药物载体

仪器信息网药物载体专题为您整合药物载体相关的最新文章,在药物载体专题,您不仅可以免费浏览药物载体的资讯, 同时您还可以浏览药物载体的相关资料、解决方案,参与社区药物载体话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

药物载体相关的资讯

  • 中科院上海药物所等优化新型药物载体材料
    p   中国科学院上海药物研究所研究员张继稳领衔中法合作团队发明了一种快速、温和的方法,显著改善环糊精金属有机骨架(CD-MOFs)在水中的稳定性,克服了CD-MOFs在水中稳定性差的缺点,拓展了CD-MOFs在医药领域的应用前景。该研究成果于7月26日发表于《化学通讯》(ChemComm)上。 br/ /p p   金属有机骨架(MOFs)作为新的“明星”材料,迅速成为科学家的研究热点。以环糊精为有机配体、钾离子为无机金属中心形成的CD-MOFs,是安全性高的新型药物载体,其微粒尺寸可控、功能多样,具有良好的生物相容性,在药物输送领域具有重要的应用价值。但CD-MOFs遇水迅速崩解,限制了它的应用。现有的增加CD-MOFs在水中稳定性的策略反应耗时长,并降低CD-MOFs的载药能力。因此,合成稳定的多孔性CD-MOFs材料仍然是一个巨大的挑战。 /p p   由上海药物所、法国Paris-sud大学、吉林大学、中山大学组成的合作团队采用简单高效的方法将胆固醇分子嫁接到CD-MOFs上,在CD-MOFs表面形成一层保护性的疏水性外壳,显著提高了CD-MOFs在水中的稳定性,即胆固醇修饰的CD-MOFs (CD-MOF-CHS)。胆固醇修饰的CD-MOFs(CD-MOFs-CHS)与水接触24 小时后仍能保持其内部结晶性结构和外部完整的形态。CD-MOF-CHS纳米粒可显著提高阿霉素在HeLa细胞的摄取,有效地递送药物。大鼠体内药代动力学研究表明,CD-MOF-CHS载阿霉素纳米粒的生物半衰期和曲线下面积(AUC)均显著提高。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201708/noimg/a61a375b-37cb-4865-ad02-a63b672a4fd7.jpg" title=" 1.jpg" width=" 564" height=" 130" style=" width: 564px height: 130px " / /p p style=" text-align: center " 胆固醇表面修饰CD-MOF可显著提高其在水中的稳定性 /p p br/ /p
  • 文献速递ㅣ多模式活体成像系统在肝癌药物载体研究中的应用
    肝癌是最常见的致命癌症之一。目前临床上主要采用手术切除癌变肝组织,同时以化疗、放疗等方式阻止正常肝细胞被感染恶化来治疗肝癌;但是,化疗会滥杀滥伤各组织的正常细胞,并产生极大的副作用,而且在肝癌细胞发生转移或再生后也难以治愈。因此,设计与制造出更好的用于肝癌治疗的药物,是医药研究人员亟待解决的难题。如何提高药物疗效,不仅可以从药物结构本身出发,而且可以从药物载体入手。选择新型药物载体或靶向基团,可以使有效药物分子直接作用于癌症患处,提高药物靶向性,减少药物对正常组织的伤害,减轻患者的疼痛。近日,辽宁新药研发重点实验室李丽教授课题组成功构建并制备了两种甘草次酸修饰的金属有机框架药物载体,并通过组织分布和活体成像实验,验证载体具有明显的肝靶向性。该成果已发表在纳米技术与精密工程领域国际权威期刊《Nanotechnology》。1. 甘草次酸(GA)甘草次酸(Glycyrrhetininc Acid,GA)是从中草药甘草中提取分离出来的具有抗炎、抗病毒、抗溃疡等多种药理活性的甘草酸苷元。近期研究发现,在肝细胞膜上镶嵌着许多GA特异性受体,可与GA特异性结合,因此,GA作为药物靶向分子进行修饰的药物载体已经成为研究热点和一种新的靶向性治疗肝癌的有效途径。2. 金属有机框架(MOFs)金属有机框架材料(Metal-organic Frameworks,MOFs),是一类通过组装无机金属离子与有机配体形成的具有多孔隙、高比表面积的新型材料。它的最大的优点是具有良好的生物相容性,而且会在体内特定环境中自行分解,减少药物在体内的副作用,降低耐药性,提高药物治疗效率。通过在MOFs表面修饰GA,可以实现MOFs的肝靶向性,并且MOFs的孔隙率高,具有超大比表面积,可以有效装载药物,提高载药能力。两种MOFs载体:Uio-66-COOH-1,4-丁二胺-GA与UiO-66-NH2-GA。3. 小鼠体内靶向性研究DiR荧光染料,DiR@Uio-66-COOH-1,4-丁二胺-GA和DiR@Uio-66-NH2-GA 在小鼠体内不同时间段的荧光成像图DiR荧光染料,DiR@Uio-66-COOH-1,4-丁二胺-GA和DiR@Uio-66-NH2-GA 在心、肝、脾、肺、肾的荧光成像图关于多模式动物活体成像系统AniView100多模式动物活体成像系统是广州博鹭腾生物科技有限公司全新推出的高灵敏度、多模式动物活体成像系统。其采用一级背部薄化、背部感光超低温CCD相机,具有极高的检测灵敏度。大功率全波长卤素灯激发光源配合精密复杂的全局光源和万向鹅颈管点状光源光路系统,再加上顶级的光谱转换能力和多组滤光片组合,极大的提高了荧光信号的特异性,并大大缩短曝光时间。
  • 化学所纳米载体药物的原位释放质谱成像研究取得系列进展
    p   质谱技术具有快速、高灵敏度、高通量等优点,已被广泛应用于生物医药领域中蛋白质、糖类、代谢小分子等的检测。 /p p   在国家自然科学基金委和中国科学院的长期支持下,中科院化学研究所活体分析化学重点实验室研究员聂宗秀课题组研究人员开发了用于糖异构体区分(Anal. Chem. 2018, 90, 1525)、细胞表面糖蛋白检测(Anal. Chem. 2018, 90, 6397)、监测蛋白二硫键重构(Anal. Chem. 2018, 90, 10670)、胰腺癌生物标志物检测(Chem. Comm. 2018, 54, 10726)等的质谱分析新方法,以及用于基质辅助激光解吸电离质谱成像的新基质和新技术(Anal. Chem. 2018, 90, 729 Chem. Comm. 2018, 54, 10905)和新型基质喷涂装置(Anal. Chem. 2018, 90, 8309)。他们还发展了一种可以快速检测小鼠体内碳纳米材料亚器官分布的通用、免标记的直接质谱成像方法(Nature Nanotech. 2015, 10, 176)。 /p p   最近,该实验室的研究人员联合美国约翰惠普金斯医学院的学者,发展了一种新型无标记激光解吸电离质谱成像技术(LDI MSI),通过监测纳米载体和药物分子固有的质谱信号强度比,实现了质谱成像定量分析纳米载体在组织中的原位药物释放,相关结果发表于Science Advances,2018, 4, eaat9039。他们选择新型过渡金属二硫化物-MoS2纳米载药系统,使用LDI MSI技术,可以根据MoS2纳米片和其负载的抗癌药物阿霉素(DOX)在激光剥蚀下同时产生的质谱指纹峰来追踪纳米载体和药物在体内的分布,无需任何标签,且不受生物体内源性的分子干扰。通过原位监测纳米载体和药物的质谱指纹峰强度比值的变化得到定量测量,研究人员发现在正常和肿瘤模型小鼠中,药物在组织间和组织内的释放呈现组织依赖性。如在肿瘤中的释放量最多,肝组织中的释放量最小。 /p p   无标记激光解吸电离质谱成像技术(LDI MSI)克服了纳米载药研究中传统检测方法正存在空间分辨率有限、贴标过程复杂、难以同时跟踪纳米载体和药物等缺点。研究人员下一步计划将该技术应用于已进入临床的脂质体阿霉素的原位药物释放研究。 /p p style=" text-align: center " img title=" W020181112594468027136.jpg" alt=" W020181112594468027136.jpg" src=" https://img1.17img.cn/17img/images/201811/uepic/c279fa73-25d8-411a-84bd-12f0448681e3.jpg" / /p p style=" text-align: center "   纳米载体药物原位药物释放质谱成像研究 /p p & nbsp /p

药物载体相关的方案

药物载体相关的论坛

  • 微囊技术中药物载体控释系统目的

    [b][size=10.5pt][font=微软雅黑]药物载体控释系统:[/font][/size][size=10.5pt][font=微软雅黑]控制药物释放[/font][/size][/b][size=10.5pt][font=微软雅黑]是八十年代发展起来的一种新技术,是药物学发展的一个新领域。[/font][/size][b][size=10.5pt][font=微软雅黑]药物控制释放体系是将药物包埋于某种聚合物辅料中,由于不同辅料和制备工艺限制药物的溶出和扩散速度,通过聚合物的溶蚀和水解将药物缓慢、持续稳定地释放出并发挥作用。[/font][/size][/b][size=10.5pt][font=微软雅黑]设计药物缓释制剂的目的:[/font][/size][size=10.5pt][font=微软雅黑] 一是尽可能地延长药物的作用时间或达到所期望长的作用时间;[/font][/size][size=10.5pt][font=微软雅黑] 二是减小给药后即刻出现的局部组织或血药浓度过高和潜在的毒性。[/font][/size][size=10.5pt][font=微软雅黑]低分子量的药物由于相对分子质量小,易从人体中排泄出去,为了维持一定的血药浓度,往往采用多次给药的方法,这样易使药物在体内的浓度出现“峰谷”现象,当药物浓度处于“峰值”有可能引起毒副作用,处于“波谷”时有又可能低于有效浓度,从而影响疗效。[/font][/size][size=10.5pt][font=微软雅黑]因此,要使药物具有疗效,必须使血液中的药物浓度即血药浓度达到一定标准-最低有效浓度。正常的用药剂量应能使血药浓度维持在最低浓度与中毒极限浓度之间。[/font][/size]

  • 南开大学在药物传输载体研究中获重要进展 新型水凝胶能包裹和缓释各类药物

    最新发现与创新 中国科技网讯 南开大学药物化学生物学国家重点实验室在药物传输载体研究方面取得重要进展,其研究成果“基于蛋白—多肽特异性结合的小分子水凝胶”,近日发表在《德国应用化学》上。 据课题组介绍,药物传输是实现药物疗效不可或缺的重要环节。利用现代生物化学技术开发的新型多肽/蛋白质、抗体、疫苗及基因等新型药物在环境及人体内极易失活和降解,从而导致生物利用度低。而先进的药物载体和传输技术是提高药物的生物利用度、增加药物疗效、降低其毒副作用和改善病人耐受性的主要手段。从20世纪90年代开始,外表类似果冻的小分子水凝胶作为一种新颖的生物材料,在药物传输方面展现了良好的应用前景。如何在温和条件下制备水凝胶用于药物传输,一直是科学家力求达到的目标。 南开大学杨志谋、龙加福教授课题组结合各自在相应研究领域的积累,提出利用蛋白质和多肽特异性结合的特点制备新型蛋白—多肽杂化水凝胶。该体系利用蛋白—多肽的特异性结合来增强多肽自组装纤维之间的结合力,从而形成三维网络结构以及形成性质更为优异的水凝胶。他们针对抗肿瘤药物、多肽/蛋白质药物及基因药物,重点以嵌段共聚物、超分子化合物、小分子凝胶及高分子水凝胶等材料为基础,研发出生物相容性高的可注射局部药物传输系统。该类新型药物传输系统由蛋白质和多肽组成,生物相容度高。 同时,该类水凝胶能包裹各类药物,可局部注射于病灶,起到局部长期缓释药物的效果,提高病人耐受性,减轻毒副作用。(通讯员 周兴龙 韦承金 记者 冯国梧) 《科技日报》(2012-7-15 一版)

  • 【原创大赛】纳米药物载体研究进展

    【原创大赛】纳米药物载体研究进展

    纳米药物载体研究进展齐云龙http://ng1.17img.cn/bbsfiles/images/2012/12/201212262348_415894_1705310_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212262348_415895_1705310_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212262349_415896_1705310_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212262349_415897_1705310_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212262349_415898_1705310_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212262349_415899_1705310_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212262349_415900_1705310_3.jpghttp://ng1.17img.cn/bbsfiles/images/2012/12/201212262349_415901_1705310_3.jpg

药物载体相关的资料

药物载体相关的仪器

  • 微流控纳米药物制造系统纳米颗粒制造技术,是纳米技术领域的技术前沿,其尺寸依赖特性,使这些材料在许多领域表现出了优势。此项技术已应用于诸多行业,如药物输送、能源和电子等。纳米颗粒合成技术是实现纳米颗粒应用的步骤之一。与传统的批处理合成方法相比,PreciGenome 搭建的纳米颗粒合成系统表现出了极大的优势,其通过微流控技术,在纳米颗粒尺寸均一性和形状控制方面都表现出其优势。有效载体DNA/mRNA/siRNA小分子药物 Small molecule drugs蛋白质和多肽 Proteins and peptides其它有效载体 Other payloads应用领域药物输送核酸脂质纳米颗粒合成聚合物纳米颗粒合成,如PLGA,PLGA-PEG脂质/脂质体合成凝胶颗粒合成Flex-S产量为0.1-1ml的产品已经上市,非常适合昂贵的mRNA。纳米颗粒合成原理脂质试剂:更多产品详情,请联系哲本仪器:
    留言咨询
  • CRO服务根据用户现有的研发进度,提供多种服务解决方案①选定API和载体配方,但苦于没有有效精确的合成方法→Microflow系列纳米药物制备系统,并免费提供纳米粒子表征(粒径和PDI)测定②选定API,但没有载体配方→铭汰FlowOrigin系列试剂盒 + Microflow系列纳米药物制备系统,并免费提供纳米粒子表征(粒径和PDI)测定③已有合成的纳米粒子,需要进行表征→铭汰提供纳米粒子表征(粒径和PDI)测定具体流程(因纳米粒子种类不同可能会与下图有所差异)技术服务:服务案例: 案例1结果 案例2结果铭汰 Microflow 系列微流控纳米药物递送平台
    留言咨询
  • 微混合脂质体PDMS芯片为降低客户使用芯片的成本,公司特将常规使用的PDMS芯片进行归纳整理,推出不同规格尺寸芯片来尽可能满足更多客户的需求。若标准芯片规格尺寸无法满足要求,也可根据客户设计的图纸定制化加工近20年来,越来越多的新型纳米药物制剂涌入市场,拥有载体中“小笼包”之称的纳米脂质体应运而生。脂质纳米材料具有独特的亲水、亲油“两亲性”,使得在同一药物里同时添加亲油亲水药物和活性成分成为了可能。纳米脂质体的膜材主要由磷脂与胆固醇构成。这种由脂质双分子层形成的粒径在纳米级别的囊泡,可将毒副作用大、稳定性差、降解快的药物包裹其中。通过与细胞膜融合,将携带的药物浓集于病灶部位,以实现靶向给药,同时可以提高疗效、降低毒性、增强稳定性。以下芯片可以为研究者提供基本的原理验证。
    留言咨询

药物载体相关的耗材

  • 磺胺类药物免疫亲和柱
    使用对象 磺胺类药物免疫亲和柱能够特异性的纯化样品中的磺胺类药物,它采用了柱状琼脂糖凝胶作为固相载体,琼脂糖凝胶与磺胺类药物抗体偶联形成免疫吸附剂,装柱制成免疫亲和柱。它能够特异性的纯化样品中的磺胺类药物。磺胺类药物免疫亲和柱广泛地应用于饲料、动物源性食品、水产品等样品的提取,该方法速度快、操作简单、准确性高,对提高食品的质量和安全性起到十分重要的作用。 该免疫亲和柱能够检测以下16种磺胺类药物: 磺胺醋酰(Sulfacetamide,SA) 磺胺二甲异嘧啶(Sulfisomindine, SIM2) 磺胺嘧啶(Sulfadiazine,SDZ) 磺胺噻唑(Sulfathiazole,ST) 磺胺吡啶(Sulfapyridine,SPD) 磺胺甲基嘧啶(Sulfamerazine,SMR) 磺胺对甲氧嘧啶(Sulfamethoxydiazine,SMD) 磺胺甲噻二唑(Sulfamethizole,SMTZ) 磺胺二甲嘧啶(Sulfamethazine,SM2) 磺胺氯哒嗪钠(Sulfachloropyridazine,SCP) 磺胺甲噁唑(Sulfamethoxazole,SMZ) 磺胺间甲氧嘧(Sulfamonomethoxine,SMM) 磺胺异噁唑(Sulfisoxazole,SIZ) 磺胺氯吡嗪钠(Sulfachloropyrazine, SPZ) 磺胺间二甲氧嘧啶(Sulfadimethoxine,SDM) 磺胺喹噁啉(Sulfaquinoxaline,SQX)
  • CRISPR/Cas9 sgRNA质粒载体
    产品特点►载体大小:4.5 kb-11.5 kb►转染方式:直接转染或通过病毒转染►两种标记可选:mCherry/GFP等荧光标记 Puro/Zeocin/Neomycin等药物标记1. CRISPR KI donor载体产品介绍CRISPR KI donor载体是由pUC19质粒改造而来。可直接转染或通过电转导入细胞。该质粒含有eGFP及PuroR筛选基因插入元件,元件两侧含有多个酶切位点,可供插入knock in所需的左右同源臂。经过改造的载体可与spCas9及sgRNA共同作用,达到在特定基因组位点插入含eGFP和Puro抗性基因的目的。本产品通过冰盒运输,到货后请立即放入-20℃冰箱保存。产品参数产品名称CRISPR KI donor 载体载体大小4.5 kb左侧克隆位点Hind Ⅲ、Sph Ⅰ、Sal Ⅰ右侧克隆位点Mlu Ⅰ、Kpn Ⅰ、EcoR Ⅰ产品规格10 μg/支载体示意图2. sgRNA-Puro/mCherry病毒载体等产品介绍CRISPR/Cas9 sgRNA病毒载体是慢病毒系统质粒,可直接转染或通过包装病毒感染细胞。该质粒含有gRNA骨架结构及两种标记以筛选标记基因,客户自行插入靶基因的特定sgRNA序列后,与spCas9共同作用,达到基因编辑的目的。本产品通过冰盒运输,到货后请立即放入-20℃冰箱保存。产品参数产品名称货号载体大小sgRNA克隆位点Esp3 Ⅰ 酶切后片段大小产品规格sgRNA-Puro/mCherry病毒载体GE-20005-PC11.5 kbEsp3 Ⅰ2 kb+9.5 kb10 μg/支sgRNA-mCherry病毒载体GE-20005-C9 kbEsp3 Ⅰ2 kb+7 kb10 μg/支sgRNA-GFP病毒载体GE-20005-G9 kbEsp3 Ⅰ2 kb+7 kb10 μg/支sgRNA-Zeocin病毒载体GE-20005-Z9 kbEsp3 Ⅰ2 kb+7 kb10 μg/支sgRNA-Neomycin病毒载体GE-20005-N9 kbEsp3 Ⅰ2 kb+7 kb10 μg/支sgRNA-Puro病毒载体GE-20005-P9 kbEsp3 Ⅰ2 kb+7 kb10 μg/支sgRNA-Puro/GFP病毒载体GE-20005-PG11.5 kbEsp3 Ⅰ2 kb+9.5 kb10 μg/支使用说明:(请详细阅读使用说明后再开始相关实验) 1.从-20℃冰箱中取出CRISPR/Cas9 sgRNA病毒载体,4℃融化 2.配置酶切反应液 3.37℃,酶切0.5 h 4.终止酶切反应液,将反应液加到1%琼脂糖凝胶孔,跑胶30 min,回收片段,与退火获得的sgRNA靶向序列做连接反应 5.连接产物通过转化获得阳性克隆,测序成功后经过质粒抽提即可使用
  • ASE 电池载体篮 | 23996
    产品特点: ASE 萃取池载体篮,用于ASE细胞Carrier Basket (for ASE Cells)订货号:23996产品名称:ASE萃取池的载体篮 (Carrier Basket for ASE Cells)● 坚固的不锈钢结构,可承载完整或空的ASE萃取池和萃取盖。● 可以容纳12个完整的33 mL萃取池组件和更多更小的尺寸。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制