生物纳米材料

仪器信息网生物纳米材料专题为您整合生物纳米材料相关的最新文章,在生物纳米材料专题,您不仅可以免费浏览生物纳米材料的资讯, 同时您还可以浏览生物纳米材料的相关资料、解决方案,参与社区生物纳米材料话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

生物纳米材料相关的资讯

  • 国家纳米中心“活体自组装”生物纳米材料研究获进展
    style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style style type=" text/css" .TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt } /style p   近日,中国科学院国家纳米科学中心王浩课题组通过发展“活体自组装”技术,在细胞内构建了不同拓扑结构的纳米材料,并提出了全新的细胞内原位聚合和组装策略,为功能性纳米材料的设计提供了新思路。相关研究成果发表在 em Nature Communications /em 上,并已申请中国发明专利。 /p p   纳米材料在生物医学领域已被广泛研究和认可,例如药物递送、组织工程等均得到了深入研究。但纳米材料独特的生物界面效应,使其在复杂生命体中的递送过程、物理化学转化以及蓄积代谢等问题变得十分棘手。因此,王浩课题组提出了“活体自组装”理念,独特设计纳米材料的建筑单元,将外源引入的分子参与到生命体的功能性组装过程中,实现了在生理环境下自发的纳米材料构建和功能化。这一独特思路,为生物医用纳米材料领域的设计和应用提供了新视角和新途径。 /p p   在纳米材料的生物功能应用中,拓扑结构对活体器官、组织和细胞的功能影响显得尤为重要。前期报道指出,特定拓扑结构在生命体中扮演者独特的角色,例如双螺旋结构的DNA、具有特定3D结构的蛋白大分子,以及各种传导信号的分子复合体等。材料和界面的拓扑结构影响生物功能,例如界面的形态会诱导干细胞定向分化、决定细胞迁移和内吞等功能。因此,深入研究在特定区域内材料拓扑结构与生物功能之间的关系,将为精准功能化纳米材料的设计提供指导。目前,体外构筑的纳米材料,不能区分界面和胞内作用,干扰了限域拓扑结构和生物功能关系的分析和理解。 /p p   针对特定区域内材料与功能之间的关系研究,王浩课题组发展了细胞内原位聚合和组装的新方法,首次实现了在细胞内平行构筑不同拓扑结构的纳米材料,为研究胞浆拓扑结构和功能的关系提供了有效手段。通过设计不同氨基酸序列的多肽聚合单体,实现了在胞内聚合过程中,对聚合物分子量大小、温敏性质以及组装后的拓扑结构的调控;在细胞和组织水平原位的证实了多肽单体的聚合和组装过程;综合评价了不同拓扑结构的纳米组装体的滞留效应和细胞毒性等生物功能,为精准设计功能化纳米材料提供基础参考。 /p p   研究工作得到了国家自然科学基金、创新群体项目、中科院国际合作、交叉团队、青促会等的支持。 /p p style=" text-align:center " img alt=" " oldsrc=" W020171108529108817694.png" src=" http://img1.17img.cn/17img/images/201711/uepic/4a4278be-71e4-47d4-87a7-0fc2df981d1b.jpg" uploadpic=" W020171108529108817694.png" / /p p style=" text-align: center " 国家纳米中心“活体自组装”生物纳米材料研究工作获进展 /p
  • 中国科大在生物质制备纳米结构材料方面取得系列进展
    近年来,中国科大合肥微尺度物质科学国家实验室俞书宏课题组在低温水热碳化生物质制备功能性碳基材料方面的研究取得显著进展,其中有关生物质水热碳化制备高活性富碳纳米功能材料的一系列工作引起国际关注。最近,该课题组应邀撰写观点透视综述论文,并以封面文章形式发表在Dalton Trans上,英国皇家化学会网站也进行了报道。 多功能碳基材料由于其在催化剂载体、固碳、吸附剂、储气、电极、碳燃料电池和药物传递等领域潜在的重要应用,使其合成技术研究成为一个热门课题。目前,该领域研究的重点已经从化石燃料转变到以生物质作为原料合成碳基材料,同时也有望为合理利用过剩的生物质,为储存碳能源和避免直接焚烧对环境的严重污染等提供新的解决方案。 该课题组研究发现,由非晶态纤维素组成软质的植物组织主要产生球状碳纳米颗粒,它们的尺寸很小,孔隙主要是间隙孔隙;由固定结构的晶态纤维素组成的硬质植物组织,能够保留外部形状以及大范围内宏观和微观结构特征,在纳米尺度上产生了显著的结构变化,形成介孔网状结构。同时,利用碳水化合物能够控制合成出具有特殊形态和结构的碳基纳米材料、多孔碳材料及复合材料,诸如纳米球、纳米纤维、亚纳米线、亚纳米管、纳米电缆和核壳结构等,而且富含能显著改善其亲水性和化学活性的官能团。所制备的碳基材料和复合材料具有优异的固碳效率、催化性质和电学性质,在固碳,色谱分离、催化剂载体和电极材料、气相选择吸附剂、药物传递等领域具有潜在的应用前景。 目前,该课题组正着力研究水热碳化过程机理和进一步提高碳化效率,为高效制备一系列多功能化、高活性碳基纳米结构材料及实际应用打下基础。
  • 流式细胞仪大显身手 高通量纳米材料生物毒性检测技术取得进展
    随着纳米技术的快速发展,越来越多的新型纳米材料不断出现并迅速应用在实际生活中。因此,发展快速、高通量的生物检测手段对纳米毒性的快速安全评估极为重要。流式细胞术是毒理学检测的常用技术,具有高通量、快速、准确的特点。但由于团聚的纳米材料在尺寸上同细菌相近,严重干扰检测结果,使得流式细胞术难以运用于纳米材料对细菌的毒性评估。  近期,中国科学院合肥物质科学研究院技术生物与农业工程研究所吴李君、陈少鹏课题组建立了基于PI-GFP双荧光标记的纳米材料细菌毒性检测方法:GFP绿色荧光表征细菌的生长,碘化丙啶PI红色荧光标记区分死、活细胞,在流式细胞仪上准确区分细菌与纳米材料,通过绿色荧光和红色荧光细胞的相对比例,反应纳米材料的毒性。对比单荧光标记,双荧光标记可以更准确地检测纳米材料的毒性。运用上述建立的双荧光报告系统,他们研究了水环境中金属离子及表面活性剂对纳米银毒性的影响,揭示了不同环境因子对纳米银细菌毒性的影响和机制。结果表明,双荧光报告检测系统可以较准确地反应纳米材料的毒性,适用于环境纳米材料生物学效应的评估。该研究成果已被国际毒理学期刊Cheomsphere (DOI: 10.1016/j.chemosphere.2016.04.074)接收。  该研究受到国家重大研究计划、中科院先导专项B、国家自然科学基金以及研究院院长基金资助。  双荧光报告基因系统检测纳米银生物毒性

生物纳米材料相关的方案

  • 纳米力学测试系统在生物材料方面的应用
    NanoTest 纳米力学测试系统的液体池模块能对生物材料、组织、细胞器、细胞层、软骨、静电支架、牙釉质等在液体环境中进行力学性能表征,不仅为生物材料以及组织研究人员和工程师提供完美的解决方案,也是组织工程和再生医学的研究者衡量他们感兴趣材料刚度的良好选择。
  • 纳米碳材料作为填料的分散方法的优化
    在众多类型的膜材料中,醋酸纤维素(Cellulose Acetate-CA)是最古老的材料之一,改性后的CA具有生物相容性好、脱盐性好、电位通量高、韧性好、成本相对较低等特点,使其仍然是一种非常有前景的材料。最近,混合基质膜材料(Mixed Matrix Membrane Materials-MMMS)受到高度重视,这主要归功于它们在增加机械稳定性、较低的塑化和抑制降解等方面的性能改进。纳米碳材料作为合适的填料在最终混合基质制备的膜上产生了新的先进性能。碳纳米管(CNTs),包括单壁和多壁SWCNTs和MWCNT碳纳米管、氧化石墨烯和石墨烯纳米板结构(GO,GNPS)目前处于膜技术用填料的第一线,可提高最终膜材料的各项物理化学性能。本论文使用高纯度碳纳米管、醋酸纤维素和二丙酮醇制备了混合基质膜,并研究了分散方法(主要是超声和转子-定子系统)对混合基质稳定性的影响,以及最终膜结构特性的影响。
  • VSParticle 干法气溶胶纳米打印技术,加速材料研发进程
    增材制造的方法,如纳米打印可以大大简化高比表面积的纳米多孔薄膜的制备工艺。这种薄膜材料的应用很多,包括电催化、化学、光学或生物传感以及电池和微电子产品制造等。因此,VSParticle 提出了一种基于气溶胶的直写方法。VSP-P1 纳米印刷沉积系统能够实现具有独特性能的无机纳米结构材料的打印直写。

生物纳米材料相关的论坛

  • 【原创】观察纳米材料和生物材料时铜网支持膜的选择(新手篇)

    【原创】观察纳米材料和生物材料时铜网支持膜的选择(新手篇)

    第一次选购或使用碳支持膜的朋友,往往不知道选用哪种目数的铜网支持膜合适。通常情况下,做纳米材料的朋友,选用300目(T10023)或400目(T10024)铜网碳支持膜较适宜;做生物材料(切片样品)的朋友,选用200目(T10022)或150目铜网碳支持膜较适宜。 如果做纳米材料(100nm以下),而且要看高分辨像,最好选择微栅膜(T11012);如果做纳米材料(10nm以下),样品分散性很好,最好选用超薄碳支持膜(T11032)。但前提是要用高分辨电镜(200kV以上)。如果你使用的是100kV的电镜,那么,你不必要使用微栅膜。[img]http://ng1.17img.cn/bbsfiles/images/2010/06/201006201136_225936_1642908_3.jpg[/img]

  • 纳米材料综述

    1,概述一纳米等于十亿分之一米,相当于人的头发丝直径的八万分之一。纳米材料被誉为“21一世纪最具有前途的材料”,与信息技术和生物技术并成为21世纪社会经济发展的三大支柱之一和战略制高点。材料的结构决定材料的性质,纳米材料的特殊结构决定它具有一些特异性质,从而纳米材料具有常规材料没有的性质,从而使纳米材料得到更广泛的应用。纳米材料在化工,工程材料,信息,生物医学,军事等领域都得到了充分的应用。现在纳米技术尚在初期阶段,但于社会效益与经济效益都产生的巨大的影响,在未来纳米材料必定大显身手。纳米科技是研究结构尺度在1(0.1)~100nm范围内材料体系的运动规律,相互作用及实际应用的科学技术。其基本内涵是在纳米尺寸范围内认识和改造自然,通过直接操作原子,分子创造新的物质。纳米技术在材料学,生物学,电子学,化学,物理学,测量学,力学的若干领域得到应用。纳米技术是许多基础理论,专业工程理论与当代高新技术的结晶。以物理学,化学的微观理论为基础,以现代高精密检测仪器和先进的分析技术为手段。美国IBM首席科学家曾经说到:“正像微电子技术产生了信息革命一样,纳米技术将成为下一代信息的核心。”我国著名科学家钱学森也指出:“纳米左右和纳米以下的结构将是下一阶段科学技术发展的重点,会是一次技术革命,从而引发21世纪的一次新的产业革命。”纳米技术具有极大的战略意义,世界上许多国家都将其纳入重点发展项目。本文将从纳米材料的现状,发展趋势及应用三方面加以主要叙述。2,定义 纳米材料是指特征尺寸在纳米数量级(1~100nm)的极细颗粒组成的固体材料。广义上讲,纳米材料指三维空间尺寸中至少有一维处于纳米量级的材料。发展历史纳米材料的概念可以追溯到1959年,诺贝尔奖获得者理查德·费曼(Richard Phillips Feynman)_在一次名为“There is plenty of room at the bottom”演讲中提到的。他构想人类可以使用宏观上的机器制造比其体积小的机器,进而制造更小的机器,这样一步步缩小生产装置,逐步达到分子尺度,到最后人类可以按照自己的意愿来排列原子,制造产品。尽管当时的科学界抱以普遍的怀疑态度,但不久之后,他的理念得以证实, 1980年H·Gleiter教授在一次穿越澳大利亚的沙漠旅行时引发的构想,他不同于当时的常规想法,即具有完整空间点阵结构的实体即晶体视为主体,而将空间点阵中的空位,置换原子,间隙原子,相界,位错和晶界视为晶体材料中的缺陷。他将“缺陷”视为主体,制造出一种晶界占有极大体积比的材料。1984年,他领导的研究组用惰性气体凝聚法制备了具有具有清洁表面的黑色纳米金属粉末粒子,并以它为结构单元制成了纳米块体材料。 1987年美国国家实验室的西格尔(Siegel)等人使用气相冷凝法制备纳米陶瓷材料TiO2,并观察到纳米材料在室温和低温下具有良好的韧性。1990年7月,在美国巴尔的摩召开国际第一届纳米科技学术会议,正式把纳米材料科学作为材料科学的一个新的分支公布于世,表明了纳米材料科学已经成为一个比较独立的学科。1994年在美国波士顿召开的MRS秋季会议上正式提出了纳米材料工程。是纳米材料的新领域,是纳米材料研究的基础上通过纳米合成,纳米添加发展新型的纳米材料,并通过纳米添加对传统材料进行改性,扩大纳米材料的应用范围,开始形成了基础研究与应用研究并行的局面。纳米材料发展有三个阶段:第一阶段(1990年之前)主要是在实验室探索,用各种手段制造各种材料纳米颗粒粉体,合成块体,研究表征方法,探索纳米材料的性能。第二阶段(1990~1994年)。人们

  • 纳米生物技术简介

    纳米生物技术简介 纳米(nanometer,nm)是一种长度单位,一纳米等于10亿分之一米、千分之一微米。从具体的物质说来,人们往往用"细如发丝"来形容纤细的东西,其实人的头发一般直径为20-50微米,并不细。单个细菌用肉眼看不出来,用显微镜测出直径为5微米,也不算细。极而言之,1纳米大体上相当于4个原子的直径。DNA链的直径就是一纳米左右。由于纳米材料表现出许多不同于传统材料的特殊性能,所以纳米科技被视为21世纪关键的高新技术之一。纳米技术包含下列四个主要方面:第一方面是纳米材料,第二方面是纳米动力学,第三方面是纳米电子学,第四方面是纳米生物学和纳米药物学。在纳米生物学和纳米药物学方面,如在云母表面用纳米微粒度的胶体金固定DNA的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,DNA的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。当前纳米生物学和纳米药物学研究领域主要集中在以下几个方向:纳米生物材料、纳米生物器件研究和纳米生物技术在临床诊疗中的应用。

生物纳米材料相关的资料

生物纳米材料相关的仪器

  • 用于软性与生物材料的纳米压痕仪安东帕 生物压痕测试仪TM 属于纳米压痕仪,非常适用于表征人体组织和软材料的机械性能。该仪器专为研究软生物材料(如软组织)而设计。依靠生物压痕仪无与伦比的载荷与位移范围和出色的分辨率,可以最为灵敏地表征软骨、生物组织、支架、水凝胶或眼部组织的弹性模量、蠕变及其他特性。仪器特点安东帕生物压痕测试仪™ :专为研究而设计借助安东帕 生物压痕测试仪TM,可以研究得出极软生物材料机械性能。更好地了解人体,以提高诊断水平、开发新药品和进行组织工程等等时,这个尤其重要。针对这些方面,生物压痕测试仪配备用于测试生物材料的特殊功能,例如能够执行受控的载荷与位移测量。另外,生物压痕测试仪通过检测接触刚度的变化来提供判定接触点,并提供专为生物材料而调整的测量模式。压痕程序:针对测量进行了优化安东帕 生物压痕测试仪TM 提供了多种压痕测试模式选择,包括标准、高级和循环模式。支持使用简单矩阵、高级矩阵和可视矩阵等各种矩阵进行统计评估和定制压痕测试。可以建立用户定义的压痕配置文件。接触点判定便捷,使生物压痕测试仪成为一种非常易于使用的仪器。测量系统:独具一类该仪器本身的测量单位专为高精度测量设计。集成式载荷传感器能够施加最大 20 mN 的载荷。位移传感器可以测量较大的量程。另外,安东帕 生物压痕测试仪TM 还具有良好的热稳定性,适合研究蠕变和流动特性。提供长焦物镜显微镜。高精度自动样品台使得能在 X、Y 和 Z 方向精确移动,从而将样品放到理想位置。软件:获得结果的关键所在借助功能强大但易于操作的软件,用户可以完全控制压痕程序(载荷、位移等)。软件会自动分析结果,另外还提供了统计模块,让用户可以获得数据和结果的快速分析。可以执行用户定义的 ASCII 导出,并且多名用户可以利用受控的访问权限来使用仪器。另外,还可以利用赫兹应力模型从压痕曲线的加载部分计算得出弹性模量,与常用的 Oliver & Pharr 方法相比,该方法更为适合生物材料。各种不同的针尖:用户可以根据需求选择安东帕 生物压痕测试仪TM 支持多种不同的压头,具体取决于用户的材料和需求。种类包括半径 0.01 mm 至 0.5 mm 及更大的球形、平头(平底圆柱)、锥形、维氏和立方锥,另外还可以按需要定制针尖,以便满足乃至要求最苛刻的应用要求(大半径球形、圆柱形等)。技术指标载荷最大载荷20 mN分辨率最小至 0.001 μN本底噪音0.1 [rms] [μN]*位移最大位移100 μm分辨率最小至 0.006 nm本底噪音0.25 [rms] [nm]*
    留言咨询
  • PolyPico 高精度生物材料纳米材料点样仪:Picospotter 和 Picoprecise(不同型号精度不同),提供现成的以及定制化的解决方案来满足您对高精度、微量体积的点样,沉积,打印的需求,适用的生物材料如:Proteins, Anti-bodies, DNA, Living cells, Reagents, High throughput screening/drug discovery。这套用户友好型的系统创新性的采用了一次性喷头的技术,使其与同类产品相比具有更多的优势性能。Poly-Pico技术设计能够帮您在科研工作或者工业生产中降低生产成本,提高生产效率。主要特征:非接触式、高精量液滴的任意点样一次性喷头,避免样本的交叉感染无需清洗装置高精度点样:对任何体积样本CV优于2%仪器可自动进行校正和检查样本通过喷头进行保存或者点样喷头以及样本可在-20°C进行保存喷头无明显的死体积可配置多个喷头来进行样本的点样可兼容多个尺寸喷头(50, 70和100微米)的卡夹墨盒喷头墨盒可达100ml容量皮升级别可控液滴体积喷点速度可达1000滴/秒很小的死体积可避免样本的浪费应用方向:高密度微阵列数字PCR可实现纳升级/皮升级微量样品的点样生物芯片的制作全自动的试剂供给库高通量的药物筛选对微量液滴进行包被试剂/蛋白/生物材料的点样活细胞的点样单个干细胞打印实现高精度液滴的点样应用案例(更多其他生物材料和纳米材料应用请直接联系我们):活细胞点样:PolyPico可用于活细胞点样,如仓鼠卵巢细胞(CHO)样本蛋白/抗体微阵列点样DNA扩增纳米材料点样PolyPico还可实现低粘度UV固化胶黏剂精确打印
    留言咨询
  • [产品技术简介] 富士Dimatix专注于压电式喷印技术已经超过20年, 是全球印刷电子业内知名的纳米材料沉积喷墨打印技术供应商, 其DMP系列 (DMP-2831/2850)也成为行业内畅销以及通用性很强的设备,其广泛应用于多个领域,包括新型显示,电子MEMS,太阳能,生物科技,纳米材料及光学等行业。 新型DMP系列除了DMC-11610及11601配置外,新的喷头系统基于Dimatix Samba压电陶瓷喷头技术,无需特殊调节即可获得高均匀度的喷墨质量以及更佳的喷印直线性,且可适合多种材料喷印, 且小到3pl (Samba), 10pl (DMC-11610) 等喷头可供选择, 目标线宽可达到20-50um;设备配置有对位校准CCD相机以及喷头自动旋转以及样品台自动旋转补偿等, 可用来高分辨精确定位以及喷印后量测喷印状况并记录。喷墨系统可于喷印前观察并调整喷印参数,以及独立控制各喷嘴参数及状态,且对各喷嘴墨滴飞行采集及分析。 [技术规格] - 喷印范围: 210 mm x 315 mm (8.27 in x 12.4 in) - 平台重复精度: ± 25 μm (± 0.001 in) - 平台真空吸附固定- 平台可设定加热至60° C - 操作环境15-40度,5%-80%湿度,无需冷却装置 - 可防止手套箱中 应用领域包括: 印刷电子,柔性电子,有机电子,可穿戴设备,微电子无掩模直写,光电器件包括有机TFT,OLED有机显示,QD LED,及其他各种新型显示,各种功能传感器如生物芯片,化学传感器等,碳管石墨烯器件,PCB印刷,太阳能光伏应用,新型材料研发等等
    留言咨询

生物纳米材料相关的耗材

  • 高端炭基材料高剪切乳化机,环保水性纳米碳材高速乳化机,碳纳米管材料高剪切乳化机,碳纳米管浆液高剪切乳化机混合机,碳纳米复合母胶高剪切乳化机,液体黄金复合母胶高剪切乳化机混合机设备,超导电纳米碳材高速自吸粉混合机乳化机,炭黑高速自吸粉混合机设备
    高端炭基材料高剪切乳化机,环保水性纳米碳材高速乳化机,碳纳米管材料高剪切乳化机,碳纳米管浆液高剪切乳化机混合机,碳纳米复合母胶高剪切乳化机,液体黄金复合母胶高剪切乳化机混合机设备,超导电纳米碳材高速自吸粉混合机乳化机,炭黑高速自吸粉混合机设备 碳纳米管是一维的纳米材料,在工程材料域,碳管以其优异的物理机械性能成为聚合材料理想的填料。具有优异的力学性能、导电、导热性能,因而被认为是聚合物基复合材料理想的力学强化和功能改性材料,采用碳纳米管制成的复合材料表现出良好强度、弹性和抗疲劳性,碳纳米管也逐渐用于橡胶制品、轮胎、塑料等工业中。 但是,碳纳米管的呈纳米纤维状,自身易团聚和缠结,且碳纳米管表面为规整的石墨晶片结构,表面惰性大,与聚合物基体亲和性差,导致碳纳米管在橡胶基质中的分散性差,而且成本也高,这些限制了碳纳米管在橡胶中的规模化应用。 在橡胶工业中,将碳纳米管填充到各种橡胶基体以提高橡胶基体的性能成为研究高端橡胶产品的理想共混复合材料之一,但碳纳米管自身有着很高的表面自由能,易发生团聚现象,碳纳米管与基体间的相互作用是另一个难题,碳管表面没有任何反应官能图,碳管的惰性使其与聚合物基体间化学界面作用弱,碳纳米管对聚合物基体的改善效果难达到预期,因此制备出尺寸均匀,分散好,性能稳定的碳纳米管及其复合材料是拓展其应用域的需要。 目,在碳管的分散性及其复合材料研究中已经取得许多进展。常用的方法中是将采用表面活性剂对碳管表面改性,将其悬浮液与胶乳复合制得复合母胶,该技术在一定程度解决了碳纳米管的分散,但由于表面活性剂中其它基团的加入会降低复合母胶的性能;因此需要提供一种避免活性剂的加入影响碳纳米管与聚合物间结合的技术方案。 针对现阶段技术中存在的问题,在碳纳米管分散均匀的基础上在其表面引入羧基、羟基等官能团,避免偶联剂的加入影响碳纳米管与胶乳之间的结合。一种高分散碳纳米复合母胶的制备方法,包括以下步骤:1、将碳纳米管在分散液中剪切,制得短切碳纳米管悬浮液;2、通入氧化气体对短切碳管悬浮液氧化,制得短切碳纳米管氧化液;3、将补强材料加入短切碳纳米管氧化液,制得碳纳米管浆液;4、在碳纳米管浆液中加入偶联剂,制得复合浆液;5、将天然橡胶胶乳分散于复合浆液中,制得碳纳米管-天然橡胶复合材料;6、将碳纳米管-天然橡胶复合材料凝固、干燥制得高分散碳纳米复合母胶。 上海依肯根据市场技术需求结合多年来积累的成功案例经验特别推出ERS2000系列高剪切乳化机(混合机),ERS2000在线式高速高剪切乳化机,主要用于微乳液及超细悬浮液的生产。由于工作腔体内三组乳化分散头(定子+转子)同时工作,乳液经过高剪切后,液滴更细腻,粒径分布更窄,因而生成的混合液稳定性更好。三组乳化分散头均易于更换,适合不同的工艺应用。该系列中不同型号的机器都有相同的线速度和剪切率,非常易于扩大规模化生产。 上海依肯ERS2000系列高剪切乳化机(混合机)设备参数选型表:型号 标准流量L/H输出转速rpm标准线速度m/s马达功率KW进口尺寸出口尺寸ERS 2000/4300-100014000442.2DN25DN15ERS 2000/5300010500447.5DN40DN32ERS 2000/10800073004415DN50DN50ERS 2000/202000049004437DN80DN65ERS 2000/304000028504455DN150DN125ERS 2000/407000020004490DN150DN125高端炭基材料高剪切乳化机,环保水性纳米碳材高速乳化机,碳纳米管材料高剪切乳化机,碳纳米复合母胶高剪切乳化机,液体黄金复合母胶高剪切乳化机混合机设备,超导电纳米碳材高速自吸粉混合机乳化机,炭黑高速自吸粉混合机设备。。。需要了解更多详情请致电上海依肯机械设备有限公司 销售工程师 徐蒙蒙 182-0189-1183,公司有样机可以免费为客户进行测试验证实验。
  • 碳纳米管浆料高剪切研磨分散机,超高速碳纳米管浆料高剪切研磨分散机设备厂家,碳纳米管浆料研磨分散机,锂电池浆料研磨分散机,导电浆料研磨分散机,锂电池研磨分散设备IKN研磨分散机
    碳纳米管浆料高剪切研磨分散机,超高速碳纳米管浆料高剪切研磨分散机设备厂家,碳纳米管浆料研磨分散机,锂电池浆料研磨分散机,导电浆料研磨分散机,锂电池研磨分散设备IKN研磨分散机,锂电池浆料分散难点,研磨分散机在锂电池浆料分散中的优势。 碳纳米管导电浆料主要由碳纳米管、其他导电填料、分散助剂、和溶剂组成其质量百分比组成为:碳纳米管:0.5-15%其他导电物质0.1-2%,分散剂:0.1-5%,其余为溶剂。 该碳纳米管导电浆料制备方法为:先将分散助剂溶解在溶剂中然后在搅拌条件下加入碳纳米管和其他导电填料,待碳纳米管和其他导电填料充分浸润后,采用IKN研磨分散机对浆料进行研磨分散几小时后即可得到稳定分散的碳纳米管导电浆料。本发明方法简单不破坏碳纳米管结构和导电性,所制得的碳纳米管导电浆料具有优良的导电性,且性质稳定均一,静置3个月后,浆料稳定性 90%。对于碳纳米管浆料以及其他锂电池浆料的研磨分散普遍存在着2个难以解决的问题:1、研磨的细度,传统的设备研磨设备是通过刀头去磨细,这样经常会破坏碳纳米管结构和导电性,使物料变性。而IKN研磨分散机.细化物料更多的是通过物料与物料直接的撞击来完成研磨细化的功能,不会破坏物料结构。2、容易形成二团聚体在碳纳米管粒径细化之后,由于分子之间的作用力,小的物料又会二次团聚从而影响zui终产品的物料粒径以及分散的效果。IKN研磨分散机很好的克服了二团聚的现象 IKN研磨分散机是研磨机和分散机-体化的设备,在碳纳米管浆料粒径细化后瞬间通过分散工作腔进行分散避免二次团聚的现象。 超高速碳纳米管浆料高剪切研磨分散机设备厂家CMD2000系列研磨分散设备是IKN(上海)公司经过研究刚刚研发出来的一款新型产品,该机特别适合于需要研磨分散乳化均质一步到位的物料。 我们将三高剪切均质乳化机进行改装我们将三变跟为一然后在乳化头上面加配了胶体磨磨头,使物料可以先经过胶体磨细化物料,然后再经过乳化机将物料分散乳化均质。胶体磨可根据物料要求进行更换(我们提供了2P,2G,4M,6F,8SF等五种乳化头供客户选择)。 碳纳米管浆料研磨式分散机是由锥体磨,分散机组合而成的高科技产品。第1由具有精细度递升的三锯齿突起和凹槽。定子可以无限制的被调整到所需要的与转子之间的距离。在增强的流体湍流下凹槽在每都可以改变方向 第二由转定子组成, 分散头的设计也很好地满足不同粘度的物质以及颗粒粒径的需要。碳纳米管浆料研磨分散机的特点:①线速度很高剪切间隙非常小当物料经过的时候形成的摩擦力就比较剧烈结果就是通常所说的湿磨。②定转子被制成圆椎形具有精细度递升的三锯齿突起和凹槽。③定子可以无限制的被调整到所需要的与转子之间的距离④在增强的流体湍流下凹槽在每都可以改变方向。⑤高质量的表面抛光和结构材料,可以满足不同行业的多种要求。碳纳米管浆料研磨分散机,锂电池浆料研磨分散机导电浆料研磨分散机,锂电池研磨分散设备锂电池浆料分散难点研磨分散机在锂电池浆料分散中的优势。
  • 热剥离胶带 石墨烯膜 LED 碳纳米管 晶圆定位 二维材料
    热释放胶带,热剥离胶带,发泡胶。剥离温度为90℃~100℃,120℃,150℃,拍的时候,说明哪种温度,此销售的胶带为单面胶带。用于石墨烯膜、LED、碳纳米管、晶圆研磨定位、二维材料转移等领域。 主要型号:90~100°中粘125-135°中粘125-135°高粘150-160°中粘产 品 名 称:热释放胶带,热剥离胶带(国产胶带),发泡胶带剥 离 温 度:90~100℃/120℃/150℃结 构:两层结构,一层为热剥离胶层,厚度50微米。一层为保护膜,厚度10微米。厚的一层为带胶层,薄的一层为保护膜,使用的时候撕去保护膜即可。剥 离 原 理:热剥离胶带是由一种独特的粘合胶(热敏胶)制成,在常温下有一定的粘合力,可以起到定位的作用,能够满足各种精密加工要求,只要把温度加热到设定的温度,30-50秒钟,那么粘合力就会消失,能实现简单剥离,残留物较少,不污染被粘物。在电子产品生产过程中,能够实现简易自动化。主要使用在MLCC、MLCI、石墨烯膜转移、二维材料转移、纳米管转移、晶圆研磨定位、电路板安装、LED灯制作等定位上。尺 寸:约A4纸大小材 质:热敏胶 使用说明: 1.在一定的温度下有粘性,可以起到定位的作用,能够满足各种精密加工需要。可以用剪刀剪切,根据自己需要的尺寸,自己剪切即可。2.加工完毕后,只需要加热到设定温度,约几十秒到1分钟,粘性消失,实现简易剥离。用 途:用于转移石墨烯膜,碳纳米管,晶圆和研磨加工定位,LED、电路板安装,各种零部件定位以及环形压敏电阻定位、分切定位上。

生物纳米材料相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制