双金属

仪器信息网双金属专题为您整合双金属相关的最新文章,在双金属专题,您不仅可以免费浏览双金属的资讯, 同时您还可以浏览双金属的相关资料、解决方案,参与社区双金属话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

双金属相关的资讯

  • 原位电镜观察双金属纳米粒子的结构形貌演变
    最近几年,随着基于贵金属(如Pt、Pd、Au等)的纳米催化剂被深入研究,人们开始把注意力转移到非贵金属催化剂(Fe、Co、Ni、Cu等)的可控合成和催化性质研究上。如果能够开发出替代贵金属的非贵金属催化剂,无论是从基础研究还是工业应用上来说都是非常有价值的。不过,从物理和化学性质来说,贵金属和非贵金属的区别还是非常大的。  考虑到金属催化材料一般是用来催化氧化还原反应,因此我们这里做一些简单的对比。对于贵金属来说,它们的纳米粒子一般来说性质比较稳定,经过还原后不太容易被氧化。即使在催化反应过程中,虽然位于表面的原子会发生价态的变化,但是对于纳米粒子的整体来说,这种价态的变化并不是那么的显著。相比之下,非贵金属的性质就更加难以控制和琢磨。对于Fe和Co来说,被还原后的金属纳米粒子非常不稳定,一旦接触空气就会被氧化。如果没有一些保护的配体或者载体,那么完全变成氧化物可能就是几秒钟的事。相对来说,Ni和Cu的金属态纳米粒子相对来说稳定一些。但是如果尺寸比较小(小于5 nm),也非常容易被空气氧化。在绝大部分加氢反应中,非贵金属的催化剂都需要经过一个预先的还原过程来进行活化。而我们在对催化剂进行表征的过程中,很多时候催化剂已经接触了空气,和实际反应条件下的样品有区别了。这种差异在非贵金属催化剂上体现的特别明显。图1. 通过Kirkendall效应,实心的Co纳米粒子被氧化形成空心的CoO结构。图片来源:Science  在氧化和还原的过程中,不仅仅是发生化学价态的变化,很多时候还会伴随着纳米粒子形貌的变化。十多年前,材料科学家们在制备Fe、Co纳米粒子的时候就发现这些实心的纳米粒子暴露空气后会逐渐被氧化,然后形成空心结构的CoO(Science, 2004, 304, 711)。这种现象可以用Kirkendall效应来解释。同时这也说明在化学态变化的同时,物质也在纳米尺度发生迁移。上述现象目前在非贵金属体系中比较普遍 而在贵金属体系则比较少见。考虑到在催化反应中,不光是催化剂的表面性质对反应性能影响很大,催化剂活性组分的几何结构也有至关重要的影响。因此,对于在氧化-还原过程中形貌会有显著变化的非贵金属催化剂,借助一些原位表征手段研究纳米粒子在氧化-还原过程中的结构演变就是很有意义的课题。  在2012年,来自美国Brookhaven国家实验室和Lawrence-Berkeley国家实验室的电镜科学家就借助环境透射电镜研究了CoOx纳米粒子被H2还原到金属Co纳米粒子的过程(ACS Nano, 2012, 6, 4241)。如图2所示,小颗粒的CoOx粒子在逐步还原的过程中会发生团聚,然后得到大颗粒的金属Co纳米粒子。图2. 通过原位电镜来观察CoOx还原到金属Co的过程。图片来源:ACS Nano  对于单组份的Co纳米粒子,情况可能还相对简单一些。对于双金属甚至更多组分的非贵金属纳米粒子,在氧化-还原条件下他们的结构演变就会变得更加复杂和有趣。最近,在2012年工作基础上,美国Brookhaven国家实验室的Huolin L. Xin博士和天津大学的杜希文教授等科学家用原位透射电镜研究了CoNi双金属纳米粒子在氧化的过程中形貌的变化(Nat. Commun., 2016, 7, 13335)。图3. CoNi合金纳米粒子逐渐被氧化为多孔的CoOx-NiOx结构。图片来源:Nat. Commun.  首先,作者考察了单个的CoNi合金纳米粒子在400 ℃下被氧化的过程。如图3a所示,实心的具有规则几何外形的纳米粒子是初始的材料。经过61秒后,在这个纳米粒子的棱角处可以观察到形貌的变化。随着时间的延长,可以明显的观察到表面形成了一层衬度较低一些的氧化层。经过了大概十分钟后,整个纳米粒子的形貌已经发生了显著的变化,说明Co和Ni在氧化的过程中不是静止的,而是在运动。再经过一段时间,实心的纳米粒子就会呈现一种核壳结构出现了氧化层和金属内核之间的明显界限。如果延长粒子在氧气气氛中的时间,金属态的内核会进一步的被氧化,直到变成一个具有多孔性质的氧化物结构(如图3b和图3c所示)。为了考察在氧化过程中Co和Ni两种元素的分布情况,作者对中间形成的结构进行了EELS elemental mapping。如图3所示,本来是充分混合的CoNi合金粒子经过氧化后,发生了部分的分离。在氧化后的粒子上,可以看到在表面形成了一个富含Co的薄层。在原文中,作者对这个氧化过程进行了三维的元素分析,确认了Co和Ni发生了空间上的部分分离。  为了解释在原位电镜实验中观察到的现象,作者对这个氧化过程进行了理论上的计算和分析。通过经典的固体物理和物理化学的理论,作者比较了Co和Ni的氧化趋势的强弱,发现Co更容易被氧化。同时,作者还考察了Co和Ni在氧化过程中的速率,发现Co具有更前的结合O的能力,也更容易在氧化的过程中发生迁移。这样结合起来就解释了在原位电镜实验中观察到了Co和Ni发生部分的分离的现象。  总的来说,这项工作发现了非贵金属纳米粒子中一些有趣的现象。而这些现象其实和催化过程都是有紧密的关系,可以帮助我们更好的理解非贵金属催化剂在氧化-还原条件下的一些行为。
  • 突破!原位电镜揭示双金属催化剂反应状态下的真实活性表面
    p style=" text-align: justify text-indent: 2em " 近日,中国科学院大连化学物理研究所能源研究技术平台电镜技术研究组副研究员刘伟、杨冰与中国科学院上海高等研究院研究员髙嶷团队及南方科技大学副教授谷猛团队合作,在观察和确认NiAu催化剂在CO2加氢反应中的真实表面方面取得进展。 /p p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 催化研究中,常规静态显微分析只能提供催化剂反应前或反应后的非工况结构信息。然而在热振动、气体分子吸/脱附等作用下,催化剂的表面原子难免发生迁移导致表面重构,变化后的表面才是与催化反应活性相关的真实表面,要看清这一表面状态需要借助原位表征技术。尤其对于容易发生表面重构的多元金属催化体系而言,无法原位观测反应气氛下催化剂的原子结构,就不能确认贡献催化活性的真实表面,更无法建立可信的催化构效关系。在以往的研究中,具有宏观统计特性的原位谱学手段已经从精细的能量维度对动态催化过程做出了先驱性探索,例如原位FTIR、原位XPS(AP-XPS)以及原位XAS。在此基础上,实空间下直接观测反应中催化剂的表面原子排布是研究人员长期追寻的目标。针对此问题诞生了环境透射电子显微技术(ETEM),ETEM是主要基于TEM成像的原位手段,适用于原子分辨下追踪气固相反应中催化剂的结构演化过程。 /span /p p style=" text-align: center text-indent: 0em " span style=" text-indent: 2em " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/69a53f56-f8b2-4cb7-adbb-cf19e4397bed.jpg" title=" 原位电镜揭示双金属催化剂反应状态下的真实活性表面.jpg" alt=" 原位电镜揭示双金属催化剂反应状态下的真实活性表面.jpg" / /span /p p style=" text-align: justify text-indent: 2em " 在本工作中,研究团队基于环境透射电镜以及特殊设计的mbar级负压定量混气系统,研究了NiAu/SiO2体系催化CO2加氢反应过程。初期静态显微结果表明,该催化剂以Ni为核心,表面包裹2至3层Au原子壳层,为一种典型的Ni@Au核壳构型。而考虑到Ni具有强大的加氢活性,会导致反应的CH4选择性,因此,该核壳构型可合理地解释本工作中CO2加氢高达95%以上的CO选择性。 /p p style=" text-align: justify text-indent: 2em " 但是,环境透射电镜原位观测发现,该催化剂在反应气氛和温度下,内核Ni原子会逐渐偏析至表面与Au合金化;在降温停止反应时,会退合金化返回Ni@Au核壳型结构。原位谱学手段(包括原位FTIR和原位XAS)的结果很好地证实了上述显微观测结果。理论计算和原位FTIR结果表明,反应中原位生成的CO与NiAu表面合金化起到了关键而微妙的相互促进作用,这是该催化剂构型演变及高CO选择性的原因。 /p p style=" text-align: justify text-indent: 2em " 该工作为研究核壳型双金属催化过程提供了启发,例如反应条件下核壳表面是否真实存在,是否贡献催化活性?又如催化剂制备中追求构建核壳表面是否有必要?该工作是一套原位环境下微观结构表征与宏观状态统计的综合应用案例,突出局域原子结构显微观测的同时,借助原位谱学手段,尤其是原位XAS技术,确保了电子显微发现与材料宏观工况性能的关联置信度。从而为发展原位、动态、高时空分辨的催化表征新方法和新技术提供了范例,也为设计构筑特定结构和功能催化新材料提供了借鉴和思考。 /p p style=" text-align: justify text-indent: 2em " 此外,期刊特别邀请审稿人撰写并独立刊发了题为The dynamic of the peel& nbsp 的工作评述(news & amp views),以表明本工作对于催化研究的独特启发。 /p p style=" text-align: justify text-indent: 2em " 相关成果发表在《 span style=" color: rgb(0, 112, 192) " 自然-催化 /span 》(Nature Catalysis)上。该工作得到国家自然科学基金项目、大连市人才项目、中科院青年创新促进会等的资助,尤其得到了研究员苏党生的大力支持。 /p
  • 北科院分析测试所先进材料及原位表征实验室在石墨炔、金属有机框架材料以及气相原位电镜领域取得新进展
    图1 石墨炔载体上从金属单原子到双原子理性设计工作流程图石墨炔作为新一代的碳材料,由于其表面具有丰富的缺陷位点,具有天然的稳定催化中心的优势,结合当前催化领域中单原子催化的研究热点,刘向文博士及其合作者们通过理论计算模拟,对比了不同金属种类的单原子在石墨炔载体上的催化活性,进一步发掘出双原子金属位点的催化特性,这一研究发现为将来石墨炔在催化领域的应用提供了重要的理论支撑和依据。图2 UiO-66-NH2光响应探针生物分子传感体系结合分析测试研究所在分析检测领域的科研优势,刘向文团队利用金属有机框架材料(MOFs)的化学可调谐性,在其表面进行修饰,制备出UiO-66-NH2光响应探针,并利用Au纳米颗粒与Mxenes组成的基底复合材料,成功构建生物分子传感体系并实现了对肿瘤细胞中蛋白激酶的高灵敏度的特异性识别。该方法具备MXenne的还原性以及金纳米颗粒的导电性和生物相容性等多功能的特点,不仅为高效、简捷的检测蛋白激酶活性提供了可行的光电检测策略,为更广泛的生物活体原位电化学研究提供了理论基础和技术支持。图3 原位电镜观察Ni-Rh纳米颗粒在CO催化氧化过程中的结构变化理解催化剂材料在催化反应过程中的构效关系对于设计和开发高效的新型催化剂材料具有重要意义。刘向文博士与其合作者利用双金属Ni-Rh异质纳米颗粒进行CO催化氧化实验,并通过气相原位电镜实时观测双金属Ni-Rh异质结构在CO催化氧化过程中的微观结构变化,并对应实时的催化性能,从而真正意义上实现了对催化剂在实际催化反应过程中的构效关系的理解。这一研究结果揭开了长久以来困扰科研工作者催化过程中“黑匣子”问题,为以后的相关研究提供了重要的理论依据以及可借鉴的技术。刘向文团队的科研工作得到了北科院以及分析测试研究所的大力支持,相关研究的财政资金支持来源于国家自然科学基金、北京市自然科学基金、北科青年学者、改革与发展专项、北科萌芽计划。

双金属相关的方案

  • 测试双金属硬币
    一家政府铸币厂要求我们提供一个系统,以在受控条件下测量分离内外圈所需的力。我 们使用5966双立柱台式机架和定制式推出工装对一枚双金属硬币试样进行了推出试验。推 出工装包含一个下部环形支架和一个上部探头。支架和探头的尺寸根据待试验硬币特定。我 们使用 Bluehill® 3软件 控制试验,并记录试验过程中力的最大值。将硬币内圈推出外圈所 需的力为6 kN。
  • 利用火花烧蚀气溶胶技术制备核壳 Cu@Ag 颗粒及生长模型研究
    核壳纳米粒子由内核材料和覆盖有不同材料的外壳组成,大量的研究工作致力于核壳纳米粒子的生产。对核壳纳米粒子的关注源于它们可以表现出优异的物理或化学性质。基于火花烧蚀的连续气相工艺能够产生均匀结构的核壳双金属纳米颗粒,其尺寸和成分能够精确控制。它的设计非常简单,利用两个电极之间的高压火花放电作为合成纳米颗粒的材料源。该方法已被用于制造各种类型的材料,如半导体纳米颗粒和复合金属纳米颗粒。
  • 使用 spICP-MS 测量纳米颗粒中的多种元素
    单颗粒 ICP-MS (spICP-MS) 是一种功能强大的工具,适用于表征分散或悬浮在液体样品中的纳米颗粒 (NP)。尽管 spICP-MS 是一项相对较新的技术,但已越来越多地应用于制成品以及环境和生物样品中 NP 的分析。借助适当的样品前处理和稀释,spICP-MS 能够从单个颗粒通过等离子体时所产生的元素信号中检测 NP。另外,只有该技术能够同时测定颗粒数量和粒径分布以及目标元素的颗粒和溶解态物质的浓度。已证明 spICP-MS 对预先知道 NP 组成的测定非常有价值,支持待测元素的选择。然而,分析 NP 混合物组成未知或多变的天然样品也受到了一定关注。此外,某些 NP 含多种金属,例如核-壳颗粒,其中一种金属组成的核被另一种金属组成的壳包围。这些多元素和双金属颗粒测量为所有传统 ICP-MS 仪器带来了新的分析挑战,因为这类仪器使用单个检测器执行连续测量。

双金属相关的论坛

  • 双金属温度计的结构类型有哪几种?

    双金属温度计属于低温测量专家,分为万向型双金属温度计、径向型双金属温度计、135度双金属温度计、轴向型双金属温度计。双金属温度计可以直接测量各种生产过程中的-80℃-+500℃范围内液体蒸汽和气体介质温度。双金属温度计连接方式:可动外螺纹、可动内螺纹、固定螺纹式、固定法兰式、活动卡套法兰式、卡套螺纹、无固定装置。双金属温度计配备保护套管,通常保护管材质为不锈钢

  • 双金属温度计工作原理和注意事项

    [size=15px][b]工作原理:[/b][/size]双金属温度计的工作原理是利用二种不同温度膨胀系数的金属,为提高测温灵敏度,通常将金属片制成螺旋卷形状,当多层金属片的温度改变时,各层金属膨胀或收缩量不等,使得螺旋卷卷起或松开。由于螺旋卷的一端固定而另一端和一可以自由转动的指针相连,因此,当双金属片感受到温度变化时,指针即可在一圆形分度标尺上指示出温度来。这种仪表的测温范围一般在-80℃~+500℃间,允许误差均为标尺量程的1.5%左右。[size=15px][b]分类:[/b][/size]普通双金属温度计、耐震型双金属温度计、电节点双金属温度计。按双金属温度计指针盘与保护管的连接方向可以把双金属温度计分成轴向型、径向型、135°向型和万向型四种。①轴向型双金属温度计:指针盘与保护管垂直连接。②径向型双金属温度计:指针盘与保护管平行连接。③135°向型双金属温度计:指针盘与保护管成135°连接。④万向型双金属温度计:指针盘与保护管连接角度可任意调整。[size=15px][color=white][back=#3c40eb][b]选型与使用:[/b][/back][/color][/size]在选用双金属温度计时要充分考虑实际应用环境和要求,如表盘直径、精度等级、安装固定方式、被测介质种类及环境危险性等。除此之外,还要重视性价比和维护工作量等因素。此外,双金属温度计在使用过程中应注意以下几点:A、双金属温度计保护管浸入被测介质中长度必须大于感温元件的长度,一般浸入长度大于100mm,0-50℃量程的浸入长度大于150mm,以保证测量的准确性。B、各类双金属温度计不宜用于测量敞开容器内介质的温度,带电接点温度计不宜在工作震动较大的场合的控制回路中使用。C、双金属温度计在保管、使用安装及运输中,应避免碰撞保护管,切勿使保护管弯曲变型及将表当扳手使用。D、温度计在正常使用的情况下应予定期检验。一般以每隔六个月为宜。电接点温度计不允许在强烈震动下工作,以免影响接点的可靠性。E、仪表经常工作的温度最好能在刻度范围的1/3~2/3处。

  • 双金属温度计

    双金属温度计 1.双金属温度计是一种测量中低温度的现场检测仪表。可以直接测量各种生产过程中的-80℃-+500℃范围内液体蒸汽和气体介质温度。工业用双金属温度计主要的元件是一个用两种或多种金属片叠压在一起组成的多层金属片,利用两种不同金属在温度改变时膨胀程度不同的原理工作的。是基于绕制成环性弯曲状的双金属片组成。一端受热膨胀时,带动指针旋转,工作仪表便显示出热电势所应的温度值北京天彩康拓http://www.bjtckt.com。

双金属相关的资料

双金属相关的仪器

  • Thermo Scientific™ HyPerforma™ 玻璃生物反应器有1、3、7和15L体积可供选择。它们按照最高的材料和表面抛光标准制造,易于操作,安装快速。HyPerforma玻璃生物反应器叶轮采用计算流体力学(CFD)模拟器开发,可在最小的剪切力下提供最大程度的混合,从而提高了平均kLa。指形冷凝管被冷凝环路取代,以增大热交换面积。实验室性能测试显示,其冷却速率较其他供应商的产品高两倍。而且可以双向控制,这样单层罐体不仅可用于哺乳动物培养,还可用于发酵.特点:• 电机适配器采用耦合窗和垂直线向标,易于安装• 符合人体工学的顶板设计,组件易于安装和拆卸,以便实现快速重配置 • 工具箱可帮助用户根据预期用途配置罐体• 电加热套:旨在实现快速热传导;电加热套内嵌的双金属温度限制开关可防止过度加热或火灾,确保安全• 常用的附件工具箱:含堵头,用于重新配置罐盖组合
    留言咨询
  • 激光功率传感器Ophir 提供两类功率传感器:光电二极管传感器和热传感器。光电二极管传感器用于皮瓦至数百毫瓦的低功率,最高3W。热传感器用于低至几分之一毫瓦到数十或数千瓦的功率。热传感器还可测量脉冲率不超过每5 秒1 个脉冲的单次脉冲能量。光电二极管传感器说明: 光电二极管传感器在较大的光功率级范围内具有高线性度:从几分之一毫微瓦到2mW 左右。高于该光级时,对应大约1 mA 的电流,传感器饱和, 并且读数错误偏低。因此,大多数Ophir 光电二极管传感器具有内置和可拆卸式衰减器,允许测量高达3 W 的功率,且不发生饱和。 激光热功率传感器说明: 热传感器具有一系列称为热电堆的双金属结。通过传感器的径向或轴向热流在通过热电堆时,产生与吸收的功率成比例的电压。由于仅测量温差,未测量绝对温度,读数并不依赖于环境温度。热电堆元件的布置方式使读数几乎独立于光束尺寸和位置。通常,Ophir 规定±2% 或更好的表面读数一致性。
    留言咨询
  • 3L Thermo Scientific™ HyPerforma™ 一次性台式生物反应器专为研发和cGMP应用中的细胞培养工艺而开发。其易于安装和操作,采用耐用的材料制成,并配备有嵌入式Thermo Scientific™ TruFluor™ pH+dO2一次性传感器。嵌入式传感器的光学阅读器可轻松连接至控制器,由TruBio软件立即识别罐体.特点:• 经过γ-辐照后运输,可立即使用。• 不含乳胶、不含邻苯二甲酸酯、不含BPA、不含动物源性材料• 符合ISO 10993/USP Class 6标准• 可选择安装电化学电极至可配置的顶板内,适用于超净工作台内操作• 可选的电加热套:电加热套内嵌的双金属温度限制开关可防止过度加热或火灾,确保安全• 可根据购买体积选择配置:根据预期用途配置顶板、叶轮和分布器• 罐体底部的大泡通气(A)可确保获得最小工作体积。• 罐体配备有pH和溶解氧(DO)传感器(B),包括内置的TruFluor DO、pH和温度传感器• 连接信号读取器(C),罐体可立即被TruBio软件识别• 其他组件,如光学或电化学电极(D),可安装至可配置的顶板内,适用于在超净工作台内操作
    留言咨询

双金属相关的耗材

  • SP Bel-Art H-B DURAC高压灭菌器双金属温度计
    产品介绍 记录高温,无汞危害这种耐用的双金属温度计有一个*记录指针(红色),由温度测量指针(黑色)向上移动,以指示达到的最高温度,并保持在那里,直到手动复位。• 螺纹连接(1/4“NPT)的螺钉直接拧入;可用于在附带的支架上安装温度计• 防水和耐压;经得起高压灭菌器的循环,还有一个可拆卸的保护硅套管,以防止水分接触表盘• 由耐用的304不锈钢制成,带有玻璃镜片;耐压力、耐高温和防生锈• 探针长度:50mm(2“)• 经过我们美国质量团队的测试和检验• 包括多语言(英语、法文、德文、意大利文、葡萄牙文和西班牙文)的准确性和说明• 也可提供单独的温度计校准报告产品详情货号温度范围分度精确度表盘尺寸校准点包装/包B61315-0000-20/150°C (0/300°F)2°C (5°F)±2°C (±5°F)81mm (33???")N/A1个
  • VWR双金属指针式温度计
    该带模拟针盘的温度计能够指示冷却器、冰箱或腐坏温度。双标度(°F/°C)更易读的红色箭头现代感圆形黑色设计准确度范围直径包装规格VWR目录号1 °C?30… +30 °C76 mm1VWRI620-2146
  • Seta 配件:双金属温度计 Thermometer: Bimetal | 17730-0
    产品特点:Thermometer: Bimetal – -30 to 60°C - 17730-0订货号: 17730-0适用仪器:● Manual Grease Worker – Stainless Steel ● Stanomatic Grease Worker – Stainless Steel CupsBimetal type thermometer, -30° to +60°C, for Seta Zahn Viscometers and Grease Workers.

双金属相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制