心脏模型

仪器信息网心脏模型专题为您整合心脏模型相关的最新文章,在心脏模型专题,您不仅可以免费浏览心脏模型的资讯, 同时您还可以浏览心脏模型的相关资料、解决方案,参与社区心脏模型话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

心脏模型相关的耗材

  • 日本Beaulax 高性能人工生物皮肤模型 嘴唇模型
    产品说明。可用于评估口红、光泽度等的延展性、着色性、持久性和清洁性。 它也是评估唇部化妆品(如杯子)附着力的理想选择。*如果带妆的皮肤模型长时间停留,或使用含有有机颜料的化妆品,可能会出现色素沉着。产品规格产品名称 唇膏型号部件号92A(无齿型)92B号(齿型)尺寸-。 备注 如果没有zhiding颜色,产品将以#巧克力色(BSC)交付。建议使用。化妆品的颜色、伸长率和伸长率对覆盖率和着色的评价。 化妆品持久的评估通过粉剂等。 评价软焦点效果 对皮肤弹性的感官评估辅导工具可用于评估口红、光泽度等的伸长率、色泽、持久清洁度等。 也适用于评估唇部化妆品的附着力,如杯子。*如果带妆的皮肤模型长时间停留,或使用含有有机颜料的化妆品,可能会出现色素沉着。可选择材料1颜色可选2硬度可选3可选择的皮肤纹理4紫外线反应剂含量可选择(1) 材料和硬度的选择Bioskins有两种不同的材料。选择取决于你的应用。1.生物皮材料自推出以来使用的热塑性聚氨酯弹性体。 它具有高度的可加工性和出色的染色性。它是专门研究颜色或需要保持形状的应用的理想选择。Bioskin材料也有八种硬度级别可供选择。 请从下面的硬度表中选择左框中的Lv。Bioskin材料硬度表]※以下选择方法例)・生物护肤LV5测量方法:JIS K 6253E 测量时间:15秒2. 混合凝胶(11X凝胶)材料这种聚氨酯凝胶材料可以逼真地再现人类皮肤的弹性。 该材料的高柔软度和自粘性使其有可能表达从婴儿的胖乎乎的皮肤到老人的柔软、缓慢的皮肤等各种形象。混合凝胶材料还提供九种硬度级别的选择。请从下面的硬度表中选择左框中的0.xxS。例子)--混合凝胶0.21S混合凝胶材料硬度表] *如何在下面选择カラー選択可(2) 从九种基本颜色中选择Bioskin系列包括七种基本皮肤颜色的图案,以及白色和黑色,还有九种颜色。其他颜色可根据特别订单提供。 使用Bioskin系列来评估化妆品的颜色、涂层颜色、透明度和光谱特性。Bioskin材料和混合凝胶(11X凝胶)材料本身的原始颜色与基本颜色不同,所以当基本颜色包括在内时,颜色会略有不同。#.*颜色可能与实际颜色不同,这取决于计算机的屏幕设置。1.Bioskin材料特性Bioskin材料颜色数据] *如何在下面选择例子)Bioskin #10硬度選択可皮膚質感選択可光谱仪:柯尼卡美能达CM-25d色度值:Lab(SCI)光源:D65视野:10度2.混合凝胶(11X凝胶)材料特性混合凝胶(11X凝胶)材料颜色数据] *如何在下面选择例如)混合凝胶 # 生物色素(BSC)光谱仪:柯尼卡美能达CM-25d色度值:Lab(SCI)光源:D65视野:10度上述基本数据可能因颜料规格而略有不同3) 表面改性。(湿润、正常皮肤、干燥)选择的表面改性类型Bioskin产品有多种表面修饰方式可供选择。 同一模型可以用三种不同的感觉来表达,当触摸表面时:光滑、正常和湿润。 这可用于感官评价以及摩擦测量评价。(1) 干燥的涂层(暴露在空气中的感觉).(2) 正常涂层(正常的皮肤感觉)。(3)湿涂层(湿润和湿润的感觉)平均运动摩擦(在面接触子上粘贴生物皮肤膜100um)※通过肌肤模型0A实施各表面改性后的摩擦系数数值【测量机型】手持测试仪Type:TL-701※上述模型以外的模型也可以用湿巾、干燥规格制作。另外,还可以根据不同的弹性和颜色组合制作。 ④选择包含紫外线反应剂。紫外线反应剂可以包含在生物皮肤模型中,用于化妆品的重复使用。这使得评估包括粉底在内的紫外线护理产品的屏蔽(隐藏)效果成为可能。 紫外线反应物的含量可以根据紫外线(黑光)的波长进行调整,等等。
  • 日本Beaulax Bioskin人工皮肤弹性模型
    产品名称 弹性模型零件编号 15尺寸?50毫米x圆顶的(Apex 15Tmm)备注 如果没有zhiding颜色,产品将以#巧克力色(BSC)交付。对皮肤弹性的感官评估 可以选择材料 颜色可选硬度可选可选择的皮肤纹理紫外线反应剂含量可选择产品说明。它们在感官评估和宣传材料方面很受欢迎。材料、硬度和薄膜质地可以根据需要选择。 各种弹性和质地都可以在人类皮肤的图像中得到表达。1)重复使用该产品可以重复使用。使用化妆品后,请尽快用清洁剂清除化妆品。(2)产品的耐久性这取决于使用的频率和产品的使用环境。在正常环境下,据说日常使用可以持续约2年。 一些客户已经使用了3-5年。(3)使用该产品时注意事项不要在高温(60℃以上)下使用该产品,不要使用溶剂(稀释剂、苯等)或与尖锐物体接触,因为这些都会破坏表面膜。 在一些有机颜料上也存在着色素沉淀的风险。(4)定制或提供模版基本上,我们要求客户准备一个模型或母版。 如果你没有一个主模型,请咨询我们的工作人员。 产品介绍材料的选择Bioskin有两种类型的材料。 选择取决于你的应用。生物皮的材料特性自推出以来使用的热塑性聚氨酯弹性体。 它具有很高的可加工性和出色的染色性。 是专门研究颜色或需要保持形状的应用的理想选择。 Bioskin材料也有八种硬度级别可供选择。请从下面的硬度表中选择左框中的Lv。混合凝胶(11X凝胶)材料特性 一种聚氨酯凝胶材料,可以真实地再现人类皮肤的弹性。 这种材料的高柔软度和自粘性使其能够再现从婴儿的胖乎乎的皮肤到老人的柔软、缓慢的皮肤等各种图像。 混合凝胶材料还提供九种硬度级别的选择。请从下面的硬度表中选择左框中的0.00S。硬度表硬度可以从下面的硬度表中自行选择。如果你不zhiding硬度,生物皮和混合凝胶材料都将以黄色框内的硬度交付。可选择材料1颜色可选2硬度可选3可选择的皮肤纹理4紫外线反应剂含量可选择 (1) 材料和硬度的选择Bioskins有两种不同的材料。选择取决于你的应用。1.生物皮材料自推出以来使用的热塑性聚氨酯弹性体。 它具有高度的可加工性和出色的染色性。它是专门研究颜色或需要保持形状的应用的理想选择。Bioskin材料也有八种硬度级别可供选择。 请从下面的硬度表中选择左框中的Lv。Bioskin材料硬度表]※以下选择方法例)・生物护肤LV5测量方法:JIS K 6253E 测量时间:15秒2. 混合凝胶(11X凝胶)材料这种聚氨酯凝胶材料可以逼真地再现人类皮肤的弹性。 该材料的高柔软度和自粘性使其有可能表达从婴儿的胖乎乎的皮肤到老人的柔软、缓慢的皮肤等各种形象。混合凝胶材料还提供九种硬度级别的选择。请从下面的硬度表中选择左框中的0.xxS。例子)--混合凝胶0.21S混合凝胶材料硬度表] *如何在下面选择カラー選択可(2) 从九种基本颜色中选择Bioskin系列包括七种基本皮肤颜色的图案,以及白色和黑色,还有九种颜色。其他颜色可根据特别订单提供。 使用Bioskin系列来评估化妆品的颜色、涂层颜色、透明度和光谱特性。Bioskin材料和混合凝胶(11X凝胶)材料本身的原始颜色与基本颜色不同,所以当基本颜色包括在内时,颜色会略有不同。#.*颜色可能与实际颜色不同,这取决于计算机的屏幕设置。1.Bioskin材料特性Bioskin材料颜色数据] *如何在下面选择例子)Bioskin #10硬度選択可皮膚質感選択可光谱仪:柯尼卡美能达CM-25d色度值:Lab(SCI)光源:D65视野:10度2.混合凝胶(11X凝胶)材料特性混合凝胶(11X凝胶)材料颜色数据] *如何在下面选择例如)混合凝胶 # 生物色素(BSC)光谱仪:柯尼卡美能达CM-25d色度值:Lab(SCI)光源:D65视野:10度上述基本数据可能因颜料规格而略有不同3) 表面改性。(湿润、正常皮肤、干燥)选择的表面改性类型Bioskin产品有多种表面修饰方式可供选择。 同一模型可以用三种不同的感觉来表达,当触摸表面时:光滑、正常和湿润。 这可用于感官评价以及摩擦测量评价。(1) 干燥的涂层(暴露在空气中的感觉).(2) 正常涂层(正常的皮肤感觉)。(3)湿涂层(湿润和湿润的感觉)平均运动摩擦(在面接触子上粘贴生物皮肤膜100um)※通过肌肤模型0A实施各表面改性后的摩擦系数数值【测量机型】手持测试仪Type:TL-701※上述模型以外的模型也可以用湿巾、干燥规格制作。另外,还可以根据不同的弹性和颜色组合制作。④选择包含紫外线反应剂。紫外线反应剂可以包含在生物皮肤模型中,用于化妆品的重复使用。这使得评估包括粉底在内的紫外线护理产品的屏蔽(隐藏)效果成为可能。 紫外线反应物的含量可以根据紫外线(黑光)的波长进行调整,等等。
  • VercellTM- Cardiomyocytes人源心肌细胞
    VercellTM- Cardiomyocytes表达常规的心肌特异性基因,如多种收缩蛋白(肌钙蛋白,肌球蛋白)和离子通道。VercellTM - Cardiomyocytes具备经典的心肌细胞电生理活性,能够对电学、生物化学和机械刺激做出心肌细胞的常规反应,被广泛运用于药物发现、毒理学测定、疾病建模、心脏发育和功能基础研究及其他生理学研究。 产品主要用途1. 心脏毒性检测:为安评机构或CRO公司提供良好实验材料。2. 药物筛选:帮助有心血管成药管线的药厂建立心肌细胞药物筛选平台3. 疾病模型运用含有心脏病相关基因突变的人诱导型多能干细胞分化的心肌细胞,构建体外心脏病模型4. 心脏类器官构建的必备材料 产品特点1. 95%以上的心肌细胞表达肌钙蛋白T2(TNNT2)且肌钙蛋白T2在细胞内组装为规律的肌小节2. 以40-90次每分钟的跳动频率有力而规则地搏动3. 心肌细胞动作电位时长大于200ms,符合正常心肌细胞特点4. 不能增殖扩增, 是最接近人体的体外心肌细胞模型5. 无细菌、真菌或支原体污染

心脏模型相关的仪器

  • 可变节段长度导管(模式动物心脏) :众所周知,实验中有很多的心脏功能障碍(小鼠,大鼠,兔)的模型,这样的模型随着时间的推移心室腔大小是会变化的,因此使用定长电极导管并不理想。例如,心衰小鼠和糖尿病大鼠,心室容积会大大改变,所以这种标准环形间距的电极部分不会固定在心尖和心底。一个创新的解决方案就是使用 Scisense提供可变节段长度导管(模式动物心脏) 。VSL导管:在压力传感器近端有一系列的电导环有多达4个不同部分的长度(S1, S2, S3, S4) 可以放置在一个导管上,在研究的时候提供了多功能性和灵活性。我们VSL硬件可以很容易和快速的选择导管4段中任何一段并用于测量体积。离体工作心脏研究:离体心脏的准备工作使实验不受测量心脏功能体液因子的影响。此外,离体心脏模型,可消除*对功能可能带来的影响。一段时间以来,我们已能够利用离体大鼠工作心脏来开展许多心脏功能方面的研究,在和近几年,更多文献也引述利用离体鼠科动物工作心脏的研究。目前为止,由于血液代替溶液的电阻问题,我们还无法利用电导技术以获取离体心脏模型的容量参数。FV898 VSL 压力-容量控制器:Scisense 的压力-容量导管与一个能够对信号进行调节、放大的控制盒连接,压力-容量盒输出放大的模拟信号到计算机信号采集、分析系统。控制盒可以选择记录的电极并手动调整输出电压范围。VSL硬件的优点:可用于标准PV和VSL导管可用于不同电导率的血液替代溶液中。(如克氏液)对于在电压输出高端未饱和的信号,也能够测量出高值。能够对测量的信号进行增益调节、补偿,可以用于任何啮齿类动物大小不同心脏的传导介质中。有模拟输出,可以与其他数据采集系统兼容。
    留言咨询
  • 货号:15003供应商:广州科适特科学仪器有限公司现货状态:1个月保修期:1年数量:不限规格:30g的成年老鼠 冠状 1mmKOSTER实验动物脑组织模型用于神经生理学,解剖学,生化药理学。这些高品质的脑模型被设计为徒手切割的大脑的离散区域。他们允许冠状或矢状切面的切片通过间隔在1mm-2mm的大脑。全金属的设计,有着坚硬,耐用的镀铬层,提供优异的散热性能。它们可以被加热,消毒,冷藏来清洗干净从而不破坏表层。同一种动物的脑模型是相同的,所以可以得到希望再现的部分。 他们是理想中的具有精确和可重复使用的脑组织:解剖学:精确阻断大脑神经生理学:可再生阻塞大脑切片生化药理学:可再生的去除小的大脑区域进行生化分析。以下是所选产品的例子与订购信息:1、这些模型可以加热、消毒、冷却、擦洗干净且不破坏表面。2、精确的、可再生的阻塞的生活或固定的脑组织。 在使用后应立即浸泡在液体清洁剂中。清理大脑模型,我们建议使用我们的超声波清洗器。在使用之前应将产品置于阴凉透风的地方。 以下是可所选产品的订购信息: 15003 30g的成年老鼠 冠状 1mm15004 30g的成年老鼠 矢状 1mm15028 30g(12-14天)的老鼠崽 冠状 1mm15029 30g (12-14天)的老鼠崽 矢状 1mm15005 125-185g的成年老鼠 冠状 1mm15006 125-185g的成年老鼠 失状 1mm15007 200-400g的成年老鼠 冠状 1mm15008 200-400g 的成年老鼠 失状 1mm15009 200-400g 的成年老鼠 背侧或腹侧 1mm15031 成年老鼠心脏 1mm 沙鼠15001 70g成年沙鼠 冠状 1mm15002 70g成年沙鼠 失状 1mm 豚鼠15022 350g 成年豚鼠 冠状 1mm15023 350g成年豚鼠 失状 1mm 雪貂15024 成年雪貂 冠状 1mm15025 成年雪貂 矢状 1mm 兔子15026 70g 成年兔子 冠状 1mm15027 70g成年兔子 矢状 1mm 仓鼠15037 100g 仓鼠 冠状 1mm15038 100g 仓鼠 矢状 1mm 猫15041 35 槽 冠状 2mm 狗15040 32槽 2mm 猴子15039 恒河猴 成年(2-3岁,重2-3千克) 40 槽 冠状 2mm15043 猕猴 成年 冠状 2mm 组织模型15013 组织模型 10*10mm(L)室 1mm15014 组织模型 15*15mm(L)室 1mm15015 组织模型 20*20mm(L)室 1mm15016 组织模型 25*25mm(L)室 1mm15017 组织模型 6mm杆状型或V 1mm15018 组织模型 4mm球室 1mm15019 组织模型 6mm 球室 1mm 不锈钢大脑模型,1mm模型是通过精确的加工从而确保可再生的部分。这将允许研究者以1毫米的间隔来移动冠状 (垂直中心线)或矢状(中心线平行) 。特征:不锈钢制品高度抛光精密加工精确阻断大脑可重复使用的1毫米段
    留言咨询
  • Maestro Edge/Pro 高通量微电极阵列系统-LQTS体外模型电生理检测 Long QT间期延长综合征也称为LQTS,该疾病可导致心室延迟复极,在心电图中表现为QT间期的延长。一个长的QT间期可扰乱心跳的速率,并引发心率失常,从而导致晕厥或猝死。 hERG钾通道对心脏复极至关重要。该通道基因突变会导致其外向电流降低,并导致心脏动作电位延长。 Vincenzo Macri 博士利用Axion的Maestro MEA系统对分化得到的两组iPSC-CM(对照组和hERG基因突变组)进行了场电位检测。 上图可以观察到hERG突变组的场电位时程(FPD)与搏动周期的延长。 在上图45s的MEA记录中,可以看到对照组(左)的心肌细胞展现出稳定且一致的场电位。而hERG突变组(右)的心肌细胞除了表现出符合预期的复极延迟和搏动周期不稳定外,还发生了类似于TdP的自发性快速搏动。◆ ◆ ◆ ◆CARDIAC ACTIVITY ASSAY心肌细胞功能实时监测秘籍◆ ◆ ◆ ◆PART I 原理介绍监测心肌细胞电活动有用吗?使用体外细胞模型已被证明是人类心脏疾病研究的一个有效且强大的策略。心肌细胞在可兴奋性或者(和)收缩性方面的细微变化正是导致很多这类疾病的根本原因。Maestro平台可实时捕获活细胞(如心肌细胞)的电活动,并提供重要的细胞功能性数据。为您的研究在众多竞争者中脱颖而出助一臂之力。 什么是高通量微电极阵列? 在微孔板底部的培养表面下方,Axion植入了紧致排列的电极网格阵列,创造出全球首款多孔微电极阵列测试板。那些具有电活性的细胞,如心肌细胞等,可以被培养生长在电极表面。它们会逐渐成熟并形成跳动的合胞体。使用Maestro技术,您就可以轻松地记录每个样本中每个电极检测到的自发或诱发的电活动,精度可以达到毫秒级别。由此,系统配套软件就能在时间和空间两个维度为您提供精准且丰富的实验数据。适用样本原代心肌细胞、iPSC衍生心肌细胞、iPSC衍生心脏类器官、心肌细胞球心肌功能‘全景’测试作为下一代高通量电生理记录系统,Maestro Edge和Pro能够对心肌细胞的四项最重要的生理功能进行分析,且全程实时无标记。现在只需一台设备,您就能同时‘看透’6/24/48/96个样本,全景无死角!PART II Maestro系统介绍Maestro MEA实验流程Maestro使得MEA实验简单到超乎想象。A将心肌细胞培养在Axion MEA板上。B将MEA板放入Maestro MEA系统,静待环境仓达到温度和气体浓度的平衡。C使用AxIS Navigator软件无创且实时地分析心肌细胞电活动。Maestro平台优势一次实验,四项检测 仅需一次细胞培养,即可无创、实时地记录MEA板上每孔的数据,进行心肌细胞的四个方面键功能分析:[1] 动作电位, [2] 场电位, [3] 传播,[4] 收缩。提供关键答案 间接检测方法经常被用来推断心肌细胞功能。例如钙成像,该技术无法捕获微小却重要的钠离子通道功能的变化。而蛋白表达水平的检测结果与细胞疾病模型功能的相关性也很差。只有使用Maestro MEA系统实时追踪心肌细胞的可兴奋性,您才能回答功能相关的关键问题。无标记分析 Maestro MEA系统无创地检测心肌细胞群体的电信号,杜绝使用染料或报告子,避免其对细胞模型的干扰,您数据的准确性无需置疑。更使您得以实现对一个样本电活动的长期(数小时、数周甚至数月)追踪。原位检测 其它的高通量平台(例如自动化膜片钳或者流式细胞仪)通常会要求对样本做预处理,制备成单细胞悬液再上机检测。对于可兴奋性细胞这种以互相交联的功能性网络形式存在的样本来说,这是一种非常不理想的状态。此外,细胞收集的过程也需要大量的手动操作步骤。只有Maestro MEA系统能够在捕获心肌细胞可兴奋性的同时维持其形态学上的复杂性。简单易用 只有电生理专家才会使用Maestro MEA系统?不存在的!只要把细胞培养在MEA板上,然后把板放入Maestro MEA仪器检测仓内,即可记录心肌细胞电生理数据。Axion提供的一系列软件会帮您完成剩下的数据分析步骤,甚至连可直接用于文献发表的图表都搞定了。您也可以!PART III 应用方向简介药物心脏毒性筛选,药物心脏安全评价(CiPA),心脏细胞功能检测,光遗传学,模式生物表型筛选,干细胞开发及质控。心肌缺血心脏脂肪酸氧化障碍长Q-T间期综合征(复极延迟综合征)评估iPSC-CMs功能变化临床前药物心脏安全评估(CiPA)长Q-T间期综合征(别称复极延迟综合征)心律不齐Maestro多孔微电极阵列+Lumos光遗传的强大组合 Axion公司创新的多孔板光遗传刺激系统Lumos,可对MEA板内样本进行光强(1-100%)和光照时长(低至100ms)的控制。您可以选择多至四种不同波长的LED光源来刺激单孔内的细胞,并行处理通量高至96个。您也可以对每个孔内混合培养细胞样本中的某一类细胞群体进行单独控制,建立高阶神经疾病模型。所以,通过在软、硬件上与Maestro系统无缝整合,Lumos可以助您精准、灵活、高效地实现神经细胞网络的调节及实时的功能检测。 Axion BioSystems ImagineExploreDiscover
    留言咨询

心脏模型相关的试剂

心脏模型相关的方案

心脏模型相关的论坛

  • 【分享】医学中的数学模型

    [size=3][font=宋体]一、医学数学化的发展历史[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体]数学应用于生命科学研究的历史可追溯到17 世纪。1615 年英国医生哈维(Farvey W)在研究心脏时应用流体力学知识和逻辑推理方法推断出血流循环系统的存在,18世纪欧拉利用积分方法计算了血流量问题,这些都是历史上应用数学研究生命科学的突出事例。但是,真正大范围地将数学应用于生命科学与医学研究则出现在20世纪中叶。1935年,Mottram对小白鼠皮肤癌的生长规律进行了研究,认为肿瘤细胞总数N随时间的变化速度与N成正比,并获得了瘤体在较短时间内符合指数生长规律的研究成果。1944 年奥地利著名物理学家薛定谔(Schrodinger E)出版了《生命是什么》(What is life)一书,应用量子力学和统计力学知识描述了生命物质的重要特征。在薛定谔的影响下,沃森(Watson JD)和克里克(Crick FHC)利用当时对蛋白质和核酸所做的射线结晶学研究以及其他与DNA结构有关的研究,于1953年建立了DNA超螺旋结构分子模型,验证了薛定谔的设想。在书中,薛定谔还利用非平衡热力学从宏观的角度解释生命现象,认为生命的基本特征是从环境中取得“负熵”,以使生物系统内的熵始终处于低水平。20多年后,普律高津(Prigogine I)等人提出耗散结构理论,将对生命系统的研究推广到薛定谔预言的领域,为此普律高津于1977年荣获了诺贝尔奖。作为医学领域的最高奖项,诺贝尔医学和生理学奖背后的许多数学影像也许更能说明数学在生命科学中的巨大潜力:英国生理学家、生物物理学家Hodgkin和Huxley建立了神经细胞膜产生动作电位时膜电位变化的模型,揭示了神经电生理的内在机制,因而于1963年共享诺贝尔奖;基于二维雷当变换(Radon transform)创建CT成像理论的美国科学家Cormack AM获得了1979年的诺贝尔奖,丹麦科学家Jerne NK则应用数学原理研究免疫网络理论获得1984年的诺贝尔奖。这些奖项有力地表明现代生命科学的研究离不开数学,数学在其中所起的作用和影响越来越重大,高层次的成果往往有赖于合理的数学模型的建立。[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体]数学不仅推动了人们探索生命世界的步伐,事实上两者结合已经产生了多个十分活跃的学科。1901年Peanson 创建生物统计学后,概率论与数理统计方法在医学上得到了非常广泛的应用,如目前常用的显著性检验、回归分析、方差分析、最大似然模型、决策树概率分布、微生物检测等,都属于基于统计学原理的数学模型及分析。1931年,Volterra在研究食物链的基础上,应用微分方程组研究生物动态平衡,完成了《生态竞争的数学原理》,开创了生物数学(biomathematics)这一新的分支。近年来,可视人及虚拟人的研究、计算医学(computational medicine/biology)、生物信息学(bioinformatics)、生理组学(Physiome)等新的学科及领域的出现,使数学这一工具在生物医学研究中的作用日益突出。[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体]生物系统是一个动态系统,作为世界上最复杂的系统之一,它具有调节机制复杂、多输入、多输出等特点,而且由于很多变量或参数很难在体测量及控制,仅仅通过实验研究来揭示其间的复杂关系,会非常困难且不易得到一致的结论。建立生物系统的数学模型,有利于获得生物系统的动态与定量变化,帮助阐明生物医学中有关作用机制等基础性问题,同时通过模型及仿真实验不仅可以得到正常状态,还可以获得异常或极端异常状态下的生理变化预测,以及代替一些技术复杂、代价高昂或难以控制和重现的实验,为临床或特定条件下的方案设计提供预测及指导。此外,从伦理学的角度,人们也希望医学研究中能够减少实验动物的数量,减轻临床试验中人体试验对象不必要的痛苦,因此生理系统的仿真与建模在生物医学领域中的研究中日益受到重视。目前,包括呼吸、血压、体温、各种调节系统等,都已建立了相应的数学模型,并进行了相应的模拟实验。针对特定应用的模型,如细胞动力学、药物动力学模型、生物种群生长模型、神经网络、心血管模型、临床计量诊断模型等,也不断呈现并得到应用。在本节下面的内容中,我们将以应用最为成功的模型之一,药物动力学模型为例,说明医用数学模型的建立过程。[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体]二、医用数学模型实例:药物动力学模型[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体]药物动力学(pharmacokinetics)是定量研究药物在生物体内吸收、分布、排泄和代谢等过程的动态变化规律的一门学科。于1937年由Teorell开创,主要内容是应用动力学原理、体外实验数据以及人体生理学知识,结合数学模型,定量研究药物在体内的运转规律,为药物的筛选提供指导。[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体]众所周知,新药研发过程费用昂贵、时间冗长、淘汰率高,大约有90%的候选药物在临床期间被淘汰,主要原因有口服吸收性差、生物利用度低、半衰期过短等等。为提高新药研究效率和安全性、降低药物研发成本,药物动力学模型已为全球各大制药公司应用。传统的新药研发流程中,药物动力学的应用主要在药物研发的中后期,近年来,人们开始在药物研发的早期对其药物动力学特性进行模拟研究,以尽早淘汰药物动力学参数不理想的候选药物,提高研发效率、降低成本。比如药物虚拟筛选(virtual screening)就是指在化合物合成前,先通过计算机模拟预测其药动学相关特性,进行初步筛选。此外,药物动力学模型在研究药物处置及作用机制、治疗药物监测及个体化用药、新药开发等方面也发挥着重要作用。[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体]药物动力学的数学模型包括房室模型、非线性药物动力学模型、生理药物动力学模型、药理药物动力学模型、统计矩模型等。下面以最常用的房室模型,结合前面所述的建模步骤,对药物动力学模型的建模过程进行分析描述。[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体](一)背景和问题表述[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体]药物进入机体后,在随血液输送到各个器官和组织的过程中,不断地被吸收、分布、代谢,最终被排出体外。药物在血液中的浓度,即单位体积血液中药物的含量,称为血药浓度。血药浓度的大小直接影响到药物的疗效。因此,药物动力学研究的主要对象是血药浓度随时间变化的规律——药时曲线,建模目的是建立能反映药物在体内分布的数学模型及参数,并能反映给药方式、给药时间间隔、给药剂量等对分布的影响。[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体](二)模型构建[/font][/size][size=3][font=宋体] [/font][/size][size=3][font=宋体]上述问题属于人体与外界以及人体内部的物质交换问题,研究这类问题最常用的是房室模型。药物动力学的房室分析方法将人的机体看做由不同房室构成的系统,每个房室代表药物在其中分布大致均匀的组织或体腔。如血液及供血丰富的肝、心、肾在特定情况下可视为一个房室,而血供不足的组织如肌肉、皮肤等可视为另一个房室。为了进行严格数学描述,常对模型做如下假设:①房室具有固定容量,且药物在每个房室内的分布是均匀的;②各房室间可进行物质交换,且至少有一个房室可与外环境进行交换;③房室间的物质交换或药物转移服从质量守恒定律,即系统中物质总量的改变等于输入总量与输出总量之差;④线性假设:药物的转移速率与药物浓度成正比。[/font][/size]

心脏模型相关的资料

心脏模型相关的资讯

  • 小动物活体成像系统在急性心力衰竭小鼠模型治疗中的应用
    2023年11月8日,由山西农业大学王金明教授、海军军医大学梁晓及美国威斯康星大学Hector H. Valdivia 团队共同在国际一流期刊《Materials Today Bio》(IF= 8.200)中发表了题为“OpiCa1-PEG-PLGA nanomicelles antagonize acute heart failure induced by the cocktail of epinephrine and caffeine”的文章。在急性心脏疾病中,通过钙素(calcin)作用于利亚诺定受体(RyR)减少肌浆网中的Ca2+含量,是一种潜在的干预策略,可用于减轻β-肾上腺素能应激触发的SR Ca2+过载。然而,作为一种含有33-35个氨基酸的球形肽,calcin主要对抗轻度的室性早搏(PVCs)或和双向室性心动过速(BVTs),而不是严重持续性的双向室性心动过速(BVTs)或多形性室性心动过速(PVTs)。像大多数肽类药物一样,calcin在体内具有快速的代谢率,其半衰期甚至不到2小时,因此,有必要通过增加心脏局部浓度来提高其药效,并通过长效的药剂学方法延长其作用持续时间。本研究通过将calcin家族中最活跃的成员Opticalcin1(OpiCa1)与最常见的无毒纳米载体PEG-PLGA聚合物连接,首次合成了Opticalcin-PEG-PLGA(OpiCa1-PEG-PLGA)纳米胶束。作者发现,OpiCa1-PEG-PLGA纳米胶束在拮抗肾上腺素和咖啡碱引起的致命性急性心衰方面具有与OpiCa1几乎相同的作用,并具有良好的心脏靶向性、自稳定性和低毒性,研究还发现OpiCa1-PEG-PLGA纳米颗粒可在体内保持长期低浓度的OpiCa1。主要实验方法1.纳米胶束的制备: 使用特定的配方制备了OpiCa1-PEG-PLGA纳米胶束,确保其稳定性和有效性。2.动物模型: 使用相关的动物模型模拟急性心力衰竭,实验对象接受肾上腺素和咖啡因的混合物。3.纳米胶束给药: 给实验组注射OpiCa1-PEG-PLGA纳米胶束,对照组分别接受安慰剂或其他干预措施。4.监测指标:监测各种心脏参数,如心率、血压和生化标志物,以评估纳米胶束对急性心力衰竭的影响。在研究中,作者将5-8周龄的ICR小鼠,分为对照组、PEG-PLGA组、OpiCa1组和OpiCa1-PEG-PLGA组(n = 6)。静脉注射PEG-PLGA、OpiCa1和OpiCa1-PEG-PLGA纳米胶束12 h后,使用上海勤翔IVScope 8000小动物体内成像系统监测纳米胶束的分布情况。结果表明,与FITC标记的PEG-PLGA的分散分布相比,FITC标记的OpiCa1和OpiCa1-PEG-PLGA纳米细胞在12 h内更集中在心脏组织中,在体内表现出良好的心脏靶向性。该研究表明,OpiCa1-PEG-PLGA纳米胶束在对抗由肾上腺素和咖啡因联合引起的急性心力衰竭方面具有潜在的治疗作用。需要进一步的研究和临床试验来验证这些发现,并探索OpiCa1-PEG-PLGA纳米胶束在治疗心脏急症中的转化潜力。
  • 我国首个渔业大模型“范蠡大模型1.0”发布
    6月15日,我国首个渔业大模型“范蠡大模型1.0”在中国农业大学发布,据悉,该模型可以实现渔业多模态数据采集、清洗、萃取和整合等,将为渔业养殖工人、管理经营者和政府决策部门提供全面、精准的智能化支持。“范蠡大模型1.0”发布现场(中国农业大学供图)渔业大国,面临转型的需求我国是水产养殖大国,数据显示,2023年,我国水产养殖产量达5812万吨,约占世界水产养殖总产量的60%以上,为城乡居民提供了1/3优质动物蛋白。但同时,我国不是养殖强国,水产养殖资源利用率、劳动生产率低,水产养殖产业发展面临多种转型需求。范蠡大模型设计者、发起者、国家数字渔业创新中心主任、中国农业大学信息与电气工程学院教授李道亮介绍,“我国水产养殖品种繁多,包括鱼、虾、蟹、贝、参、藻等,养殖模式多样,建立完整养殖品种的生产模型是极其困难的;同时,劳动力出现了普遍老龄化现象,有调查数据显示,我国水产养殖中,劳动力成本占70%左右,劳动者平均年龄达到55岁。新一代缺乏养殖经验,也不愿意从事传统的养殖生产,需要人工智能技术的支持。”范蠡大模型设计者、发起者、国家数字渔业创新中心主任、中国农业大学信息与电气工程学院教授李道亮(中国农业大学供图)随着现代技术的发展,水产养殖已经从1.0时代发展到4.0时代。李道亮介绍,“渔业1.0时代主要以小农生产为主,特征是依靠人力、手工工具、经验等养殖。2.0时代,水产养殖逐渐实现机械化、装备化,主要依靠机械动力和电力进行生产。3.0时代,自动化和计算机技术成为核心,生产装备出现数字化、网络化、自动化特征。到4.0时代,物联网、大数据、人工智能、机器人等技术普遍应用在生产中,无人化生产逐渐实现。”随着人工智能、机器人学习等技术的逐渐出现和成熟,越来越多的农业场景开始应用这些技术,但作为水产养殖大国,我国当前的水产养殖中,相关技术的应用还较为缺乏。渔业模型,从小到大的升级如何在水产养殖中应用现代技术,甚至打造未来的无人渔场?李道亮介绍,我国水产养殖品种繁多,养殖环境差异较大,而机理模型的构建,需考虑鱼类品种、饵料、病害、环境变化等一系列因素,面对众多的品种和养殖模式以及地区气候差异,逐个养殖品种建立像发达国家的养殖机理模型是不现实的。所谓大模型,是指具有大规模参数和复杂计算结构的机器学习模型,参数数量动辄数十亿甚至数千亿。在渔业中,大模型可以利用深度学习和数据驱动的方法,能够分析海量的养殖数据,揭示其中的规律和关联性。“它们不仅能够模拟和预测水质、饵料、疾病等因素对养殖效果的影响,还能够优化养殖方案,提高生产效率和经济效益。”李道亮说。智能池塘养鱼场景(中国农业大学供图)随着社会发展和水产养殖业转型,渔业大模型越来越成为产业发展的重要助力,为此,李道亮带领团队联合中国联通、中国电信、中国移动三家运营商、全国主要水产院校和科研机构,以鱼、虾、蟹、贝等27种我国主养品种水产文本语料为主,辅以文本、图像、视频、音频等多模态数据,形成大规模渔业专业知识语料库,通过深度学习架构,通过预训练和微调、参数共享与注意力机制、提示工程等技术,实现渔业多模态数据采集、清洗、萃取和整合等。“这一模型,不仅实现了丰富的渔业养殖知识生成,还包括水、饵、病、管等多方面多元化的预测、分析和决策。”李道亮说。范蠡为名,改变未来的渔业大模型构建成功后,命名为“范蠡大模型1.0”。李道亮介绍,范蠡是春秋末期越国大夫,众所周知的是,他是著名的政治家、军事家,也是商家鼻祖,但他同时也是我国最早的水产养殖专家,早在2500年前的春秋时期,他就写了一部《养鱼经》,并流传至今,“所以我们以范蠡为名,希望它能够在新时代中,为我国水产养殖带来的新的气象。”据介绍,范蠡大模型1.0分为请问我、请听我、请看我、请决策四个模块,分别代表文本、语音、视频、物联网决策四大场景,用户可以查询渔业的不同应用。而针对准确监测和评估鱼类的健康状况和体重异常耗时费力,且可能对鱼类造成伤害的问题,国家数字渔业创新中心开发了基于计算机视觉技术的鱼类体重估计模型,基于机器视觉实时捕捉水下鱼类图像和优化构建的深度神经网络算法,自动完成图像中鱼类目标的检测和定位,通过提取形状、颜色、纹理等多维度特征,以非接触方式实现对鱼类体重的实时、准确估算,同步完成生长及健康状态监测和计算,为投饵决策、水环境、能耗优化控制提供数据支撑。范蠡大模型利用了多种现代技术,以此实现水产养殖的数字化、无人化。图为鱼的种类识别模型(中国农业大学供图)“当前,范蠡大模型还是1.0,未来还会不断进化,人工智能在智慧渔业中的应用,是多元化且深远的、长期的,不可能一蹴而就。未来,范蠡大模型还有很长的路要走,必须充分发挥通信、科研、水产养殖企业、养殖户等各种不同领域的优势力量,以产学研用协同推进大模型的开发与应用,人工智能才能真正落地。”李道亮说。
  • 压力大到小心脏承受不住?“好”压力促进心血管瓣膜形成
    《机智的医生生活》中,新生儿由于先天性心脏病而延迟关胸,手术之后小朋友心脏不再需要借助仪器辅助,开始健康地跳动,“李子一样大小的心脏,跳动起来异常有力”震撼的场面让实习医生们决定加入胸外科的道路。心脏的跳动是生命的信号,血液流过的地方与心跳一起带给了心内膜细胞(Endocardial cells,ECs)流体剪切机械应力以及牵拉力。在发育过程中机械力帮助心血管系统逐渐成型,但这些力量如何指导局部心肌细胞的细胞命运的刻画的仍不清楚。为此,法国国家健康与医学研究院Julien Vermot研究组在Science发文题为Bioelectric signaling and the control of cardiac cell identity in response to mechanical forces,通过在体内操纵机械应力揭开了机械力在促进心血管瓣膜形成以及特定细胞命运决定中的关键作用。以斑马鱼作为模式生物可以实现高分辨率的时空机械应力参数在体内的控制,作者们首先通过的荧光标记的Ca2+感受器蛋白GCaMP7a在心内膜细胞中的表达监测Ca2+的动态变化【1】作者们惊讶地发现Ca2+振荡几乎只会在房室瓣的房室管区域形成(图1)。这一现象引发的了作者们的兴趣,作者们想知道Ca2+的振荡是否与血管瓣膜形成分化过程相关,所以作者们想找到Ca2+信号在体内的解码器以及效应因子。也就是说,什么因子能够读取Ca2+振荡事件所带来的信息呢?先前的研究表明,Nfatc1(Nuclear factor of activated T cells 1)是一个对Ca2+通道非常敏感的转录因子,能够调节心内膜细胞向间充质细胞的转化以及心脏瓣膜形态发生过程【2,3】。因此,作者们构建了一个Nfat结合元件报告品系,可以反映Nfat蛋白的结合。作者们确认了Ca2+信号通路的时空调控与Nfat激活是相耦连的,是瓣膜形成过程中心内膜细胞中的特征。图1 Ca2+振荡只出现在瓣膜形成区域进一步地,作者们想知道所观察的Ca2+振荡是否与心内膜细胞中对于应力的响应有关,所以作者们使用抑制剂处理使得心脏跳动停止,然后观察此时Ca2+信号的变化。作者们发现心脏跳动停止后,Ca2+振荡消失,与此同时Nfat的激活也消失。另外,在斑马鱼的缺血性突变体中Ca2+的振荡也会显著减少,并且Nfat的活性也同步降低。这些现象表明Ca2+振荡以及Nfat的激活对于机械应力具有响应。进一步地,作者们希望通过操纵血管瓣膜边界处的机械应力对机械力改变所带来的效应进行检测。作者们想到了一个很巧妙地方式,将一个30-60μm的琼脂磁珠插入到心血管腔中,通过精妙地微型外科手术确保不会影响心脏的正常功能。作者们通过磁镊(Magnetic tweezers)精确调控可以施加在磁珠上的机械应力。通过Ca2+的流量对心内膜细胞中对机械力的响应,作者们发现心肌细胞机械应力的与Ca2+振荡有关。那么当应力发生错误的时候,是否对瓣膜形态形成和发育有影响呢?为此,作者们通过对磁珠移植的局部反应进行检测,发现移植的磁珠会导致心脏瓣膜定位异常并伸入心胶质中,同也会导致心脏瓣膜相关基因的异常表达。另外,通过Nfat的抑制剂处理,作者们发现Nfatc1的核定位会被增加的机械力所促进,并且是以一种Nfatc1中Ser/Thr去磷酸化依赖的方式进行的。除此之外,作者们发现Ca2+-Nfat信号通路并不是通过通常认为的klf2a机械转导信号进行的,而是通过一个机械力敏感的基因egr1实现的。为了找到机械力依赖的Ca2+-Nfat信号通路激活的具体因子,作者们对一些已知对机械力敏感的通道蛋白以及纤毛发生相关的突变体品系进行检测,比如Trp通道以及Piezo等。但是作者们发现这些突变体中Ca2+激活都是正常的,而且对胚胎使用非特异性应力敏感通道阻滞剂钆离子处理后的胚胎Ca2+的激活也是正常的。这说明可能有其他的因素参与其中。先前的研究表明,这体外培养的心内膜细胞对于机械力在响应的时候会产生ATP水平的变化【4】,ATP会通过嘌呤受体P2X通道激活Ca2+信号。通过拮抗剂以及转录本、过表达等实验,作者们确认在心内膜细胞中Ca2+内流是由P2X通道调节,以响应胞外ATP水平的变化。随后作者们对激活以及抑制P2X介导的ATP信号通路对瓣膜形成的影响进行鉴定,发现P2X受体调节Nfat活性,但该调节作用并不依赖于VEGF信号通路。P2X介导的ATP信号通路发生异常时,心脏瓣膜结构异常,瓣膜形态不完全。因此,P2X作为Nfat活性上游发挥作用,控制心脏瓣膜发育以响应机械力的刺激。图2 工作模型总的来说,该工作揭开了心内膜细胞“破译”机械力信息的奥秘(图2),并且发现ATP作为一种附加的机械敏感旁分泌信号,通过它血流动力学力量可以指导心脏瓣膜的发育,可能可以作为未来帮助心脏瓣膜在体外的生长以及对先天性心脏瓣膜缺陷的治疗方案。由于该工作对于心脏瓣膜发育与机械力之间关系的揭示,同期刊发了观点文章对其进行了高度评价,题为Not all stress is bad for your heart。适当的机械应力对于心内膜细胞感受刺激并在正确位置产生心脏瓣膜具有非常重要的意义。斑马鱼中的研究并非终点,如何将机械应力在哺乳动物例如小鼠或者人类中瓣膜形成与特化过程相联系,能否用于三维类器官培养以造福病人等该领域未来的发展方向。不过,看来有点儿“小压力”对心脏也并非坏事,小压力,才有强心脏!原文链接:https://www.science.org/doi/abs/10.1126/science.abc6229
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制