相位锁定测量

仪器信息网相位锁定测量专题为您整合相位锁定测量相关的最新文章,在相位锁定测量专题,您不仅可以免费浏览相位锁定测量的资讯, 同时您还可以浏览相位锁定测量的相关资料、解决方案,参与社区相位锁定测量话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

相位锁定测量相关的耗材

  • 可更换锁定环,用于手拧式螺帽
    这款独特的不锈钢气相色谱柱螺帽能够实现牢固连接,无需昂贵的升级或使用转接头。产品采用创新的弹簧推压推杆,会连续挤压短石墨/聚酰亚胺密封垫圈。因此,即使进样数百次,也可确保无泄漏密封。它尤其适用于对氧敏感的检测器,例如质谱检测器和 ECD。牢固的色谱柱连接能够降低背景噪音,确保结果的可靠性,使用过程中无需重新拧紧接头,从而可节省大量时间。熔融石英色谱柱的安装十分困难。从安装密封垫圈和色谱柱螺帽、测量色谱柱深度到将其装配到仪器,处处都可能引入误差,进而影响结果的准确性。新一代安捷伦手拧式色谱柱螺帽添加了锁定环,能够有效简化安装过程,降低引入误差的可能性。您可以利用锁定环将色谱柱固定到位,确保始终实现准确且可重现的色谱柱安装。减少时间浪费:无需重新拧紧易于使用:手拧式设计使任何人都可在无需工具的情况下实现高质量的、一致的连接快速维护:低扭矩密封垫可防止密封垫圈发生粘连或破损柱流失更低:更长的色谱柱使用寿命新增锁定环:在安装过程中测量色谱柱深度并将其固定到位,确保实现一致且可重现的色谱柱安装
  • 色谱柱螺帽,带锁定环,手拧式,用于 MSD
    这款独特的不锈钢气相色谱柱螺帽能够实现牢固连接,无需昂贵的升级或使用转接头。产品采用创新的弹簧推压推杆,会连续挤压短石墨/聚酰亚胺密封垫圈。因此,即使进样数百次,也可确保无泄漏密封。它尤其适用于对氧敏感的检测器,例如质谱检测器和 ECD。牢固的色谱柱连接能够降低背景噪音,确保结果的可靠性,使用过程中无需重新拧紧接头,从而可节省大量时间。熔融石英色谱柱的安装十分困难。从安装密封垫圈和色谱柱螺帽、测量色谱柱深度到将其装配到仪器,处处都可能引入误差,进而影响结果的准确性。新一代安捷伦手拧式色谱柱螺帽添加了锁定环,能够有效简化安装过程,降低引入误差的可能性。您可以利用锁定环将色谱柱固定到位,确保始终实现准确且可重现的色谱柱安装。减少时间浪费:无需重新拧紧易于使用:手拧式设计使任何人都可在无需工具的情况下实现高质量的、一致的连接快速维护:低扭矩密封垫可防止密封垫圈发生粘连或破损柱流失更低:更长的色谱柱使用寿命新增锁定环:在安装过程中测量色谱柱深度并将其固定到位,确保实现一致且可重现的色谱柱安装
  • 波长锁定光纤光栅
    波长锁定光纤光栅特点光纤光栅的一种非常常见的应用即是DFB激光模块的稳定。它们适用于做EDFAs980nm/1480nm以及针对1300nm/1550nm的WDM模块的泵浦光。根据您的具体要求,我们可以做到波长锁定于850nm或者1064nm,可以低至800nm,甚至可以使用保偏光纤。这种光栅可以选择峰值锁定或者线性侧面锁定(示例如下)应用EDFA泵浦光波长锁定用于WDM应用中的DFB激光器拉曼光纤激光器的光纤谐振器可调谐激光模块封装波长锁定光纤光栅可以结合可调谐设置或者非热敏封装。详细参数规格高级标准中心波长(CW)800..1620nm980nm 1280..1340nm 1520..1620nm反射率3..50%(标准)FWHM0.08..1.5nm插入损耗验证试验光纤)光纤)最小弯曲直径25mm接口裸光纤,FC/PC,FC/APC,ST,SC/PC,SC/APC,DIN,SMA工作温度5..120℃实例峰值锁定光纤光栅@851.3nm线性侧面锁定光纤光栅@193.4GHz

相位锁定测量相关的仪器

  • SR830型锁相放大器为美国SRS公司生产的数字双相型锁相放大器。用来检测强噪声环境下的微弱交流信号的强度(振幅)和相位的仪器。它们被广泛地应用于提取微弱的光信号,例如:光谱学中遇到的以及对荧光和磷光的研究中的微弱光信号;而且它们在其它的一些领域诸于电子学和晶体学等方面也有应用,在这些领域中,它们通常被用在组份特性、bridge networks和超导体的阻抗测量等方面。主要特性◆ 差动式或单端式输入模式◆ 电流或电压信号输入模式◆ 2nv到1V的增益设置范围(满档量程范围)◆ 0.001Hz到102.4kHz频率响应范围◆ 自动调整增益、相位、动态储备、补偿设置◆ 时间常数范围:10&mu s到30ks◆ 动态储备(Dynamic Reserve):100dB◆ 计算机接口:GPIB和RS-232 输入信号通道◆ 输入方式:从前面BNC接口高(或低)阻抗差动式或单端式输入◆ 灵敏度:2nV到1V◆ 电流输入档:106或108 V/A◆ 输入阻抗: 电压档:10M&Omega + 25 pF, AC或DC耦合 电流档:1K&Omega 到虚地◆ 频率范围:0.001Hz到102.4KHz◆ 输入噪声电压: 6 nV/&radic Hz at 1 KHz 0.13 pA/&radic Hz at 1 KHz (106 V/A) 0.013 pA/&radic Hz at 100 Hz (108 V/A)◆ 增益准确度:1%(典型值为:0.2%)◆ 增益稳定性:5ppm/° C◆ 动态储备:100dB解调器 信号输入平台中的输入信号利用两个宽带解调器生成X、Y两路信号这两个宽带解调器互成90° 相位差低通滤波器 解调其中输出的X、Y信号首先各自通过一个低通滤波器,然后进行放大,最后经由前面板BNC接口输出(输出前,X、Y信号通过公式合成一个R值,即信号的振幅)参考信道 参考信号输入电路利用一个相位锁定回路(如:TTL脉冲、正弦波信号等)锁定信号在某一个范围之内,相位转换电路允许参考信号随与之相关联的信号输入进行变化,这样,与参考频率相同和参考频率倍数的频率◆ 频率范围:0.001Hz到102.4kHz◆ 输入阻抗:1M?, 25pF◆ 触发:正弦:400mV rms min 脉冲:TTL◆ 相位控制精度:面板控制0.01° ,计算机控制0.008° ◆ 相位漂移:0.1° /° C(10kHz), 0.01° /° C(10kHz)显示参数 41/2 LED 通道A显示X, R 通道B显示Y,&theta 一般参数◆ 计算机接口:IEEE-488.2和RS-232◆ 电源:40 W, 100/120/220/240 V AC, 50/60 Hz◆ 外形尺寸:432(L)× 495(W)× 133(H)
    留言咨询
  • 独家代理Scitec Instruments公司的产品 Scitec Instruments公司的模拟型锁相放大器是采用先进技术设计制造的兼有通用性和易于使用这两大优点的高性能的仪器。 锁相放大器是用来检测强噪声环境下的微弱交流信号的强度(振幅)和相位的仪器。它们被广泛地应用于提取微弱的光信号,例如:光谱学中遇到的以及对荧光和磷光的研究中的微弱光信号;而且它们在其它的一些领域诸于电子学和晶体学等方面也有应用,在这些领域中,它们通常被用在组份特性、bridge networks和超导体的阻抗测量等方面。 从锁相放大器输出的信号是一个去除了噪声的直流电压信号,该信号在振幅上与输入信号成正比;而且它还提供一种用于比较输入信号和与之相关联的参考信号之间相位差异的功能。该性能也允许锁相放大器被用于测量输入信号的相位特性上。 动态储备是使用锁相放大器的一个重要的价值所在。锁相放大器的动态储备的定义是:饱和发生前能够被接受的信噪比值。Model 410和420两种型号的锁相放大器的动态储备值均为60dB;Model 450S动态储备最大可达100dB。Model 410 单相型/Model 420 双相型锁相放大器 Scitec Instruments公司的模拟型锁相放大器有单相性和双相型两种规格的仪器。单相型锁相放大器有一个信号解调器,能够应用于幅度和相位的测量方面;不过输入信号的任意一个相位的改变都要求手动进行设置,无论这种相位改变是最初的还是进程当中的。双相型锁相放大器有两个信号解调器,这两个解调器之间存在一个90° 的相位差;输入相位和90° 输出相位的同步测量使得幅度和相位测量的进程趋于简单化;另外,Model 420中设计有计算电路,用于计算从两个解调器中输出信号的矢量大小。Model 410和Model 420这两种型号的锁相放大器都能在参考信号的一次和二次谐波条件下测量输入信号。 Model 410和Model 420两种型号的锁相放大器的动态储备值均为60dB,换句话说,它们可以检测出1000倍的噪音下的输入信号。主要特性●单相型、双相型两种型号可供选择●差动式或单端式输入模式●3&mu v到1V的增益设置范围●10Hz到100kHz频率响应范围●高性能、宽波段的输入增益●输出信号的模拟显示装置●输出补偿调节装置●输出时间常数范围为100&mu s到30s●1F和2F两种参考信号操作模式●90° 步进式调节及精细相位调节装置 输入信号通道 输入信号通道是将输入信号放大到一个适合于解调器的值,在这整个过程中会用到高性能、低噪声、宽频带的放大器。仪器前面板上使用的BNC输入接口允许差动式和单端式两种输入模式。该单元中的跳线设置项是允许BNC接口,或屏蔽后允许一个高阻抗的输入,或低阻抗的输入或在单端操作模式下可直接接地。通过跳线选择开关,输入通道既可以是交流输入也可以是直流输入。 输入方式:从前面板BNC接口高(或低)阻抗差动式或单端式输入 灵敏度:3&mu V到1V(1V输出)变换范围,1、3、10&hellip 步进式转换 输入阻抗:1012&Omega ║1nF(DC Coupled) 频率范围:10Hz到100kHz 最大输出:± 16V(输入保护电路启动前);BNC输入接口经破坏性静电放电测试 输入噪声电压:鉴于通常情况下锁相放大器制造商给出的噪声值都没有提供规范的定义,甚至是在表述锁相放大器时也没有真正意义上的定义,因此,Scitec Instruments公司不提供噪声值,并且其它制造商的相关数据单被认为是有误导性的。关于输入噪声值的更详细的资料信息可来函索取。 增益准确度:1% 增益稳定性:200ppm/° C 动态储备:60dB(受限于10V的最大信号输入噪声电压)解调器Model 410型信号输入平台中的输出信号利用一个宽带解调器覆盖原来的输入信号Model 420型信号输入平台中的输入信号利用两个宽带解调器生成X、Y两路信号这两个宽带解调器互成90° 相位差低通滤波器Model 410型从解调器中输出的信号首先要通过一个低通滤波器,放大后经由前面板BNC接口输出时间常数:100&mu s到30s,(1、3、10&hellip 式步进)输出:± 1V(与满刻度输入相适应,包含电压不足保护电路)补偿开关:满刻度时调节&ldquo 开&rdquo 或&ldquo 关&rdquo Model 420型解调其中输出的X、Y信号首先各自通过一个低通滤波器,然后进行放大,最后经由前面板BNC接口输出(输出前,X、Y信号通过公式R= 合成一个R值,即信号的振幅)时间常数:100&mu s到30s,(1、3、10&hellip 式步进)全部输出:± 1V(与满刻度输入相适应,包含电压不足保护电路)前面板输出:X、Y、R三档变换式输出后面板输出:X、Y、R三路分别输出补偿开关:X、Y信号满刻度时调节&ldquo 开&rdquo 或&ldquo 关&rdquo 参考信道 参考信号输入电路利用一个相位锁定回路(如:TTL脉冲、正弦波信号等)锁定信号在某一个范围之内,相位转换电路允许参考信号随与之相关联的信号输入进行变化,这样,与参考频率相同和参考频率倍数的频率信号能够被检测到。频率范围:10Hz到100kHz输入阻抗:5.6M? (AC Coupled)触发:正弦:100mV rms min(最大15V) 脉冲:5V,95% (占空比率)相位控制:90° 步进式调节及0~100° 范围精细相位调 节装置相位漂移:0.1° /° C其他电源:交流115V,230V 50~60Hz 最大10VA外形尺寸:440(长)*87(宽)*190(高)使用温度范围:0~50° C质量保证:2 年
    留言咨询
  • 一、产品简介TOPTICA提供稳定窄线宽可调谐二极管激光器。 但是,许多要求极高的应用场景下仍有更严格的要求。 为了减少剩余频率波动或抵消长期频率漂移,需要使用主动频率稳定或对激光进行“锁定”。二、型号及参数1、型号Falc proDigiLock 110FALC 110 & mFALC 110PDH/DLC proDLC pro LockWavelength Meter产品概述 / 控制类别Digitally controlled fast analog PID多功能数字锁定解决方案,包含PID控制器快速模拟双通道PID控制器Pound-Drever-Hall (PDH) 信号生成,需额外配置 PID 控制器全数字反馈解决方案,包含PID控制器波长计, PID 控制器可选主要应用适合所有相关应用压缩线宽PDH锁定,FM或调制转换光谱学光谱锁定长期稳定波长侧边锁定????不适用顶端锁定With PDH?或 PDD??不适用最大带宽50 MHz (-3 dB)≈ 10 MHz≈ 45 MHz50 MHz (analog) 1.5 MHz (digital)≈ 30 kHz 100 Hz调制频率17 Hz .. 25 MHz5 MHz or 25 MHz11 Hz .. 160 kHz不适用精度取决于参考信号(可以达到很高精度) 2 MHz信号分析FFT, ...FFT, ...重锁模机制With DLC pro Lock??电脑控制界面?? ???高电压输出 ?高带宽输出? ? ??双反馈通道?? ?? ?最多可用8个通道机架兼容性 DLC pro??产品特点极佳的性能 高端 & 极佳选择DLC pro 系统中单机可使用2、主要技术参数波长与频率波长范围368 ~ 1612nm,可达250mW输出,取决于LD线宽200kHz (典型),取决于LD调制20MHz 带宽;AC/ DC耦合,20ns延时,可选RF偏置三通,2.5GHz 带宽初调范围单管可达50nm光学光束直径(1/e2)典型:1mm x 2mm ~ 1.5mm x 4mm,取决于LD偏振典型:100:1 线偏振热控制TEC标准:±14.5V 3.3A,Q=23W温度传感器标准:NTC 10 kΩ;可选:AD590, 592底板温度稳定性±1mK (取决于控制器)散热可选循环水散热(通常无需水冷)扫频扫描范围可达50GHz (采用MOGLabs控制器),4Hz - 70Hz 速率无跳模自由扫描10GHz ~ 40GHz,取决于LD,通过电流调节压电陶瓷0 ~ 120V 或 0 ~ 150V,2 ~ 5 μm腔长约 1 ~ 3 cm (5 ~ 15GHz 自由光谱范围)电子学保护继电器、盖板自锁连接、LD反偏保护指示器激光 On/Off LED指示调制输入200MHz带宽,AC/DC耦合,20ns延迟RF偏置三通 2.5GHz 带宽16MHz ~ 2.5GHz (可选更低截止)接口MOGLabs DLC 二极管激光控制器,单线缆通用尺寸105mm×90mm×90mm (L×W×H),1kg选项法拉第隔离器;光纤耦合;可选调制截止频率;如有其它需求,请联系我们。
    留言咨询

相位锁定测量相关的试剂

相位锁定测量相关的方案

相位锁定测量相关的论坛

  • 保留时间锁定

    执行保留时间锁定时,需要输入的锁定化合物的数量是几个?1、2、3个还是不确定呀?求大神指点

  • 安捷伦5975保留时间锁定问题

    在后处理中选择运行方法,视图----保留时间锁定---重新锁定方法选择数据文件后,提示:没有收集锁定的方法,已取消重新锁定!请问,这是什么原因呢?请高手解答,谢谢!

  • 关于保留时间锁定问题

    关于保留时间锁定问题

    用安捷伦的GCMS做保留时间锁定,色谱柱是新更换的,做完后发现整体的保留时间延后了3-4min,不知是何原因,想请教各位老师。附上对比图(RTLA329是上次换新柱子后做保留时间锁定的数据,RTLA380是这次换完新柱子后做出来的保留时间锁定数据)[img=,690,469]https://ng1.17img.cn/bbsfiles/images/2018/10/201810171334379950_8580_3386106_3.png!w690x469.jpg[/img]

相位锁定测量相关的资料

相位锁定测量相关的资讯

  • 精密测量院研制出相位锁定的涡旋物质波干涉仪
    近日,精密测量院江开军研究团队研制出基于超冷原子气体的涡旋物质波干涉仪,并观察到两自旋分量上干涉条纹的相位锁定现象,相关研究成果 6月30日发表在学术期刊《npj Quantum Information》上。干涉是经典波动力学和量子力学中的基本现象,以此为基础的干涉仪可以通过测量不同路径或通道间的相位移动对物理量进行精确测量。超冷原子气体具有组分纯净、相干性好且内外态精确可控的特点,基于该体系的物质波干涉仪近年来成为精密测量和基础物理研究的重要工具。目前在超冷原子气体中实现的物质波干涉主要是通过操控物质波的平动自由度实现分束,观测具有不同线动量的物质波干涉条纹进行相位测量。而另一方面,由角动量表征的转动是体系另一个重要自由度,并且超冷量子气体中的角动量与体系的涡旋、超流等量子现象具有密切的联系。在超冷原子气体中可以基于不同的角动量态实现一类新型的涡旋物质波干涉,有望用于测量体系的外部磁场、转动、粒子间相互作用和几何相位等物理量。实现涡旋物质波干涉的前提是在超冷原子气体中可控的制备和操控涡旋态。近年来携带角动量的拉盖尔-高斯光与冷原子相互作用研究的进展,为建立涡旋物质波干涉仪奠定了基础。研究团队近年来对超冷原子气体的涡旋光场调控开展了研究,掌握了利用涡旋光场驱动双光子拉曼跃迁实现超冷原子涡旋态的制备、操控与测量方法,测量了自旋-角动量耦合超冷原子气体的量子相变[Physical Review Letters 122, 110402 (2019)]。涡旋物质波干涉仪的实验构型  在前期工作的基础上,研究团队利用偏置磁场在铷87原子F=1超精细能级的三个磁子能级间产生较大的二阶塞曼频移。团队利用一对具有不同角动量的拉曼光束诱导双光子跃迁,获得干涉仪的第一个分束器,干涉仪的两臂具有不同的自旋和角动量(涡旋态);随后利用射频脉冲作为第二个分束器,在两个自旋态(对应分束器的两个输出端口)上都实现涡旋物质波的干涉。通过选择合适的拉曼光和射频脉冲的失谐量,确保原子只布居在两个磁子能级,产生无损耗的分束器。不同于线动量干涉产生的线向干涉条纹,实验上观察到角向干涉条纹。通过对干涉图样的分析,发现两自旋态上的干条纹具有反相位关系(π 相位差),该相位关系不受两涡旋态的角动量差、拉曼光的组成和超冷原子自由膨胀时间等实验参数的影响。提出了利用涡旋物质波干涉仪测量磁场的方案,并对磁场测量的灵敏度进行了评估,指出该方案可以测量有限大小的磁场,并且测量灵敏度不受原子数波动的影响。该工作为构建基于涡旋物质波干涉的新型量子传感器提供了实验基础。两自旋态干涉条纹相位关系的实验测量  相关研究成果以“相位锁定的涡旋物质波干涉仪(Phase-locking matter-wave interferometer of vortex states)”为题,发表在学术期刊《npj Quantum Information》上。精密测量院博士生孔令冉为论文第一作者,特别研究助理高天佑和研究员江开军为通讯作者。  该工作获得科技部重点研发计划、国家自然科学基金、中科院国际团队以及湖北省创新群体项目等的资助。  论文链接:https://www.nature.com/articles/s41534-022-00585-5
  • 中科院精密测量院研制出相位锁定的涡旋物质波干涉仪
    近日,精密测量院江开军研究团队研制出基于超冷原子气体的涡旋物质波干涉仪,并观察到两自旋分量上干涉条纹的相位锁定现象,相关研究成果 6月30日发表在学术期刊《npj Quantum Information》上。   干涉是经典波动力学和量子力学中的基本现象,以此为基础的干涉仪可以通过测量不同路径或通道间的相位移动对物理量进行精确测量。超冷原子气体具有组分纯净、相干性好且内外态精确可控的特点,基于该体系的物质波干涉仪近年来成为精密测量和基础物理研究的重要工具。目前在超冷原子气体中实现的物质波干涉主要是通过操控物质波的平动自由度实现分束,观测具有不同线动量的物质波干涉条纹进行相位测量。而另一方面,由角动量表征的转动是体系另一个重要自由度,并且超冷量子气体中的角动量与体系的涡旋、超流等量子现象具有密切的联系。在超冷原子气体中可以基于不同的角动量态实现一类新型的涡旋物质波干涉,有望用于测量体系的外部磁场、转动、粒子间相互作用和几何相位等物理量。实现涡旋物质波干涉的前提是在超冷原子气体中可控的制备和操控涡旋态。近年来携带角动量的拉盖尔-高斯光与冷原子相互作用研究的进展,为建立涡旋物质波干涉仪奠定了基础。   研究团队近年来对超冷原子气体的涡旋光场调控开展了研究,掌握了利用涡旋光场驱动双光子拉曼跃迁实现超冷原子涡旋态的制备、操控与测量方法,测量了自旋-角动量耦合超冷原子气体的量子相变[Physical Review Letters 122, 110402 (2019)]。 涡旋物质波干涉仪的实验构型   在前期工作的基础上,研究团队利用偏置磁场在铷87原子F=1超精细能级的三个磁子能级间产生较大的二阶塞曼频移。团队利用一对具有不同角动量的拉曼光束诱导双光子跃迁,获得干涉仪的第一个分束器,干涉仪的两臂具有不同的自旋和角动量(涡旋态);随后利用射频脉冲作为第二个分束器,在两个自旋态(对应分束器的两个输出端口)上都实现涡旋物质波的干涉。通过选择合适的拉曼光和射频脉冲的失谐量,确保原子只布居在两个磁子能级,产生无损耗的分束器。不同于线动量干涉产生的线向干涉条纹,实验上观察到角向干涉条纹。通过对干涉图样的分析,发现两自旋态上的干条纹具有反相位关系(π 相位差),该相位关系不受两涡旋态的角动量差、拉曼光的组成和超冷原子自由膨胀时间等实验参数的影响。提出了利用涡旋物质波干涉仪测量磁场的方案,并对磁场测量的灵敏度进行了评估,指出该方案可以测量有限大小的磁场,并且测量灵敏度不受原子数波动的影响。该工作为构建基于涡旋物质波干涉的新型量子传感器提供了实验基础。 两自旋态干涉条纹相位关系的实验测量   相关研究成果以“相位锁定的涡旋物质波干涉仪(Phase-locking matter-wave interferometer of vortex states)”为题,发表在学术期刊《npj Quantum Information》上。精密测量院博士生孔令冉为论文第一作者,特别研究助理高天佑和研究员江开军为通讯作者。   该工作获得科技部重点研发计划、国家自然科学基金、中科院国际团队以及湖北省创新群体项目等的资助。
  • 【应用指南】锁相环在相位检测中的应用
    使用Moku锁相放大器和相位表进行开环和闭环相位检测的选择指南高精确度及高灵敏度相位检测在众多测试测量场景都至关重要。例如,测量电流和电压之间的相移可以显示设备或元件的复阻抗。可以通过光学干涉仪的控制臂和测量臂之间的相移来测量极小的位移。Liquid Instruments的Moku设备可以提供两种检测射频信号相位的仪器:锁相放大器和数字相位测量仪。在本应用说明中,我们将介绍这两个仪器的工作原理,并为不同的应用场景提供仪器选择指南。介绍锁相放大器和相位表(数字相位测量仪)是两种常用于从振荡信号中获取相位信息的仪器。锁相放大器可以被视为开环相位检测器。相位是由本地振荡器、混频器和低通滤波器直接计算出来的。相比而言,相位表则采用数字锁相环(PLL)作为其相位检测器,使用一个反馈信号来实时调节本地振荡器的频率。这可以被视为一种闭环相位检测方法。在我们介绍这两种仪器之前,我们先来总结一下Moku:Pro锁相放大器和相位表(用于相位检测)的区别。请注意,本表中的参数规格是基于Moku:Pro的。工作原理锁相放大器原理如图1所示,锁相放大器有三个关键组成部分:一个本地振荡器、一个混频器和一个低通滤波器。图1: 锁相放大器的简化原理图输入信号Vin和本地振荡器VLO可以用正弦和余弦函数来描述。A1和A2代表振荡器的振幅。ωin和ωLO代表输入和本地振荡器的频率。∆ϕ 表示输入信号和本地振荡器之间的相位角差。混频器的输出Vmixer是输入和本地振荡器的产生的。应用三角函数示意假设 ωLO ≅ ωin= ω, Vmixer可写为低通滤波器过滤掉了高频率分量sin(2×2ωt+∆j)。假设输入信号和本地振荡器的振幅是固定的,输出信号Vout可以表示为在此有几个需要注意的地方:单相锁相放大器的输出与sin(∆ϕ)成正比,而不是与成正比。这大大限制了相位检测的线性动态范围,因为正弦函数是一个周期性的函数,它只在一个非常小的范围内提供(近乎)线性响应。另外,任何振幅的波动都可能引起一些系统误差。Liquid Instruments的Moku锁相放大器提供了双相解调的选项,可有效地区分了来自振幅和相位对输出的影响(可以通过此链接更深入了解双相位解调)但线性动态范围仍然限制在2π以内。另一方面,锁相放大器的数字信号处理(DSP)比相位表简单得多。这使锁相放大器能够以更高的速率处理数据,从而提供更宽的解调带宽。用户也可从外部设备输入一个本地振荡器作为参考,以直接测量两个振荡器之间的相对相位差。锁相放大器的开环特性确保仪器能够提供有效即时的响应,不容易受信号突变或损失造成的影响。因此,用户可使用锁相放大器测量接近或处于输入本底噪声的信号。相位表/PLL 原理相位表的核心相位检测单元是一个锁相环(PLL)。相位表的基本测量原理是将一个内部振荡器锁定在输入信号上,然后从内部振荡器的已知相位推断出输入信号的相位。图2显示了PLL的运作原理。锁相环的运作原理与锁相放大器非常相似,但有两个重要的区别:1)本地振荡器被一个压控振荡器(VCO)所取代;2)低通滤波器的输出反馈形成一个闭环。 图2: 锁相环的简化原理图VCO的输出 VVCO可以表述为 ωset是VCO的设定/中心频率。K是VCO的灵敏度 VCO, VVCOinput 是VCO的输入。AVCO是VCO的振幅。K和AVCO在正常工作时都保持不变。在不深入了解闭环控制理论的情况下,这种配置试图保持输入信号Vin和VCO之间的瞬时频率差为零。因此:由于ωset和K都是基于已知的仪器设置,输入的频率可以根据VVCOinput来计算。同时,ωset在时间t的累积相位可以表示为输入信号的累积相位可以用来近似表示。这里我们把K∙Vvcoinput项定义为ωdiff。因此,输入信号和参考信号(振荡器在设定的频率下)之间的累积相位差可以通过测算环路的频率差/误差信号积分获取。这种方法为相位检测提供了一个原生的相位解包支持,使输出与相位差呈线性关系。输入信号的瞬时频率也通过进行测量。此外,相位表有一个内置的二级振荡器来计算输入信号的振幅,类似于一个双相锁相放大器。除了来自环外积分器的相位,相位表的输出可以被设置为直接从数控振荡器(NCO;它可以被认为是数字的VCO)生成输入信号的正弦锁相副本,具有任意的振幅和可调相位。另一方面,输入和NCO之间的稳定锁定是PLL正常运行所必须的,不连续的输入可能会导致测量中断。由于这个原因,PLL在非常低的频率上保持稳定的锁定更具挑战性,相位表对比于锁相放大器在低载波频率边界更受限制,因此不建议用于测量接近输入本底噪声的信号。应用中考量因素和演示在本节中,我们将通过演示讨论在对Moku锁相放大器和相位表之间进行选择时的一些实际注意事项。相位检测的线性动态范围锁相放大器和相位表的关键区别之一是相位检测的线性动态范围。单相锁相放大器的相位线性动态范围小于π,双相锁相放大器则将这一极限推至2π。理论上,相位表可以跟踪无限的相位变化。在实践中,实际检测范围受用于表示相位的数字位长度的限制,在Moku:Pro上大约是16,000,000π。 在这个演示中,通过多仪器模式(MIM)(点此详细了解MIM)同时开启波形发生器、锁相放大器、相位表和示波器功能。一个10MHz的相位调制信号以单相和双相模式输入Moku:Pro的锁相放大器和相位表。相位检测的输出通过示波器进行记录。 图3:Moku:Pro上的MIM设置,用于测试不同相位检测器的线性动态范围。归一化的相位输出(作为模拟信号)绘制成图4中相移的函数。从图4(a)来看,双相解调模式下的相位表和锁相放大器都在360°范围内提供线性相位响应。单相模式下的锁相放大器只提供了90°内的近线性响应。双相解调器将相位包裹在±180°,而PLL在整个720°的相位移动范围内持续线性输出(图4(b))。图4:Moku相位表的输出,锁相放大器在单、双相位模式下的输出在(a)360°和(b)720°的相移的函数。使用相位表和锁相放大器测量两个外部信号之间的相位差对于测量两个振荡信号之间的相对相移的应用,锁相放大器提供了一个更直接的检测方式。用户可以通过Moku锁相放大器直接输入一个参考信号作为本地振荡器来解调两个信号间的相位差。相位表的操作则需要一个板载振荡器作为绝 对频率参考,因此检测的相位为信号与板载振荡器的相位差。在这个演示中,一个频率调制(FM)的不稳定信号被送入锁相放大器作为信号和参考,而相位表作为信号,如图5(a)所示。在图5(b)中,调频引起的相位波动只在相位表(红色)上观察到,锁相放大器的输出保持不变(蓝色)。锁相放大器的输出为调频信号与其本身的实时相位差,因此是固定没有波动的。相位表检测的结果为调频信号与板载振荡器间的实时相位差,因此检测到的是调制的载波。图5:(a)一个调频调制信号被接入到相位表的信号输入通道,以及锁相放大器的信号和参考输入。(b) 示波器上的相位表(红色)和锁相放大器(蓝色)的输出。在此有两种方法可以用相位表测量两个振荡器之间的相对相位差。1) 两个输入信号之间的相位差可以通过 ∆ϕ1-∆ϕ2,来计算,其中∆ϕ1,2 代表输入到一个共同参考的相位差。图6中显示了一对具有180°相移的锁相正弦波使用相位表内置的数据记录监测用来记录 ∆ϕ1 (红色)、∆ϕ2 (蓝色)和 ∆ϕ1-∆ϕ2(橙色)。在两个输入通道上可以观察到恒定的相位漂移,但数学通道提供了输入之间的正确相位差。图6:一对具有180°相移的正弦波被接入相位表。数学通道中绘制出∆ϕ。2) Moku:Lab和Moku:Pro的主时钟可以通过一个10 MHz的参考信号进行同步。如果参考振荡器可以与10 MHz同步,这就使得Moku:Pro上NCO的时基与参考相同。然而,时基同步并不能捕捉到参考NCO的任何参数调整(比如参考源是有目的地进行频率调制的)。另外,用于捕捉10MHz参考的PLL可能会给系统带来额外的噪声。除非需要通过模拟通道输出实时差异,否则不推荐使用这种方法。测量接近本地噪声的信号相位表要求输入信号和本地振荡器之间有稳定的锁定。Moku相位表有几个内置的安全机制来防止意外的变化对测试造成影响。例如,当锁定丢失时,"飞轮 "选项会自动将环路保持在最 后的已知状态。另一方面,锁相放大器的输出在任何时候都是确定的。为了演示这一效果,一个正弦相位调制的信号被同时输入到锁相放大器和相位表上。然后,输入信号被切断约两秒钟,再打开。两个相位检测器的输出通过示波器进行记录。从图7中可以看出,重新连接信号后,相位表的输出(红色)急剧漂移。锁相放大器的输出(蓝色)在信号断开时保持在0,之后立即恢复到预期值。 图7:示波器上记录了相位表(红色)和锁相放大器(蓝色)在信号突然丢失后的输出。总结Liquid Instruments的Moku:Lab和Moku:Pro的相位表和锁相放大器是为灵敏的相位检测应用提供的两种软件定义的仪器功能。相位表的闭环方法提供了特殊的线性动态范围,同时提供输入的频率、相位和振幅信息。锁相放大器算法相对简单,可以提供更快的响应速度,并且输出结果更容易预测。可以通过在Moku:Pro上部署多仪器并行,最多对四个输入在八个频率上进行相位检测,是多通道相位检测和锁相环应用的理想解决方案。参考[1] Shaddock, D., Ware, B., Halverson, P. G., Spero, R. E., & Klipstein, B. (2006, November). Overview of the LISA Phasemeter. In AIP conference proceedings (Vol. 873, No. 1, pp. 654-660). American Institute of Physics.[2] Roberts, L. E. (2016). Internally sensed optical phased arrays.关于昊量光电:昊量光电 您的光电超市!上海昊量光电设备有限公司致力于引进国外先进性与创新性的光电技术与可靠产品!与来自美国、欧洲、日本等众多知名光电产品制造商建立了紧密的合作关系。代理品牌均处于相关领域的发展前沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及前沿的细分市场比如为量子光学、生物显微、物联传感、精密加工、先进激光制造等。我们的技术支持团队可以为国内前沿科研与工业领域提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务,助力中国智造与中国创造! 为客户提供适合的产品和提供完善的服务是我们始终秉承的理念!
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制