农产品中氨基甲酸酯类农药检测的液相色谱条件优化研究
曾 艳
Optimization of the method of HPLC todeterminated Carbamate pesticide in agricultural products residues
ZENG Yan
Abstract:This research was based onthe《NY/T 761-2008》byHPLC method to determination of carbamate pesticides in agriculturalproducts. This study was developed for the optimized chromatographic conditionsby changing the mobile phases and proportions, established a more efficientdetection of 10 kinds of carbamate pesticides. Study shows that the optimizedchromatographic conditions, the chromatograms baseline more smoothly, componentaverage save the retention times of 3.54 mins. The proposed methods showed agood linearity in the range of 0.05~0.5mg/Kg, with the linear correlationcoefficients of 1.0 (except aldicarb sulfoxid0.9975 ) and limits of detection of 0.001-0.007 mg/Kg . Components of responses are greatlyincreased: the peak heights are 1.65-4.14 times that of before and the peakareas are 1.62-3.97 times, 7 consecutive samples of retention times, peakheights and peak areas RSDs were lower than before optimization. The method is rapid, high sensitivity,accurate, reliable and effective and can be used for determination carbamate pesticidesin agricultural products.
1.3.2样品前处理
样品前处理按《NY/T 761-2008蔬菜和水果中有机磷、有机氯、拟除虫菊酯和氨基甲酸酯类农药多残留的测定法》中进行操作,将样本中加入0.05、0.1、0.2、0.5mg/Kg的混合标液,每个样本7个平行。
1.3.3分离条件的选择
表 01 优化的梯度洗脱程序
Table1 Optimizationof the gradient elution conditions
时间(min) | 水(%) | 乙腈(%) | 流速(mL/min) |
0.00 | 80 | 20 | 1.0 |
2.00 | 80 | 20 | 1.0 |
17.00 | 10 | 90 | 1.0 |
18.00 | 5 | 95 | 1.0 |
19.00 | 5 | 95 | 1.0 |
20.00 | 80 | 20 | 1.0 |
22.00 | 80 | 20 | 1.0 |
1.3.4样品测定
(a) The chromatograms before optimization the elution conditions (b) The chromatograms after optimization theelution conditions
图1洗脱条件优化前、后氨基甲酸酯类农药色谱图
Fig1 Carbamate pesticides HPLC chromatograms of elution conditions before and afteroptimization
表2 10种氨基甲酸类农药残留的回归方程、相关系数和检出限
Table2 Reproducibilities, linearityand linits of detection(LODs) the 10 carbamate pesticides
农药名称 | 回归方程(范围内) | 相关系数 | 检出限(mg/Kg) |
涕灭威亚砜 | y = 77.008x + 0.4723 | 0.9975 | 0.004 |
涕灭威砜 | y = 69.367x - 0.1012 | 1.000 | 0.001 |
灭多威 | y = 120.07x + 0.1902 | 1.000 | 0.007 |
三羟基克百威 | y = 76.367x + 0.0559 | 1.000 | 0.005 |
涕灭威 | y = 88.565x + 0.0588 | 1.000 | 0.001 |
速灭威 | y = 124.07x + 0.0807 | 1.000 | 0.003 |
克百威 | y = 93.676x + 0.1569 | 1.000 | 0.003 |
甲萘威 | y = 148.49x + 0.1839 | 1.000 | 0.007 |
异丙威 | y = 103.01x + 0.0811 | 1.000 | 0.002 |
仲丁威 | y = 94.202x + 0.0875 | 1.000 | 0.002 |
表3优化前后10个农药组分的响应(0.1 mg/Kg)
Table3 The 10 carbamate pesticidesof the response before and after optimization(0.1mg/Kg)
样品名称 | 平均保留时间(min) | 平均峰高(LU) | 平均峰面积 | ||||||
优化前 | 优化后 | 节约时间 | 优化前 | 优化后 | 倍数 | 优化前 | 优化后 | 倍数 | |
涕灭威亚砜 | 7.767 | 4.383 | 3.384 | 0.268 | 0.839 | 3.130 | 4.392 | 11.969 | 2.725 |
涕灭威砜 | 8.573 | 6.303 | 2.270 | 0.316 | 0.522 | 1.650 | 4.217 | 6.831 | 1.620 |
灭多威 | 10.171 | 7.490 | 2.681 | 0.472 | 0.991 | 2.099 | 5.968 | 12.247 | 2.052 |
三羟基克百威 | 13.248 | 9.334 | 3.914 | 0.233 | 0.748 | 3.208 | 2.726 | 7.706 | 2.827 |
涕灭威 | 15.756 | 11.986 | 3.770 | 0.270 | 0.861 | 3.187 | 3.093 | 8.957 | 2.896 |
速灭威 | 16.598 | 12.842 | 3.756 | 0.333 | 1.225 | 3.684 | 3.865 | 12.569 | 3.252 |
克百威 | 17.341 | 13.651 | 3.689 | 0.250 | 0.916 | 3.662 | 3.045 | 9.564 | 3.141 |
甲萘威 | 18.078 | 14.187 | 3.890 | 0.443 | 1.451 | 3.276 | 5.148 | 15.092 | 2.931 |
异丙威 | 19.121 | 15.075 | 4.046 | 0.246 | 1.005 | 4.083 | 2.664 | 10.426 | 3.913 |
仲丁威 | 20.439 | 16.300 | 4.140 | 0.221 | 0.915 | 4.142 | 2.509 | 9.516 | 3.793 |
表4优化前后10个农药组分的响应(0.5 mg/Kg)
Table4 The 10 carbamate pesticides of the response before andafter optimization(0.5 mg/Kg)
样品名称 | 平均保留时间(min) | 平均峰高(LU) | 平均峰面积 | ||||||
优化前 | 优化后 | 节约时间 | 优化前 | 优化后 | 倍数 | 优化前 | 优化后 | 倍数 | |
涕灭威亚砜 | 7.728 | 4.382 | 3.346 | 1.036 | 3.110 | 3.002 | 21.284 | 38.767 | 1.821 |
涕灭威砜 | 8.543 | 6.281 | 2.262 | 1.347 | 2.416 | 1.794 | 20.906 | 34.588 | 1.654 |
灭多威 | 10.147 | 7.472 | 2.675 | 2.206 | 4.668 | 2.116 | 29.978 | 60.204 | 2.008 |
三羟基克百威 | 13.227 | 9.320 | 3.907 | 1.162 | 3.650 | 3.140 | 14.197 | 38.230 | 2.693 |
涕灭威 | 15.737 | 11.976 | 3.761 | 1.397 | 4.235 | 3.032 | 16.890 | 44.329 | 2.625 |
速灭威 | 16.580 | 12.833 | 3.748 | 1.652 | 6.016 | 3.642 | 19.586 | 62.092 | 3.170 |
克百威 | 17.325 | 13.643 | 3.682 | 1.201 | 4.493 | 3.743 | 14.004 | 46.985 | 3.355 |
甲萘威 | 18.065 | 14.180 | 3.884 | 2.153 | 7.123 | 3.309 | 24.804 | 74.415 | 3.000 |
异丙威 | 19.111 | 15.068 | 4.043 | 1.255 | 4.946 | 3.940 | 13.924 | 51.572 | 3.704 |
仲丁威 | 20.432 | 16.295 | 4.137 | 1.094 | 4.513 | 4.126 | 12.197 | 47.181 | 3.868 |
2.3 精密度
计算并比较发现用乙腈-水作为流动相,样本重复7次所得10种农药各参数RSD值均低于优化前(以样本加标浓度为0.1mg/Kg为例),如表5所示。由表5可知,条件优化后,10种氨基甲酸酯类农药检测的保留时间、峰高和峰面积RSD都小于以15:85的甲醇-水作流动相的相对标准偏差,(最大相差了1.555),因此可见以乙腈-水作为流动相检测果蔬中氨基甲酸酯类农药精密度更高。
表5优化前后10个农药各参数相对标准偏差(0.1mg/Kg)
Table4 Parameters RSDs of the 10carbamate pesticides before and after optimization(0.1mg/Kg)
样品名称 | 平均保留时间RSD | 平均峰高RSD | 平均峰面积RSD | ||||||
优化前 | 优化后 | 差值 | 优化前 | 优化后 | 差值 | 优化前 | 优化后 | 差值 | |
涕灭威亚砜 | 0.215 | 0.116 | 0.099 | 0.323 | 0.377 | -0.054 | 0.927 | 0.621 | 0.306 |
涕灭威砜 | 0.177 | 0.111 | 0.066 | 0.615 | 0.575 | 0.04 | 1.877 | 0.322 | 1.555 |
灭多威 | 0.129 | 0.046 | 0.083 | 0.746 | 0.381 | 0.365 | 0.721 | 0.305 | 0.416 |
三羟基克百威 | 0.078 | 0.033 | 0.045 | 0.578 | 0.282 | 0.297 | 0.689 | 0.181 | 0.509 |
涕灭威 | 0.063 | 0.029 | 0.034 | 0.868 | 0.241 | 0.627 | 1.422 | 0.263 | 1.159 |
速灭威 | 0.063 | 0.023 | 0.04 | 0.453 | 0.195 | 0.257 | 0.623 | 0.181 | 0.441 |
克百威 | 0.058 | 0.026 | 0.032 | 0.554 | 0.181 | 0.373 | 0.562 | 0.115 | 0.447 |
甲萘威 | 0.059 | 0.02 | 0.039 | 0.346 | 0.145 | 0.201 | 0.42 | 0.165 | 0.256 |
异丙威 | 0.055 | 0.019 | 0.036 | 0.807 | 0.19 | 0.618 | 0.861 | 0.111 | 0.75 |
仲丁威 | 0.048 | 0.019 | 0.029 | 0.723 | 0.236 | 0.488 | 0.891 | 0.161 | 0.73 |
戴廷灿,倪永年,卢普滨等.我国农药残留检测技术现状.农药,2004, 09: 389-393.
张辉. 液相色谱法检测粮油农残的研究进展. 食品业,2014,04:201-203.