转换红外光谱仪对5种自组装纳米药物的光谱性质进行测定,扫描范围为4 000~400 cm?1,与其组成成分游离形式进行对比,分析分子间非共价键力的类型。如图3所示,Ber-Wog NPs中具有类似于游离小檗碱和汉黄芩苷的特征吸收带,但小檗碱中C=N伸缩振动峰在1 601.58 cm?1处,在形成Ber-Wog NPs后向高波段移动至1 635.89 cm?1,汉黄芩苷中C-O伸缩振动峰1 129.50 cm?1,在形成Ber-Wog NPs后向高波段移动至1 145.97 cm?1,由此证明Ber-Wog NPs中小檗碱和汉黄芩苷存在π-π堆积作用。

    同理,Ber-Pue NPs中具有类似于游离小檗碱和葛根素的特征吸收带,但小檗碱中的C-O伸缩振动峰在1 103.16 cm?1,在形成Ber-Pue NPs后向低波段移动至1 069.33 cm?1,葛根素中吡喃葡萄糖上的-OH的弯曲振动峰在1 407.22 cm?1,在形成Ber-Pue NPs后向高波段移动至1 457.19 cm?1,由此证明Ber-Pue NPs中小檗碱和葛根素存在氢键和π-π堆积作用。Bai-Pue NPs中具有类似于游离黄芩苷和葛根素的特征吸收带,但黄芩苷的C=O的伸缩振动峰在1 660.82 cm?1,-OH的弯曲振动峰在1 407.30 cm?1,在形成Bai-Pue NPs后向低波段分别移动至1 636.98 cm?1和1 394.63 cm?1,葛根素中的C=O的伸缩振动峰在1 632.42 cm?1,在形成Bai-Pue NPs后向高波段移动至1 636.98 cm?1,由此证明Bai-Pue NPs中黄芩苷和葛根素存在氢键和π-π堆积作用。
    Ber-Pal NPs中具有类似游离黄芩苷和巴马汀的特征吸收带,但黄芩苷的C=O的伸缩振动峰在1 660.82 cm?1,-OH的弯曲振动峰在1 407.30 cm?1,在形成Bai-Pal NPs后向低波数移动至1 637.54 cm?1和1 397.39 cm?1,巴马汀中的C=N的伸缩振动峰在1 604.41 cm?1,在形成Bai-Pal NPs后向低波段移动至1 554.87 cm?1,由此证明Bai-Pal NPs中黄芩苷和巴马汀存在氢键和π-π堆积作用。Ber-GA NPs中具有类似游离黄芩苷和甘草酸的特征吸收带,但黄芩苷的C=O的伸缩振动峰在1 660.82 cm?1,-OH的弯曲振动峰在1 407.30 cm?1,在形成Bai-Pal NPs后向低波数移动至1 626.67 cm?1,-OH向高波数移动至1 418.16 cm?1,甘草酸中的伸缩振动峰C=O在1 655.10 cm?1,在形成Bai-Pal NPs后向低波数移动至1 626.67 cm?1,由此证明Bai-GA NPs中黄芩苷和甘草酸存在氢键缔合。
    2.3 组分自组装纳米的分子对接
    PubChem数据库(https://www.ncbi.nlm.nih.gov/ pccompound/)下载小檗碱、汉黄芩苷、黄芩苷、葛根素、甘草酸、巴马汀的SDF文件。用OpenBabel-2.4.1将SDF文件转换为MOL2文件。AutoDock Tools 1.5.7优化小分子结构,利用软件AutoDock Vina 1.1.2进行分子对接,记录最低结合能,一般认为结合能越低,结合性越好,通常认为结合能低于0时,能自发进行,且分子结合能小于?17.78 kJ/mol,分子与靶点有一定的结合活性;小于?23.01 kJ/mol,分子与靶点有较好的结合活性;小于?33.47 kJ/mol,分子与靶点的结合具有强烈的活性。因此,选择结合自由能(binding free energy,G)最低的对接模型,作为最适合分子模拟的结合模型[21],并用PyMOL 2.5.7软件进行可视化处理。
    结果如图4和表3所示,Ber-Wog NPs中存在分子间π-π堆积相互作用,小檗碱与汉黄芩苷的G为?17.15 kJ/mol;Ber-Pue NPs中存在氢键和π-π堆积相互作用,小檗碱与葛根素的G为?17.99 kJ/mol;Bai-Pue NPs中存在氢键和π-π堆积相互作用,黄芩苷与葛根素的G为?16.32 kJ/mol;Bai-Pal NPs中存在氢键和π-π堆积相互作用,黄芩苷与巴马汀的G为?18.41 kJ/mol;BAI-GA NPs中存在氢键,且黄芩苷与甘草酸的G为?24.27 kJ/mol。因此,采用分子对接模型表明所形成的5种自组装纳米的自组装机制均与成分间形成氢键和π-π堆积等非共价键作用相关。

    2.4 组分自组装纳米缓解CPT-11所致迟发性腹泻作用研究
    2.4.1 CPT-11致迟发性腹泻模型建立、分组与给药 取健康ICR雄性小鼠,体质量(20±2)g,实验开始前将小鼠适应性喂养1周,每天自由饮水、进食,随后分为7组,对照组、模型组、Ber-Wog NPs组、Ber-Pue NPs组、Bai-Pue NPs组、Bai-Pal NPs组、Bai-GA NPs组,每组各8只。除对照组外,其余组均以45 mg/kg剂量连续ip CPT-11,连续注射4 d,每天1次,建立CPT-11致迟发性腹泻模型[15,22],对照组注射等量生理盐水。
    自第1天造模开始,Ber-Wog NPs组按照20.0 mg/(kg?d)小檗碱和85.4 mg/(kg?d)汉黄芩苷剂量给予小鼠ig;Ber-Pue NPs组按照20.0 mg/(kg?d)小檗碱和19.4 mg/(kg?d)葛根素剂量ig,Bai-Pue NPs组按照20.0 mg/(kg?d)黄芩苷和30.6 mg/(kg?d)葛根素剂量ig;Bai-Pal NPs组按照20.0 mg/(kg?d)黄芩苷和9.9 mg/(kg?d)巴马汀剂量ig;Bai-GA NPs组按照20.0 mg/(kg?d)黄芩苷和63.4 mg/(kg?d)甘草酸剂量ig,对照组和模型组ig等量蒸馏水,持续给药10 d,每天2次,至第11天断颈处死小鼠,同时取结肠组织,用于后续检测。在给药期间每天记录小鼠体质量、粪便、状态等用于疾病活动指数(disease activity index,DAI)评分,按照表4标准进行DAI评分,S1、S2和S3分别代表体质量减轻评分、粪便状态评分和血便评分,根据下列等式计算出DAI评分。

    DAI=(S1+S2+S3)/3
    通过SPSS 26.0软件分析多组数据之间的差异,实验数据用表示。计量资料采用独立样本t检验分析;多组间两两比较采用最小显著性差异(LSD)法检验。若P<0.05说明差异有统计学意义。
    2.4.2 小鼠一般情况 如图5-A所示,对照组小鼠体质量在实验期间逐渐增加。与对照组比较,模型组小鼠体质量逐渐下降;与模型组比较,而各制剂组可在一定程度上减缓小鼠体质量的减少,第10天小鼠体质量平均值为对照组(38.71±2.13)g、模型组(22.10±1.31)g、Ber-Wog NPs组(25.80±2.54)g、Ber-Pue NPs组(24.10±2.79)g、Bai-Pue NPs组(25.73±3.84)g、Bai-Pal NPs组(23.94±3.95)g、Bai-GA NPs组(26.53±3.97)g。如图5-B所示,根据DAI评分可得对照组小鼠大便正常,而小鼠在注射CPT-11的4 d后大便逐渐出现便稀湿软色黄,肛周污秽。各制剂组一定程度可缓解小鼠腹泻情况,未见明显便血,症状轻于CPT-11组。如图5-C所示,与对照组相比,模型组存活率为37.5%,Ber-Wog NPs、Ber-Pue NPs、Bai-Pue NPs、Bai-Pal NPs、Bai-GA NPs存活率分别为50.0%、75.0%、62.5%、62.5%、50.0%。如图5-D所示,对照组结肠壁厚薄适中,结肠黏膜完整且清晰可见成型的粪便,无红肿、充血等肉眼可见变化;与对照组相比,模型组结肠组织肠管缩小变细,其长度变短,结肠黏膜呈暗红色,充血水肿比较明显;与模型组相比,制剂组肠管稍变细,结肠黏膜比之色淡稍红,少见有充血、水肿和溃烂情况,可一定程度抑制CPT-11所致结肠萎缩,其中根据测量结肠平均长度发现制剂组中抑制CPT-11结肠萎缩的效果由高到低分别为Bai-Pue NPs、Ber-Pue NPs、Bai-GA NPs、Bai-Pal NPs、Ber-Wog NPs。

    2.4.3 小鼠结肠组织病理形态学影响 如图6所示,对照组黏膜结构完整,基本无病变,细胞紧密排列,小鼠肠隐窝和绒毛清晰完整,胞核较清晰可见;模型组表示出严重的凝固性坏死,结肠黏膜可见缺损,黏膜肿胀,出血及炎性渗出,大量隐窝结构破坏,细胞核形态不一,并伴有大量细胞炎性浸润;Ber-Pue NPs组和Bai-GA NPs组黏膜组织无异常,基本无病变,且未看到黏膜中的炎性细胞浸润,隐窝及绒毛结构正常,细胞排列正常;而Bai-Pue NPs、Bai-Pal NPs、Ber-Wog NPs组均可见黏膜层少量细胞脱落,并伴有少量炎性细胞浸润,但与模型组相比,Bai-Pue NPs、Bai-Pal NPs、Ber-Wog NPs组可缓解结肠黏膜的出血及炎性渗出。

    2.4.4 对小鼠结肠组织中TNF-α、IL-1β和IL-10含量的影响 CPT-11导致的迟发性腹泻发生时会有大量炎症细胞聚集,分泌大量炎症因子,其中TNF-α和IL-1β为促炎因子,IL-10为抑炎因子。各组对CPT-11所致的炎症因子的影响如表5所示,与对照组相比,模型组中TNF-α、IL-1β的表达显著升高(P<0.05),IL-10含量显著降低(P<0.05);与模型组相比,各制剂组均能降低TNF-α的含量(P<0.05),其中Ber-Pue NPs组相比Ber-Wog NPs与Bai-Pal NPs这2个制剂组显著降低(P<0.05),Bai-GA NPs组相比Bai-Pal NPs组显著降低(P<0.05);与模型组相比,各制剂组均能降低IL-1β的含量(P<0.05),其中Ber-Pue NPs组相比Ber-Wog NPs与Bai-Pal NPs这2个制剂组显著降低(P<0.05),Bai-GA NPs相比Ber-Wog NPs与Bai-Pal NPs这2个制剂组显著降低(P<0.05);与模型组相比,各制剂组IL-10均显著升高(P<0.05),其中Ber-Pue NPs组相比Ber-Wog NPs和Bai-Pal NPs这2个制剂组显著升高(P<0.05)。

    3 讨论
    自组装纳米粒主要通过π-π堆积、范德华力、氢键、静电相互作用、卤键等非共价键的相互作用力结合形成,尤其是分子间氢键,自主装作用力主要由氢键之间或其他非共价键的协同作用所构成。分子之间通过氢键作用力结合时,可形成单一氢键和多重氢键,氢键的多重性越强,分子之间的结合能和稳定性越强[23]。如Li等[24]通过氢键和疏水相互作用自组装形成双氢青蒿素纳米颗粒;Wang等[25]将紫杉醇和桦木酸通过氢键和疏水作用形成自组装纳米粒。在本研究中,通过紫外可见吸收光谱和红外光谱实验表明,5种纳米粒的组装均是通过分子间非共价键作用形成;分子对接模型进一步提示,其形成机制与分子间静电相互作用或氢键相关。
    在本研究中,为证实GQD中的成分是否具有结合成纳米粒的趋向性,选取GQD中含量较高的的主要有效成分小檗碱、汉黄芩苷、葛根素、黄芩苷、巴马汀、甘草酸采用溶剂挥发法且组分间按1∶1投药比,制备出5种粒径均一的自组装纳米粒,PDI均在0.3以下有较好的分散性,透射电镜观察均为球状纳米粒,除Ber-Wog NPs外,其余4种纳米粒包封率及载药量均较高。其次为了验证自组装纳米粒在体内的起效形式,通过胃肠稳定性实验发现5种自组装纳米粒均在胃中被胃酸破坏,最终发挥药效的可能是由于药物的积累和成分药效的原因。目前,大多数自组装纳米药物的临床转化效果不佳,在将药物传递到作用部位之前,复杂的体内微环境和多种生物屏障是决定其治疗效果的关键因素。成分间自组装纳米粒依靠非共价相互作用来驱动它们的自组装,这些较弱的相互作用使得自组装纳米递送体系普遍难以耐受复杂胃肠道消化环境,或者血液循环,较易在到达病灶部位之前就出现体系崩解、突释、溶胀、絮凝和聚结等现象,导致实际口服生物利用度有限或血液循环时间较低[26]。徐坠成[27]通过比较口服黄芩苷-小檗碱自组装凝胶组和联用组在小鼠体内组织分布发现两者在胃肠道中的分布无明显差别,表明自组装组在胃肠道中已被破坏。
    因此,有些研究人员采用外层包裹细胞膜,或者是自组装纳米粒中加入稳定剂,或者调节pH值等提高制剂的综合药物荷载率、胃肠道及血液稳定性及可控缓释特性。如Li等[28]在硒醚键桥接的多西紫杉醇二聚体前药中加入二硬脂酰基磷脂酰乙醇胺-聚乙二醇2000(DSPE-PEG2k),从而提高了自组装稳定性和药代动力学行为;Ye等[29]制备了由红细胞膜涂层的10-羟基喜树碱(10-HCPT)和吲哚菁绿(ICG)自组装的无载体纳米药物,结果表明改性的无载体纳米药物在PBS和胎牛血清(FBS)培养基中可稳定120 h。
    本课题组前期研究发现,GQD可显著缓解CPT-11所致的迟发性腹泻,可降低小鼠腹泻发生率和死亡率,减轻小鼠肠道损伤,抑制炎症因子及降低肠道酶活性,并通过下调Kelch样ECH相关蛋白1(Kelch like ECH associated protein 1,Keap1)-核因子E2相关因子2(nuclear factor E2 related factor 2,Nrf2)-血红素氧合酶-1(heme oxygenase-1,HO-1)(Keap1-Nrf2-HO-1)通路和磷酸化磷脂酰肌醇3-激酶(phosphatidylinositol-3-kinase,PI3K)/磷酸化蛋白激酶B(protein kinase B,Akt)/核因子κB(nuclear factor kappa-B,NF-κB)(PI3K/AKT/NF-κB)通路发挥减毒的疗效[30-31]。因此,为验证5种制剂的药效,同样选择伊立替康引起的迟发性腹泻小鼠模型,对小鼠腹泻、肠组织结构和炎症指标进行了比较,发现5个制剂均能不同程度的减缓由伊立替康(CPT-11)引起的迟发性腹泻的相关症状。对于小鼠腹泻,对照组毛发微亮有光泽,体质量持续增长,反应较灵敏,饮食与平时相差异较小;模型组小鼠体质量在注射CPT-11后,体毛失去光泽,精神萎靡不振,活动较少,饮食逐渐降低,甚至出现拒绝进食;而制剂组均可一定程度上的减缓小鼠精神萎靡、体质量减少的状况。对于肠组织结构,制剂组肠管稍变细,结肠黏膜比之色淡稍红,少见有充血、水肿和溃烂情况,结肠长度虽比对照组稍短,但可一定程度抑制伊立替康所致结肠萎缩,其中制剂组中抑制CPT-11结肠萎缩的效果由高到低分别为Bai-Pue NPs、Ber-Pue NPs、Bai-GA NPs、Bai-Pal NPS、Ber-Wog NPs。HE染色显示结肠黏膜组织病变显著缓解,Ber-Pue NPs组和Bai-GA NPs组黏膜组织无异常,基本无病变,且未看到黏膜中的炎性细胞浸润,隐窝及绒毛结构正常,细胞排列正常,而Bai-Pue NPs、Bai-Pal NPs、Ber-Wog NPs均可见黏膜层少量细胞脱落,并半有少量炎性细胞浸润。对于结肠组织炎症因子制剂组肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、IL-1β含量降低、IL-10含量升高。
    +关注 私聊
  • xiahuanihao

    第1楼2024/09/13

    葛根芩连汤,发挥作用强!

0
猜你喜欢最新推荐热门推荐更多推荐
举报帖子

执行举报

点赞用户
好友列表
加载中...
正在为您切换请稍后...