仪器信息网APP
选仪器、听讲座、看资讯

高效液相色谱|紫外检测器小知识

液相色谱(LC)

  • 在现代HPLC中最常使用的检测器是基于UV和可见光吸收的光度计。这类检测器对于很多溶质分子都有很高的检测灵敏度,但是样品必须在UV( 或者可见光)光区(比如,190-600nm) 有吸收。根据比尔定律,样品在流通池里的浓度和穿过流通池的透射光的分数成正比:


    式中 ,I0是入射光的强度 ;I是透射光的强度 ; ?是样品的摩尔吸收度(或者摩尔吸光系数); b 是流通池的路径长度,以cm 为单位 ;c 是以 mol/L为单位的样品浓度。HPLC 检测器的光吸收通常被设计成能提供吸光度输出信号,能和流通池中样品浓度成线性关系的模式,式中 , A 是吸光度。



    一般来说,UV检测器是最常用的检测器,因为它灵敏度高、线性范围宽、相对不受温度波动的影响,而且适合梯度洗脱。它可以记录吸收紫外线或可见光的化合物。

    UV检测器有三种常用的设计。固定波长检测器依赖于检测灯产生的波长固定的光,而可变波长和二极管阵列检测器,则是从一个广谱灯的光源中选择一个或者更多波长来做检测波长。

    01.固定波长的UV检测器这个检测器在可变波长和二极管阵列检测器被引入之前是主流的 uv 检测器,但是它们目前已经不再被广泛应用了。它们的优势是造价较低并且结构简单,它们在教育领域或者其他预算有限的环境中的应用比较广。



    来源于低压汞灯的波长为 254nm 的紫外线经过一个带通滤光片和分光器,照射在流通池的入口。光穿过流通池,撞击在光检测器上(通常是一个光二极管),随后转变成电子信号。对于固定波长的检测器来说,来源于低压汞灯的254nm 波长是最常用的。由于历史的原因,这个波长也常用于可变波长和二极管阵列检测器的检测,虽然使用这个特定波长并没有真正的理由。使用其他种类的光源灯(比如锌灯)、磷光灯和汞灯中其他波长的输出光源,固定波长检测器也可以用214nm、220nm、280nm、313nm、 334nm和365nm的波长进行检测。
    02.可变波长的UV检测器个检测器既可选择溶质分子吸光度最大时的波长,也可选择选择性最大时的波长;同时在色谱实验的过程中还具有改变波长的能力。现在HPLC 应用最广泛的检测器是可变波长的UV检测器,由广谱uv灯(通用氘灯)发出的光束,定向通过夹缝,进入光栅。透过光经光栅表面色散并转换为单一波长的光,随后通过夹缝和检测器的流通池,最后到达检测器。这些检测器通常包含一个流通池和一个参照池,用于差分检测的目的。可见光区域的检测,是以钨灯取代氘灯来实现的。


    03.二极管阵列检测器(DAD)它的光学路径与可变波长检测器相似,唯一的不同是由光源灯发射的白炽光在撞击衍射光栅之前先通过流通池。这使得光栅可以将光谱发散到光电二极管阵列上。光电二极管的数量会因为检测器的品牌和模型不同而有差异,但是装有512个或者1024个二极管的检测器是最常用的。每个光电二极管的信号被处理后,就产生了分析物的光谱。因为光谱是同步产生的(对比用可变波长检测器进行单波长监测),DAD可以为色谱峰的识别作出贡献。DAD可以收集色谱图中一个或多个波长下的检测数据,或者在分析实验中收集一种或者多种分析物的光谱图。DAD的另一个常见应用就是确定色谱峰的纯度,可通过DAD附带的软件计算色谱峰的吸光度比率来实现这个目的。


    UV检测器的背景吸收,或者说是基线信号,可能会因为检测器使用次数的增多而增加。这通常说明了流通池的侧壁玻璃已经比较脏了,需要清洗或者替换。经常对检测器的流通池进行冲洗(当柱子被冲洗之后),以及净化样品,有助于减少彻底清洁流通池的需要。UV灯的使用寿命,过去曾经是备受关注的问题,但现今已不再是难题了。目前灯的使用寿命一般都能 >2000 小时,而且检测器一般有内部电路来监控灯的性能,一旦灯的输出光减弱,检测器就会自动提醒用户进行更换。根据生产厂商的技术说明书,虽然UV检测器的线性响应范围>2AU,大多数的分析师会在
    最后,对紫外检测器的特征和优点进行总结:



    尽管UV紫外检测器有诸多优点,但也存在一些限制,例如它只能检测具有紫外吸收的物质,且对流动相的选择有一定限制,流动相的截止波长必须小于检测波长。此外,对于紫外吸收差的化合物,如不含不饱和键的烃类,其灵敏度会降低。
猜你喜欢最新推荐热门推荐更多推荐
举报帖子

执行举报

点赞用户
好友列表
加载中...
正在为您切换请稍后...