小鼠肿瘤区域

仪器信息网小鼠肿瘤区域专题为您整合小鼠肿瘤区域相关的最新文章,在小鼠肿瘤区域专题,您不仅可以免费浏览小鼠肿瘤区域的资讯, 同时您还可以浏览小鼠肿瘤区域的相关资料、解决方案,参与社区小鼠肿瘤区域话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

小鼠肿瘤区域相关的耗材

  • 大小鼠导管
    大小鼠导管使用动物导管,可以避免麻醉的不利影响,降低手术对动物的急性影响,以及动物被捉拿和被固定的情绪影响,使得实验结果更偏向于实际情况。1、32G小鼠颅内导管系统(Mouse intracranial catheter)该导管系统提供最小直径导管 /管芯产品,适用于心血管、颅内和其他鼠科动物实验应用。32G导管系统 : 一个 32 G(0.010英寸O.D./ 0.005英寸 I.D.) 聚氨酯导管,可用导管长292.5px,导管过渡连接区域长大约190px,其导管末端为喇叭形连接口(可配套27 G 针)一个直径 0.003英寸 的特氟龙 包裹的不锈钢丝(钝头针),方便插管操作2、鞘膜内导管(Intrathecal catheter)主要用于大鼠的腰部脊髓区域的微量给药!3、动静脉导管(mouse intravascular catheter)主要用于小鼠,可以分厂方便快速的的进入动静脉管内产品选购:
  • 大小鼠导管
    大小鼠导管使用动物导管,可以避免麻醉的不利影响,降低手术对动物的急性影响,以及动物被捉拿和被固定的情绪影响,使得实验结果更偏向于实际情况。1、32G小鼠颅内导管系统(Mouse intracranial catheter)该导管系统提供最小直径导管 /管芯产品,适用于心血管、颅内和其他鼠科动物实验应用。32G导管系统 : 一个 32 G(0.010英寸O.D./ 0.005英寸 I.D.) 聚氨酯导管,可用导管长11.7cm,导管过渡连接区域长大约7.6cm,其导管末端为喇叭形连接口(可配套27 G 针)一个直径 0.003英寸 的特氟龙 包裹的不锈钢丝(钝头针),方便插管操作2、鞘膜内导管(Intrathecal catheter)主要用于大鼠的腰部脊髓区域的微量给药!3、动静脉导管(mouse intravascular catheter)主要用于小鼠,可以分厂方便快速的的进入动静脉管内产品选购:货号产品名称规格BT-23532G intracranial catheter system, 小鼠颅内导管系统个BT-236Intrathecal catheter鞘膜内导管个BT-237Stainless steel,0.016英寸直径,带有堵头,配套BT-236个BT-238mouse intravascular catheter动静脉导管,28G,60mm L, 0.014" od x 0.007" id (supplied sterile) 个价格请电询。
  • 角度可调小鼠头部固定器配件
    角度可调小鼠头部固定器配件把小鼠固定在显微镜下或其它仪器上,用于小鼠的活体成像或显微镜观察或实验,是固定小鼠的理想仪器。角度可调小鼠头部固定器配件也可以放置在立体显微镜下,是体内观察或成像实验最适合的装置。安装有角度调节器用于获得更深度的图像。比MAG-2稍微大一些,角度倾斜更大这对头的颞区域的研究更有用。* 可连接的mice chamber 小鼠室: CF-10, CP, CP-1, CP-2倾斜角度纵向倾斜 (± 10°)侧向倾斜 (± 15°)角度可调小鼠头部固定器配件规格:配件CP-1 室板 (每个一块)CP-2 室板 (每个一块)乙烯基片大小/重量W108 x D152 x H109 ~ 130mm, 1.7Kg最大倾斜角度纵向± 15°侧向± 20°承载重量2kg* 室框架根据用户应用进行定制,请与我们联系获取详细信息。* 不能连接室框架CFR-1 (用于大鼠)。

小鼠肿瘤区域相关的仪器

  • 肿瘤切片模具可用于大小鼠兔子等动物的肿瘤切片操作。全不锈钢结构,制作精密,使用方便。 0.5mm SteelDescriptionCavity Diameter (A)Cavity Depth4160Small Tumor8mm4.8mm4150Large Tumor12mm4.8mm 我们可以赠送配套的刀片,有两种规格,请注意选择:脊髓切片模具,可用来对大鼠脊髓、小鼠脊髓进行切片使用,全不锈钢结构,制作精密,使用方便。 心脏切片模具主要用于对大鼠、小鼠、兔子的心脏进行切片,无冠状切片和失状切片之分。大鼠、小鼠心脏切片模具的规格:大小鼠心脏模具图示:还可以根据需求,选择国产定制型脑模具: 用于大鼠、小鼠的心脏切片;切片方向:冠状切片;切片厚度:0.5mm 和 1mm两种规格可选;腔体尺寸:小鼠(A=8.3, B=12.1,深度4.8mm) 大鼠(A=12.7,B=19.9,深度9.7mm)心脏切片模具的主要规格: 小鼠心脏模具,0-75g,冠状,厚度0.5mm 大鼠心脏模具,175-400g,冠状,厚度1mm (适合400g以内的大鼠) 大鼠心脏模具,175-400g,冠状,厚度0.5mm (适合400g以内的大鼠)兔子心脏模具:Rabbit Heart Matrix, Adult, 2mm Slots我们可以赠送配套的刀片,有两种规格,请注意选择:大.小鼠脑切片模具主要用来对大鼠、小鼠的大脑进行便捷式的切片,根据实验需求,有矢状和冠状模具两种款式,多种规格可供选择,敬请来电咨询。脑切片模具包括大鼠脑模具和小鼠脑模具,脑切片模具经过精密加工和高度抛光,可确保切片过程的可重复性。使用材料为进口不锈钢,结实耐用,可被加热、冷却、高压灭菌、擦洗,经得起苛刻的使用条件。冠状脑模具具有矢状中线,可方便的分离左右脑半球。切片厚度为0.5mm、1mm(可选);小鼠脑模具也适用于新生大鼠。脑切片模具的主要规格: 小鼠脑模具,0-75g,冠状,厚度1mm 小鼠脑模具,0-75g,矢状,厚度1mm 大鼠脑模具,175g-300g,冠状,厚度1mm (适合:体重是250g以下的大鼠) 大鼠脑模具,175g-300g,矢状,厚度1mm (适合:体重是250g以下的大鼠) 大鼠脑模具,300g-600g,冠状,厚度1mm (适合:体重是250g-600g的大鼠) 大鼠脑模具,300g-600g,矢状,厚度1mm (适合:体重是250g-600g的大鼠) 小鼠脑模具,0-75g,冠状,厚度0.5mm 小鼠脑模具,0-75g,矢状,厚度0.5mm 大鼠脑模具,175g-300g,冠状,厚度0.5mm (适合:体重是250g以下的大鼠) 大鼠脑模具,175g-300g,矢状,厚度0.5mm (适合:体重是250g以下的大鼠) 大鼠脑模具,300g-600g,冠状,厚度0.5mm (适合:体重是250g-600g的大鼠) 大鼠脑模具,300g-600g,矢状,厚度0.5mm (适合:体重是250g-600g的大鼠)脑切片模具的主要技术参数: 请关注玉研仪器的更多相关产品。如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询
  • 小鼠肿瘤测量仪 400-860-5168转4032
    动物肿瘤测量仪,非常适合对大鼠小鼠等动物的皮下肿瘤进行快速测量、分析,精确测量动物肿瘤并对肿瘤信息存档与跟踪。主要技术参数: 测量范围:0-25mm最大肿瘤尺寸:20*20*20mm 3D测量精确度:0.3mm 图像捕捉时间:0.1s 接口:USB 2.0 相机:1600*1200 像素(2MP) 工作距离:50mm动物肿瘤测量分析仪的主要特点: 手持式成像装置,实现立体成像; 适合测量不同尺寸的肿瘤; 方便使用:触屏式电脑,操作方便; 内置软件,自动计算肿瘤尺寸,跟踪整个实验进展。 快速,高效,保证了高通量和可靠测量; 全自动测量跟踪系统; 实时数据分析与处理。 部分用户: Hunter College, CUNYVanderbilt University Medical CenterHainan Medical UniversityHoward Hughes Medical InstituteMemorial Sloan Kettering Cancer CenterCancer Center AmsterdamGlaxoSmithKlineImecK.U.LeuvenNeuro-Electronics Research FlandersPepricPharmaVizereMYNDUniversity GhentSEPS PharmaVlaams Instituut voor BiotechnologieUniversity AntwerpThromboGenicsJanssen PharmaceuticaCity University of Hong Kong参考文献:1.Adams EJ, Karthaus WR, Hoover E, et al. FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature. 2019 571(7765):408-412. doi:10.1038/s41586-019-1318-9.2.Zhang Z, Zhou C, Li X, et al. Loss of CHD1 Promotes Heterogeneous Mechanisms of Resistance to AR-Targeted Therapy via Chromatin Dysregulation. Cancer Cell. 2020 37(4):584-598.e11. doi:10.1016/j.ccell.2020.03.001.3.Santich BH, Park JA, Tran H, etal. Interdomain spacing and spatial configuration drive the potency of IgG-[L]-scFv T cell bispecific antibodies. Sci Transl Med. 2020 12(534):eaax1315. doi:10.1126/scitranslmed.aax1315.4.Park JA, Xu H, Cheung, I, et al. Abstract B38: Tetravalent bispecific antibodies specific for HER2 and disialoganglioside GD2 to engage polyclonal T cells for osteosarcoma therapy. Cancer Res. 2018 78(19),B38.doi:10.1158/1538-7445.PEDCA17-B38.5.Wu CF, Wu CY, Lin CF, et al. The anticancer effects of cyanidin 3-O-glucoside combined with 5-fluorouracil on lung large-cell carcinoma in nude mice. Biomed Pharmacother. 2022 151:113128. doi:10.1016/j.biopha.2022.113128.6.Wang L, Hoseini SS, Xu H, et al. Silencing Fc Domains in T cell-Engaging Bispecific Antibodies Improves T-cell Trafficking and Antitumor Potency. Cancer Immunol Res. 2019 7(12):2013-2024. doi:10.1158/2326-6066.CIR-19-0121.7.Grochowska A, Statkiewicz M, Kulecka M, et al. Evidence supporting the oncogenic role of BAZ1B in colorectal cancer. Am J Cancer Res. 2022 12(10):4751-4763. 8.Hoseini SS, Vadlamudi M, Espinosa-Cotton M, et al. T cell engaging bispecific antibodies targeting CD33 IgV and IgC domains for the treatment of acute myeloid leukemia. J Immunother Cancer. 2021 9(5):e002509. doi:10.1136/jitc-2021-002509.9.Beguin E, Gray MD, Logan KA, et al. Magnetic microbubble mediated chemo-sonodynamic therapy using a combined magnetic-acoustic device. J Control Release. 2020 317:23-33. doi:10.1016/j.jconrel.2019.11.013.10.MaoN, Gao D, Hu W, et al. Aberrant Expression of ERG Promotes Resistance to Combined PI3K and AR Pathway Inhibition through Maintenance of AR Target Genes. Mol Cancer Ther. 2019 18(9):1577-1586. doi:10.1158/1535-7163.MCT-18-1386.11.Wu Z, Guo HF, Xu H, et al. Development of a Tetravalent Anti-GPA33/Anti-CD3 Bispecific Antibody for Colorectal Cancers. Mol Cancer Ther. 2018 17(10):2164-2175. doi:10.1158/1535-7163.MCT-18-0026.12.Poty S, Mandleywala K, O'Neill E, et al. 89Zr-PET imaging of DNA double-strand breaks for the early monitoring of response following α- and β-particle radioimmunotherapy in a mouse model of pancreatic ductal adenocarcinoma. Theranostics. 2020 10(13):5802-5814. doi:10.7150/thno.44772.13.Hoseini SS, Guo H, Wu Z, et al. A potent tetravalent T-cell-engaging bispecific antibody against CD33 in acute myeloid leukemia. Blood Adv. 2018 2(11):1250-1258. doi:10.1182/bloodadvances.2017014373.14.Zhang Z, Karthaus WR, Lee YS, et al. Tumor Microenvironment-Derived NRG1 Promotes Antiandrogen Resistance in Prostate Cancer. Cancer Cell. 2020 38(2):279-296.e9. doi:10.1016/j.ccell.2020.06.005.15.Poty S, Carter LM, Mandleywala K, et al. Leveraging Bioorthogonal Click Chemistry to Improve 225Ac-Radioimmunotherapy of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res. 2019 25(2):868-880. doi:10.1158/1078-0432.CCR-18-1650.请关注玉研仪器的更多相关产品。如对产品细节和价格感兴趣,敬请来电咨询!
    留言咨询
  • 在癌症研究领域,有效的模型和精确的成像技术对于理解肿瘤的生物学特性和评估治疗效果至关重要。小鼠乳腺癌4T1皮下肿瘤模型作为一种广泛使用的癌症研究模型,结合低场核磁共振技术(LF-NMR),为肿瘤成像和分析提供了一种创新的方法。本文将探讨小鼠乳腺癌4T1皮下肿瘤模型成像分析仪的特点及其在肿瘤研究中的应用。小鼠乳腺癌4T1皮下肿瘤模型因其高度侵袭性和转移能力,成为研究乳腺癌进展和转移机制的重要工具。该模型能够模拟人类乳腺癌的多种特征,包括肿瘤生长、血管生成和免疫反应。低场核磁共振技术在肿瘤成像中的应用高分辨率成像低场核磁共振技术以其高分辨率成像能力,能够清晰地显示小鼠乳腺癌4T1皮下肿瘤的形态和结构。这种技术能够提供比传统成像方法更详细的肿瘤内部信息,有助于研究者更准确地评估肿瘤的生长和侵袭性。无创性分析LF-NMR技术是一种无创性分析方法,可以在不伤害动物模型的情况下,连续监测肿瘤的发展。这对于长期研究和药物疗效评估尤为重要。小鼠乳腺癌4T1皮下肿瘤模型成像分析仪结合低场核磁共振技术,为肿瘤研究提供了一种高效、精确的成像和分析工具。准确而直观的反映活体动物内部情况,运行成本低,能够满足大部分肿瘤类小动物模型研究,达到肿瘤医学基础研究的要求。产品参数:磁体材料:永磁体磁场强度:1T±0.05T磁体均匀度:≤30ppm样品范围:实验鼠(离体组织、小鼠、大鼠,1-350g)磁共振造影剂磁性纳米颗粒产品特点永磁技术,无需制冷剂和屏蔽房空间分辨率高,清晰显示组织结构组织对比度高,明显区分组织差异产品功能:多参数成像:如T1加权、T2加权、质子密度加权、水脂抑制成像等临床前研究:组织结构病变及过程研究,药效评价造影剂评价:磁共振造影剂弛豫率磁性纳米颗粒追踪:辅助诊断、光热治疗及药物递送研究应用案例:
    留言咨询

小鼠肿瘤区域相关的方案

小鼠肿瘤区域相关的论坛

  • 【转帖】iPS细胞:人造肿瘤细胞?

    各国争相发展的重点项目  iPS技术,即诱导性多能干细胞技术,是一种将成体成熟、分化的体细胞重编程获得类似胚胎干细胞的新兴技术。2007年11月美国和日本科学家分别独立宣布可将人类皮肤细胞转化为iPS细胞。这一发现被《自然》和《科学》杂志分别评为2007年第一和第二大科学进展。之后,iPS细胞研究迅猛发展,不同的国家和实验室纷纷报道了多种方法建立的iPS细胞系。就连世界第一只体细胞克隆动物多利羊的培育者伊恩·威尔莫特也宣布放弃人类胚胎干细胞克隆研究,转而进行 iPS 细胞研究,因为他认为这种细胞比胚胎干细胞更具潜在优势。  我国连续多年将干细胞研究列入“863”、“973”、国家自然基金重点项目。国务院2006年发布的《国家中长期科学和技术发展规划纲要(2006-2020年)》中,干细胞作为五项生物技术之一成为未来15年我国前沿技术的重点研究领域。  致瘤风险浮出水面  Yamanaka研究组在《自然·生物技术》上发表的文章显示,用iPS细胞诱导的神经干细胞,即使不含c-Myc(曾被认为是导致肿瘤的主要原因),在植入NOD/SCID免疫缺陷小鼠后仍有很强的致瘤性,甚至高于胚胎干细胞。   他们共研究了36个iPS细胞克隆,在诱导方式上,有些诱导剂配方中含有c-Myc基因,有些没有,因此具有较好的代表性。同时他们选择了3株胚胎干细胞作为对照。在45周的观察中,移植胚胎干细胞来源神经干细胞的34只小鼠有4只长出肿瘤。在100只移植胚胎成纤维细胞来源的iPS神经干细胞小鼠中34只发现肿瘤,概率和胚胎干细胞相当。在55只移植成人成纤维细胞来源的iPS神经干细胞小鼠中46只发现肿瘤,概率远高于胚胎干细胞。在36只移植肝细胞来源的iPS神经干细胞小鼠中10只发现肿瘤,概率高于胚胎干细胞。8只移植胃上皮细胞来源的iPS神经干细胞小鼠中未发现肿瘤。病理学检查证实肿瘤均为畸胎瘤,部分为恶性畸胎瘤。  研究还发现,以前认为致瘤性很强的c-Myc在去掉后并没有减少iPS神经干细胞的致瘤性,相反以前认为没有致瘤性的Nanog基因却可以明显增强iPS神经干细胞的致瘤性。  这次试验的另一个意外结果是并未发现在生成的肿瘤细胞中有c-Myc或其他基因的激活。以前的观点认为,转入的癌基因是iPS致瘤性的基础,只要在iPS细胞诱导成功后通过各种方法去除已完成使命的癌基因即可使iPS细胞免于致瘤性。这次试验的结果无疑给这些想法留下了阴影,而且使iPS致瘤的机制更加扑朔迷离。

  • 法国吃转基因玉米实验鼠长满肿瘤

    法国吃转基因玉米实验鼠长满肿瘤

    一项研究发现,喂食转基因食物的实验鼠会患上癌症。法国政府已要求食品与健康安全部门展开调查,这很有可能导致欧盟暂停进口转基因玉米。据研究者统计,做实验的这批小白鼠普遍患上乳腺癌,并出现肝脏衰竭。50%的雄鼠和70%的雌鼠提前死亡。媒体公布的照片显示出它们身上长着巨大肿瘤。http://ng1.17img.cn/bbsfiles/images/2012/09/201209282138_393690_2019107_3.jpg

  • 【金秋计划】苍术中有效成分抗肿瘤作用机制研究进展

    肿瘤是指体内细胞的异常增生,可以是良性的或恶性的。良性肿瘤(例如息肉)生长缓慢且通常局限在一个区域,不会侵犯周围组织或扩散到其他部位。恶性肿瘤(即癌症)具有侵袭性,可以快速生长并通过血液或淋巴系统扩散到其他身体部位,形成远处转移。癌症是一种严重威胁人类健康和生命的疾病,2020年全球有1 930万新增癌症病例和1 000万癌症死亡病例,且我国癌症发病率和死亡率均位居全球第一[1]。最常见的癌症类型是乳腺癌、肺癌、结直肠癌和前列腺癌。因此,寻找新的抗肿瘤药物,阐明抗肿瘤药物的分子机制,是解决当前临床肿瘤治疗难点的有效策略。中药具有多种有效成分,因其不良反应低、多靶点、多通路等优点,已成为抗肿瘤药物开发的重要来源和研究热点[2]。目前,常规的肿瘤症治疗方法为手术、放射治疗和化学治疗等,但这些方法往往伴随着较大的不良反应和毒性,而且对某些难治性或复发性肿瘤效果不佳[3]。因此,寻找有效、低毒的抗肿瘤药物是当前临床研究的重要方向。 苍术是一种常用的中药材,分为茅苍术Atractylodes lancea (Thunb.) DC.和北苍术A. chinensis (DC.) Koidz.,分别来源于菊科植物茅苍术或北苍术的干燥根茎。苍术具有燥湿健脾、祛风散寒的功效,在《神农本草经》中列为上品[4]。近年来,苍术在抗微生物、抗炎、抗肿瘤、免疫调节、调节消化系统、心血管系统和神经系统等方面的药理作用受到了广泛关注。苍术中含有挥发油、多糖、倍半萜类、聚乙炔类等[5]多种化学成分。其中一些成分已经被证实具有抑制或杀伤多种肿瘤细胞的能力,其作用机制涉及诱导凋亡、抑制增殖、迁移、侵袭和转移,以及调控免疫功能等方面[6]。然而,苍术中的抗肿瘤活性成分及其作用机制尚未完全明确,需要进一步深入地探索和验证。本文通过整理国内外研究文献,对苍术活性成分、苍术与其他药物联合抗肿瘤及其分子机制进行总结,探讨苍术在抗肿瘤方面的应用规律和思路,为苍术资源的开发利用以及抗肿瘤临床疗法的研究提供理论参考。 1 苍术主要化学成分 茅苍术与北苍术化学成分相似,药理作用也较为相似,目前已从苍术中分离出多种化学成分,主要含有包括萜类、聚乙烯炔类、有机酸类、糖苷类化合物等[7-8]。苍术主要抗肿瘤化学成分,见图1。茅苍术与北苍术中主要化学成分如表1所示。 图片 图片 2 苍术的抗肿瘤机制 苍术中含有苍术内酯Ⅰ、Ⅱ、Ⅲ、苍术酮、β-桉叶醇和苍术素等有效成分,这些成分不仅可以抗炎、抗氧化、抗菌、保肝、降血糖,还可以抗肿瘤[14-15]。近年来,苍术及其有效成分对肿瘤的抑制作用受到了广泛的关注。研究发现,苍术有效成分对多种肿瘤细胞都有抑制作用,可以通过多种途径和机制影响肿瘤细胞的生长、迁移、侵袭和血管生成,诱导肿瘤细胞的凋亡和自噬,调节肿瘤微环境和免疫系统。 2.1 抑制肿瘤细胞增殖 肿瘤是由于细胞增殖失控而形成的一种疾病[16]。细胞周期是细胞增殖的基本过程,由细胞周期蛋白(cyclin,CCN)和细胞周期蛋白依赖性激酶(cyclin-dependent kinase,CDK)复合物共同调控[17]。干预细胞周期是抑制肿瘤发展的有效策略之一[18]。Kotawong等[19]发现,苍术中的苍术素、苍术内酯I和β-桉叶醇等有效成分可以通过影响肿瘤细胞周期的不同阶段来抑制肿瘤细胞的增殖。这些成分可以通过抑制磷脂酰肌醇-3-羟激酶(phosphatidylinositol 3-hydroxy kinase,PI3K)、磷酸化蛋白激酶B(protein kinase B,AKT)和哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路来诱导肿瘤细胞在G1期停滞;Yu等[20]发现苍术内酯I通过上调周期蛋白依赖性激酶抑制剂1A(cyclin-dependent kinase inhibitor 1A,p21)和下调cyclinB1、CDK1和细胞分裂周期25C蛋白(cell division cyclin25,Cdc25c)等关键分子来抑制肿瘤细胞在G2/M期的进入,在动物模型中,苍术内酯I可以显著抑制膀胱癌的生长,且无明显不良反应。Zhang等[21]实验发现苍术内酯Ⅱ可以通过改变结直肠癌细胞内的蛋白表达从而抑制结直肠癌细胞的增殖和活性,并且还显著增强了结直肠癌细胞的化疗敏感性。Pongsakorn等[22]发现,苍术提取物可以通过抑制细胞外信号调节激酶信号级联(ERK-signaling cascade,ERK)信号通路来抑制胆管癌细胞的增殖。ERK信号通路是一种重要的细胞内信号转导机制,参与调节细胞生长、分化和凋亡等过程。苍术提取物可以下调ERK及其下游分子的表达,从而抑制胆管癌细胞的生长和增殖,不同类型的胆管癌细胞对苍术提取物的敏感度不同,其中人胆管HuCCT-1癌细胞最为敏感。 2.2 诱导肿瘤细胞凋亡 细胞凋亡是一种程序性细胞死亡形式,它通过限制细胞的增殖和分化来维持组织稳态或去除潜在的有害细胞[23]。目前已知的细胞凋亡途径主要有3种,即外源性途径(死亡受体介导)、内源性途径(线粒体介导)和内质网途径。其中,线粒体途径是最重要的一种,它涉及线粒体外膜透化(outer mitochondrial membrane,MOMP)、细胞色素C释放和半胱天冬酶(cysteine aspartic acid protease,Caspase)激活[24]。多项研究发现,苍术酮可以通过降低线粒体膜电位、提高活性氧水平、抑制B细胞淋巴瘤-2基因(B-cell lymphoma-2,Bcl-2)表达、促进BCL2-相关X蛋白(BCL2-associated X protein,Bax)裂解和Caspase-3表达[25],以及下调PI3K/AKT/mTOR信号通路来诱导肿瘤细胞凋亡[26]。Narahara等[27]研究表明,β-桉叶醇和苍术内酯Ⅲ[27]可以通过增加Caspase-3、Caspase-8、Caspase-9和Bax等凋亡相关蛋白的表达、下调Bcl-2表达、释放细胞色素C和降低线粒体膜电位来诱导胆管癌细胞凋亡。此外,Li等[28]使用β-桉叶醇处理的白血病HL60细胞,发现β-桉叶醇可以通过激活c-JunN端激酶(c-Jun N-terminal kinase,JNK)丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)信号通路来诱导白血病HL60细胞凋亡。Li等[29]研究发现,苍术素可以通过降低Bcl-2表达、激活p53肿瘤蛋白(p53 tumor protein,p53)、Bax和Caspase-3、-8、-9等凋亡因子来诱导人乳腺癌MCF-7细胞凋亡,并表现出浓度依赖的毒性效应。Li等[30]研究表明,苍术内酯I和苍术内酯Ⅱ[31]可以通过与对两面针激酶2(Janus kinase 2,JAK2)直接相互作用而负调节信号传导及转录激活因子3(signal transducer and activator of transcription 3,STAT3)磷酸化,从而抑制其活化,进而导致糖酵解的抑制和结肠、直肠癌细胞凋亡的诱导。 2.3 抑制肿瘤细胞转移 肿瘤细胞转移是指肿瘤细胞通过血液循环从原发部位转移到其他部位的过程,这是癌症治疗的难点,也是癌症死亡的主要原因[32]。上皮间质转化(epithelial-mesenchymal transition,EMT)是一种与癌症发生相关的细胞程序,它使癌细胞具有移动性、侵袭性和抗凋亡能力,从而促进转移。苍术的一些活性成分具有抑制肿瘤细胞转移的潜在作用,其机制可能涉及对EMT的调控[33]。Acharya等[34]研究发现,β-桉叶醇可以改变EMT相关标志物的表达,从而抑制结肠癌细胞的增殖、迁移和侵袭。同时它还可以影响PI3K、AKT、p38丝氨酸/苏氨酸蛋白激酶(p38 mitogen-activated protein kinase,p38MAPK)信号通路,以及肺癌细胞中的活性氧水平,从而降低癌细胞的黏附和迁移能力[35]。麦静愔等[36]发现苍术酮可以通过抑制EMT过程等途径抑制肿瘤细胞的迁移和侵袭能力,此外,苍术酮还可以通过下调基质金属蛋白酶(matrix metalloproteinase,MMP)的表达从而抑制肿瘤细胞的迁移和侵袭能力。MMP是一类能够降解细胞外基质(extracellular matrix,ECM)的锌依赖性内肽酶,在癌症进展中的作用与它们参与ECM降解以及黏附和细胞骨架蛋白、生长因子、趋化因子的调节和加工有关[37]。且有动物实验表明,苍术酮可以明显抑制肝癌生长,没有明显的毒性。Zhong等[38]在观察了苍术多糖在U-2 OS人骨肉瘤细胞中对内皮细胞选择素(endothelial cell selectin,E-Selectin)和路易斯X三糖(Lewis-X Trisaccharide,LacCer Lex)的影响,发现苍术多糖可通过降低U-2 OS细胞上的E-Selectin抑制U-2 OS细胞对人脐静脉内皮细胞HUVECs的黏附、迁移和侵袭。肿瘤相关巨噬细胞(tumor-associated macrophages,TAMs)在促进肿瘤转移中发挥重要作用,Zhang等[39]发现苍术内酯II可以有效抑制肿瘤细胞极化,从而抑制肺癌细胞在体内和体外的转移。铁死亡是一种新的细胞死亡模式,其特征是铁过载导致脂质过氧化而导致膜损伤,过度的铁死亡会影响肿瘤的转移,从而抑制肿瘤的进展[40]。He等[41]发现,苍术素可通过抑制谷胱甘肽过氧化物酶4(glutathione peroxidase 4,GPX4)和铁蛋白轻链(ferritin light chain,FTL)的表达,以及上调酰基辅酶A合成酶长链家族成员4(acyl-CoA synthetase long-chain family member 4,ACSL4)和转铁蛋白受体(transferrin receptor,TFR1)的表达来诱导肝癌HCCM细胞的铁死亡。 2.4 诱导肿瘤细胞自噬 细胞自噬是一种分解代谢通路,能清除不必要的或功能失调的细胞成分并回收代谢底物[42]。目前已知有3种主要的细胞死亡方式:细胞凋亡(Ⅰ型)、自噬性细胞死亡(Ⅱ型)和坏死(Ⅲ型)。自噬性细胞死亡是指自噬过程中产生的自噬体过多或过大,导致细胞质溶解和细胞死亡。自噬体是由双层膜包裹的囊泡,内含被降解的细胞器和蛋白质。微管相关蛋白1轻链3(microtubule-associated protein 1 light chain 3,LC3)是自噬体形成的关键标志物,它以微管相关蛋白1A/1B-轻链3(microtubule-associated protein 1 light chain 3,LC3-I)和微管相关蛋白1轻链3的脂化形式(lipidated form of microtubule-associated protein 1 light chain 3,LC3-Ⅱ)2种形式存在,LC3-Ⅰ转化为LC3-Ⅱ是自噬体形成的必要步骤[43-44]。Li等[29]使用苍术素处理乳腺癌MCF-7细胞时发现,苍术素可以增加了LC3Ⅰ向其脂化形式的LC3Ⅱ的转化,并增加了苄氯素1(beclin-1,BECN1)的表达,下调了人乳腺癌MCF-7细胞中的p62蛋白(p62 protein,p62)表达,改变凋亡和自噬相关生物标志物。Acharya等[45]研究发现,苍术素通过调节PI3K、AKT、mTOR、p38MAPK信号通路的活性,可以诱导胆管癌HuCCT-1细胞发生自噬,并抑制其生长、迁移和侵袭,SB202190(p38MAPK诱导剂)和3-MA(p38MAPK抑制剂)分别显著增加和降低苍术素诱导的自噬速率。 2.5 抑制肿瘤血管生成 血管生成本身不会导致恶性肿瘤的形成,但可以为肿瘤的生长和转移提供条件。肿瘤在发展到一定阶段后,需要依赖新生血管来满足其对氧气和营养的增加的需求,以及排除代谢废物,因此,抑制血管生成是一种有效的抗肿瘤策略[46]。血红素加氧酶1(heme oxygenase 1,HO-1)是一种在肿瘤组织中高表达的酶,它可以促进肿瘤的血管生成和抗氧化应激,为肿瘤细胞提供生存优势。因此,抑制HO-1的表达或活性是治疗肿瘤的另一种有效策略之一。Mathema等[47]研究发现,苍术素可以抑制胆管癌CL6肿瘤细胞的集落形成和伤口愈合能力,其机制与抑制HO-1的表达、下调信号转导及转录激活蛋白1/3(signal transducer and activator of transcription 1/3,STAT1/3)和核因子κB(nuclear factor kappa-B,NF-κB)的信号通路有关。β-桉叶醇也具有抑制胆管癌细胞中HO-1的表达的能力,其机制与浓度依赖性地抑制STAT1/3和NF-κB信号通路有关[48]。β-桉叶醇还可以通过抑制生长因子信号通路中的环磷腺苷效应元件结合蛋白(cyclic-AMP response binding protein,CREB)激活来阻断血管生成,从而抑制肿瘤的发展[49]。Tsuneki等[50]有动物实验表明,β-桉叶醇可以通过激活丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)来刺激大鼠嗜铬细胞瘤细胞中的神经突生长,且β-桉叶醇还表现出了体外和体内的抗血管生成活性,其阻断了由碱性成纤维细胞生长因子(basic fibroblast growth factor,bFGF)或血管内皮生长因子(vascular endothelial growth factor,VEGF)诱导的人脐静脉内皮细胞(human umbilical vein endothelial cell,HUVEC)中CREB蛋白的磷酸化,从而抑制bFGF刺激的HUVEC迁移和HUVEC在基质胶中的管形成。同时,它还能显著降低小鼠皮下植入的Matrigel栓塞和小鼠佐剂诱导的肉芽肿中的血管生成[51]。 2.6 免疫调节作用 随着肿瘤的发生和发展,或在接受化疗、放疗等治疗的过程中,肿瘤患者机体免疫力的显著下降。因此,调节或刺激机体免疫能力,可能是一种有效的主动抗癌策略。免疫治疗作为一种新型的抗癌手段,已经引起了广泛的关注和研究[52]。巨噬细胞是机体内重要的免疫细胞,在机体免疫中发挥着重要的作用[53]。Qin等[54]从苍术中分离得到两种多糖成分:中性多糖和酸性多糖。研究表明,酸性多糖能够显著地刺激小鼠单核巨噬细胞白血病细胞(RAW264.7)细胞的增殖、吞噬能力、NO产生和细胞因子分泌,并且呈现出剂量相关性,而中性多糖则相对较弱。此外,中性多糖和酸性多糖均能够激活淋巴结Peyers patch细胞中的T细胞,并促进集落刺激因子的产生。而酸性多糖也表现出比中性多糖更好的肠道免疫调节活性。吲哚胺-2,3-二氧化酶(indoleamine 2,3-dioxygenase,IDO)是一种通过犬嘌呤途径氧化分解色氨酸的限速酶,是抗肿瘤免疫治疗中小分子药物开发的潜在目标。IDO可在肿瘤微环境中通过与许多肿瘤相关的自发炎症和T细胞激活而被诱导。Liu等[55]研究发现,苍术内酯Ⅰ可以通过下调Toll样受体4/髓样分化蛋白2复合物(toll-like receptor 4/myeloid differentiation 2 complex,TLR4/MD-2)的表达,抑制人卵巢癌细胞(EOCSKOV3)中髓样分化主要反应蛋白88(myeloid differentiation primary response protein 88,MyD88)、NF-κB、Akt和IDO1的信号通路的活化,从而减少白细胞介素-6(interleukin-6,IL-6)、转化生长因子-β1(transforming growth factor beta 1,TGF-β1)、VEGF和白细胞介素-17A(interleukin-17A,IL-17A)等促进肿瘤免疫逃逸的因子的分泌。同时,还可以降低调节性T细胞(Treg细胞)在肿瘤微环境中的比例,改善T淋巴细胞受到EOCSKOV3细胞上清液抑制而导致的增殖反应降低和抗肿瘤细胞毒性减弱。Liu等[56]研究发现,苍术内酯Ⅲ可以通过直接结合JAK3蛋白,从而抑制γ-干扰素(interferon gamma,IFN-γ)触发的JAK3/STAT3通路,从而达到抑制IDO激活的目的。 苍术抗肿瘤成分的潜在分子机制见图2。对苍术抗肿瘤有效成分及其抗肿瘤作用进行归纳总结,见表2。 图片 图片 3 联合用药 西医治疗肿瘤的常用手段有手术切除、药物化疗和高能射线放疗等,这些手段去除肿瘤西医的治疗方式更为直接,适合前期控制病情,化疗药物虽然能够杀死肿瘤细胞,但同时也伴有严重的副作用,影响患者的生活质量和治疗效果。中药具有不良反应小、安全性高的特点,因此中药与化疗药物的联合应用被广泛关注和探索[57]。 阿帕替尼是全球第一个在晚期胃癌被证实安全有效的小分子抗血管生成靶向药物,也是晚期胃癌标准化疗失败后,明显延长生存期的单药。Zhou等[58] 分析了不同苍术多糖提取方法的影响。比较了热水浸提法、超声浸提法和酶浸提法提取苍术多糖的得率、总糖含量、相对分子质量分布、单糖组成、并测定苍术多糖与阿帕替尼的协同活性。结果发现其中超声浸提法表现出最强的协同作用。这也与超声浸提的苍术多糖相对分子质量小、β-构型高、半乳糖含量高的事实相一致。Srijiwangsa等[59]发现,β-桉叶醇可以通过抑制胆管癌细胞和细胞裂解物中的NAD(P)H醌氧化还原酶1[NAD(P)H quinonedehydrogenase 1,NQO1]的活性和蛋白表达,增强氟尿嘧啶和多柔比星对细胞迁移的细胞毒性活性和抑制活性。Mai等[60]将不同浓度的苍术内酯I、硼替佐米以及硼替佐米+苍术内酯I作用于U266细胞结果研究发现,苍术内酯可以调节JAK2/STAT3通路上的IL-6、JAK2、STAT3等基因表达抑制U266肿瘤细胞的增殖和促进其凋亡并呈剂量依赖性,并能与硼替佐米产生协同作用,当苍术内酯I与硼替佐米联合使用时,可显著增强对U266细胞增殖的抑制作用。 紫杉醇是第一个获得批准的草药衍生化疗药物[61]。并且作为一种已知的Toll受体4配体(toll-like receptor 4 ligand,TLR4),可激活TLR4/MyD88依赖性途径,该通路介导了上皮性卵巢癌的化学耐药性和肿瘤进展。苍术内酯I是一种新型TLR4拮抗剂,通过干扰紫杉醇与人白细胞膜TLR4的结合,来抑制TLR4信号传导。Huang等[62]研究发现苍术内酯-I可以减弱紫杉醇诱导的IL-6、VEGF和存活蛋白的蛋白表达,并增强MyD88(+)EOC人卵巢癌细胞的早期凋亡和生长抑制;苍术内酯I被发现更加亲和人髓样分化蛋白2(myeloid differentiation 2,MD-2)的疏水囊,并通过对接模拟与紫杉醇的结合位点部分重叠,这表明苍术内酯-I可能阻断MyD88(+)EOC细胞中MD-2介导的TLR4/MyD88依赖性紫杉醇信号传导。因此,苍术内酯-I可以通过阻断MD-2介导的TLR4/MyD88信号传导,显著提高MyD88(+)EOC细胞对紫杉醇的反应。 结缔组织生长因子(connective Tissue Growth Factor,CTGF)是一种多功能信号调节剂,可通过调节细胞增殖、迁移、侵袭、耐药性和EMT来促进癌症的发生、进展和转移。CTGF还参与大多数节点的肿瘤微环境,包括血管生成、炎症和肿瘤相关成纤维细胞(cancer-associated fibroblasts,CAFs)激活[63]。Wang等[64]研究发现,苍术内酯-I可以下调三阴性乳腺癌细胞中CTGF的表达和分泌。除了通过CTGF抑制三阴性乳腺癌细胞迁移外,苍术内酯-I还下调了成纤维细胞中CTGF的表达,降低了乳腺癌细胞将成纤维细胞转化为CAFs的能力,从而增加了三阴性乳腺癌细胞对紫杉醇的敏感性。在小鼠肿瘤模型中,发现苍术内酯-I治疗可以增强紫杉醇对肿瘤的化疗作用,减少肿瘤向肺和肝的转移。在用苍术内酯-I与紫杉醇联合治疗的小鼠中,源自接种肿瘤的原代培养的成纤维细胞表达相对较低水平的CAFs标志物。 研究表明了苍术内酯-I可以通过阻断CTGF表达和成纤维细胞活化来使三阴性乳腺癌细胞对紫杉醇敏感,还可以通过阻断MD-2介导的TLR4/MyD88信号传导,显著提高肿瘤细胞对紫杉醇的反应并。这些机制有助于未来研究以确定苍术内酯I在临床环境中的价值。对苍术化学成分联合治疗归纳总结,见表3。 图片 4 结语与展望 苍术中含有多种抗肿瘤成分,其中多为倍半萜类成分,如苍术酮、苍术素和苍术内酯等,这些成分多是通过调控PI3K/Akt/mTOR通路来发挥抗肿瘤的作用,但作用靶点与方式却各不相同。例如苍术内酯主要通过降低Akt的磷酸化水平、上调Bax和Bad蛋白表达、增加脂质磷酸酶(PTEN)活性来抑制该通路进而诱导肿瘤细胞凋亡[20];β-桉叶醇能通过激活p27抑制cyclinD1和CDK4蛋白表达最终导致细胞周期停滞于G1期[19]。这些成分通过多途径、多靶点影响肿瘤细胞的生存、运动、代谢和迁移进而共同发挥抗肿瘤作用。正因为其作用机制的不同,使其各有效成分对不同肿瘤的作用具有一定特异性。因此苍术抗肿瘤活性成分联合化疗药物减副增效在科学研究及临床用药时可根据其作用机制进行选择。目前关于苍术化合物对肿瘤细胞的研究还存在一些不足之处,如缺乏对不同肿瘤细胞类型和不同剂量的系统比较、缺乏对苍术化合物与其他药物或放化疗的协同作用的评价,以及缺乏对苍术化合物在体内代谢和药效学的深入分析等。 因此,今后还需要加强对苍术化合物抗肿瘤作用的基础和临床研究。后续可以根据苍术有效成分的抗肿瘤作用机制,筛选出具有最强抗肿瘤活性和最低毒性的化合物,作为候选药物进行进一步的优化和改造,提高其药效和安全性;分析苍术中有效成分的药代动力学特征,研究其在体内的吸收、分布、代谢和排泄等过程,确定其最佳的给药途径、剂量和方案,减少其不良反应和药物相互作用;根据苍术中有效成分的药效学特征,研究其对不同类型、分期和分子标志物的肿瘤细胞的作用差异,确定其最适合的治疗对象和指标,提高其个体化和精准化的治疗效果;根据苍术有效成分的协同增效或拮抗作用,探索其与其他抗癌药物或放化疗的联合应用,实现其对肿瘤细胞的多靶点、多途径和多机制的综合干预,增强其抗肿瘤效能和克服肿瘤耐药性,以期为开发新型的抗肿瘤药物提供更多的选择和可能性。 苍术与化疗药物的联合应用被广泛关注和探索。作为苍术的主要成分,现有研究已表明倍半萜类具有显著的抗肿瘤活性,其与化疗药物的联合临床用药有着巨大的潜力。但倍半萜类化合物分子结构中含有多个疏水基团,导致它们的极性较低,难以与水分子形成氢键或静电相互作用,在水中的溶解度小、生物利用度低。随着现代药物研究技术的现代化和多学科的交叉融合,这些问题也可以通过引入基团、采用纳米技术制备纳米载体、采用共晶技术制备倍半萜类化合物的共晶体等方式来提高其水溶性,进而增强其生物利用度。这些技术在药物化学领域已比较成熟,也已逐步应用于临床药物的开发。例如,抗疟活性药物青蒿素同样具有水溶性差应用困难的问题,通过引入羧酸基团,显著提高了其水溶性和生物利用度[65-66]; 此外,共晶体可以改变倍半萜类化合物的晶型和晶格参数,从而降低其结晶度和熔点,增加其自由能和溶解度[67]。苍术内酯也可通过与尼可替尼(一种具有较高水溶性的抗肿瘤药物)制备共晶体,可以显著提高其水溶性。因此,苍术抗肿瘤有效成分和化疗药物的联合用药在临床环境中的开发和应用具有很高的研究价值。 苍术作为中医临床常用的化湿药。其药性辛、苦、温,归脾、胃、肝经,其苦温燥湿,可以去湿浊、辛温健脾以和脾胃,多用于湿

小鼠肿瘤区域相关的资料

小鼠肿瘤区域相关的资讯

  • 转化医学系列|人源化模式小鼠在肿瘤免疫药物研究中的应用
    肿瘤免疫疗法是当前肿瘤治疗领域中最具前景的研究方向之一,已发展成为继手术、化疗和放疗之后的第四种肿瘤治疗模式。肿瘤免疫学治疗的方法种类繁多,目前各大医药研发企业的关注焦点主要包括:免疫检查点抗体药物,CAR-T疗法,溶瘤病毒等等,但新型的免疫疗法如何进行可靠有效的临床前效果评估,是推进肿瘤免疫疗法的一关键节点。百奥赛图自主研发了一系列免疫检查点人源化小鼠,为免疫检查点抗体药物筛选提供了可靠的体内药效模型,此外基于重度免疫缺陷B-NDG小鼠建立的免疫系统人源化小鼠模型也为药物验证提供了更多的选择。本期转化医学系列webinar邀请到的是百奥赛图药理药效事业部总监郭雅南博士,郭博士将给大家介绍:1. 免疫检查点抗体单用或联用在体内药效筛选的策略2. 利用免疫重建小鼠和B-hCD3e人源化小鼠进行双特异性抗体的体内药效评估与毒性检测3. 利用重度免疫缺陷小鼠B-NDG小鼠对CAR-T药物进行体内药效评估与毒性检测转化医学系列网络讲座第五期讲座题目:人源化模式小鼠在肿瘤免疫药物研究中的应用讲座时间:7月25日下午14:00-15:00主讲人:郭雅南 博士(百奥赛图)讲座形式:网络讲座,手机或PC即可参与(会议链接和如下报名链接相同)即刻报名扫描下方二维码主讲人简介郭雅南 博士百奥赛图 药理药效事业部总监清华大学生物科学与技术系本科;美国罗切斯特大学神经生物学/药理学博士学位;2009-2013年,在哈佛大学医学院伯明翰妇女医院转化医学系从事博士后研究工作;2014年回国,担任百奥赛图基因生物技术有限公司研发部副总监。拥有10多年癌症生物学和神经生物学的研究经验,现担任药理药效事业部总监。更多转化医学系列网络讲座安排,具体时间以珀金埃尔默微信推送时间为准。敬请关注!主题预计时间高内涵筛选助力个性化癌症医疗8月小分子激酶抑制剂研究最新进展9/19/2019使用Alpha技术研究RNA甲基化“橡皮擦” (ALKBH5)10/24/2019研究蛋白相互作用就是这么简单11/7/2019细胞成像分析前沿应用案例心得分享11/28/2019原来药物研发还可以这样做——基于表型筛选的药物研发11月小动物活体成像技术助力脑靶向载体的研究12/19/2019关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 北航冯林课题组: 磁流体基靶向给药微纳米机器人小鼠体内实现肿瘤杀伤
    近几年具有出色变形能力和可控性的磁流体机器人受到广泛关注。然而,这些研究大多是在体外进行的,将磁流体用于体内医疗应用仍然是一个巨大的挑战。同时,将磁流体机器人应用于人体也需要解决许多关键问题。本研究创建了基于磁流体的毫米机器人,用于体内肿瘤靶向治疗,其中考虑了生物相容性、可控性和肿瘤杀伤效果。针对生物相容性问题,磁流体机器人使用玉米油作为基载液。此外,该研究使用的控制系统能够在复杂的生物介质中实现对机器人的三维磁驱动。利用1064纳米的光热转换特性,磁流体机器人可以在体外杀死肿瘤细胞,在体内抑制肿瘤体积、破坏肿瘤间质、增加肿瘤细胞凋亡、抑制肿瘤细胞增殖。这项研究为基于磁流体的毫米机器人在体内实现靶向治疗提供了参考。近日,北京航空航天大学机械学院冯林课题组提出了一种通过具有生物相容性的磁流体机器人实现肿瘤的光热治疗方法。该方法将磁流体的基载液改为具有生物相容性的植物油,通过三维电磁控制系统实现磁流体机器人的靶向控制,对该种磁流体机器人在体外与体内的生物相容性和光热肿瘤杀伤效果进行了细致的研究。本研究中的所有3D模型均使用摩方精密nanoArch® S140设备打印。相关研究内容以“Biocompatible ferrofluid-based millirobot for tumor photothermal therapy in Near-Infrared II window”为题发表在《Advanced Healthcare Materials》期刊上,冯林教授为通讯作者,硕士生纪易明为第一作者。图1.用于近红外 II 窗口肿瘤光热治疗的生物兼容磁流体液滴机器人(BFR)概念图。图2. BFR表征。(A)Fe3O4纳米粒子的 XRD 图。(B)Fe3O4纳米颗粒的傅立叶变换红外图。(C)油酸包裹Fe3O4纳米颗粒的傅立叶变换红外图。(D) BFRs 中纳米粒子的透射电子显微镜(TEM)结果。(E) 所制备磁流体的磁滞线。(F) 磁流体的紫外-可见-近红外吸收光谱。(G) 不同浓度的BFR在 1064 纳米近红外照射下的温度曲线。(H) 5个加热-冷却循环过程中BFR的光热稳定性研究。该研究制备了一种生物相容性磁流体(BFR),并对其进行了详细表征,如图2所示。该生物相容性磁流体由超顺磁性纳米颗粒(磁响应组分)和生物相容性植物油(基载液)构成。双层的油酸包裹磁颗粒使磁流体获得较好的稳定性。磁滞回线展现出该磁流体良好的磁响应能力。红外吸收光谱和光热升温曲线体现了该磁流体较好的光热转换效率和光热稳定性。图3. BFR在体外模拟血液循环环境中的运动。(A) BFR 可被控制移动到全血环境中三维血管模型的任意分支。比例尺:5 毫米:(B) BFR 在肝门静脉血管模型中的运动控制,显示了 BFR 由于可变形性和分裂能力而在血管中的可移动性。比例尺:2 毫米。(C) 磁流体机器人越过障碍物的侧面示意图。(D) BFR 在磁阻力作用下穿过障碍物和心脏组织表面的沟槽。(E) BFR 超声成像示意图。比例尺:5 毫米:(F) BFR 在一块牛心血管组织的内表面形成一个稳定的球体。(G) 超声成像视频快照,显示运动控制过程中 BFR 在不同时间的位置。比例尺:2 毫米。(H) BFR 在全血环境中逆流而上。比例尺:1 毫米。同时该研究对BFR在针对模拟体内靶向治疗环境的运动控制进行了详细研讨。通过四线圈三维电磁系统,磁流体机器人可以实现高精度三维运动控制。由于其具有极强的变形、分裂和融合能力,BFR可以在更为复杂的血管环境(如模拟肝门静脉模型)中运动,以及逆血流的运动。此外,因所选磁流体基载液材为有机液体,该种磁流体并不会与血管和心脏内壁发生粘连,可以实现在血管中和心脏表面的运动控制。磁颗粒与体内环境的密度差异也使得超声成像对BFR在体内的位置进行实时显示。图4. 体内肿瘤杀伤实验。(A) 各实验组裸鼠在治疗六天后的肿瘤情况,(B) 体重曲线。(C) 肿瘤大小曲线。(D) 六天治疗后离体肿瘤组织的体积统计。(E) 小鼠肿瘤切片的 H&E 染色结果。比例尺:50 微米。(F) 和 (G) 肿瘤切片的 TUNEL 和 KI67 染色结果。黑色背景图像为荧光图像,白色背景图像为特征荧光图像。比例尺:100 μm。此外,该种磁流体对体内肿瘤的治疗效果得到了验证。通过小鼠实验可以观察到治疗组小鼠的肿瘤体积有明显的减小。在染色结果中治疗组也展现出了对肿瘤组织的杀伤和抑制生长效果。
  • 六天内根除小鼠癌症!可植入“药物工厂”这么神奇?
    据《科学进展》杂志2日在线报道,美国莱斯大学的生物工程师表示,他们使用针头大小的可植入“药物工厂”持续提供高剂量白细胞介素-2,在短短6天内根除了小鼠体内的晚期卵巢癌和结直肠癌。该疗法或在今年晚些时候开始人体临床试验。白细胞介素-2是一种可激活白细胞以对抗癌症的天然化合物。试验使用的药珠可通过微创手术植入,每个都含有可产生白细胞介素-2的细胞,这些细胞被包裹在保护壳中。莱斯大学生物工程助理教授奥米德魏瑟的实验室研发了这种治疗方法。他说,人体临床试验最早可能在今年秋天开始。该团队只选择了已证明可安全用于人体的成分,并在多项测试中证明了新疗法的安全性。魏瑟说:“我们只给一次药,但‘药物工厂’每天都在生产药物,直到癌症被消除。一旦确定了正确的剂量,即需要多少家‘药物工厂’,我们就能够根除全部的卵巢癌和7/8的结肠直肠癌。”在新发表的研究中,研究人员将产生药物的珠子植入在肿瘤旁边和腹膜内,腹膜是一种支持肠道、卵巢和其他腹部器官的囊状内层,植入的白细胞介素-2集中在肿瘤内,并限制在其他地方暴露。该研究合著者、美国MD安德森癌症中心妇科肿瘤学和生殖医学教授埃米尔贾再瑞博士说:“免疫治疗领域的一个主要挑战是增加肿瘤炎症和抗肿瘤免疫,同时避免细胞因子和其他促炎药物的全身副作用。在这项研究中,我们证明了‘药物工厂’可在几种小鼠模型中进行可调节的白细胞介素-2局部给药和根除肿瘤。”白细胞介素-2是一种细胞因子,一种免疫系统用来识别和对抗疾病的蛋白质。这是一种FDA批准的癌症治疗方法,但研究人员表示,与现有的白细胞介素-2治疗方案相比,“药物工厂”引发了更强的免疫反应,因为药珠直接提供更高浓度的蛋白质到肿瘤。研究人员称:“如果你通过静脉注射泵给予相同浓度的蛋白质,那将是剧毒的。而对于‘药物工厂’,我们在远离肿瘤部位的身体其他部位观察到的浓度,实际上低于患者在接受静脉注射治疗时必须承受的浓度,高浓度仅处于肿瘤部位。”药珠的外壳保护其产生细胞因子的细胞免受免疫攻击。外壳由被免疫系统识别为异物但不视为直接威胁的材料制成。研究团队发现,异物反应在30天内“安全而有力”地关闭了胶囊中细胞因子的流动。如果有必要,可进行第二个疗程。总编辑圈点“药物工厂”可放置在肿瘤旁边,围绕在这些器官和大多数其他器官的内膜内。如果医生需要不同的细胞因子来靶向特定形式的癌症,还可在药珠上装载工程细胞,制造相关免疫治疗的化合物。更值得欣喜的是,这一方法未来将不局限于文中的两种癌症,也可用于治疗胰腺癌、肝癌、肺癌和其他器官的癌症。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制