制造缺陷

仪器信息网制造缺陷专题为您整合制造缺陷相关的最新文章,在制造缺陷专题,您不仅可以免费浏览制造缺陷的资讯, 同时您还可以浏览制造缺陷的相关资料、解决方案,参与社区制造缺陷话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

制造缺陷相关的耗材

  • Nalgene 5973 微量离心管架ResMer 制造技术
    Nalgene 5973 微量离心管架ResMer 制造技术?ResMerTM 制造技术能够让这些管架在苛刻的实验室环境中保持其颜色和性能不变。可用于广泛的温度范围,具有较强的耐化学性。其上的每个孔旁都标有模制字母和数字,以便于您识别样本。当架中未夹持任何离心管或放满离心管时,都可叠放。可高温高压灭菌订货信息:Nalgene 5973 微量离心管架ResMer 制造技术目录编号试管大小 , mm阵列颜色L×W×H,mm每盒数量每箱数量5973-00151.54×6白色149×90×5218
  • Nalgene 5972 Unwire 半尺寸试管架ResMer 制造技术
    Nalgene 5972 Unwire 半尺寸试管架ResMer 制造技术?比全尺寸的试管架更能节约空间。易于固定在冰槽或水槽中,不会漂浮。具有全尺寸Unwire 试管架的所有功能。Resmer 制造技术使这些试管架能够更长久地保持其亮丽颜色不变。可用于广泛的温度范围,具有较强的耐化学性。可高温高压灭菌订货信息:Nalgene 5972 Unwire 半尺寸试管架ResMer 制造技术目录编号试管大小 , mm颜色L×W×H,mm阵列每盒数量每箱数量5972-001313白色102×102×566×6185972-001616白色126×126×686×6185972-002020白色128×103×834×5185972-002525白色122×122×754×4185972-003030白色109×109×843×3185972-031313蓝色102×102×566×6185972-031616蓝色126×126×686×6185972-032020蓝色128×103×834×5185972-032525蓝色122×122×754×4185972-033030蓝色109×109×843×3185972-041313绿色102×102×566×6185972-041616绿色126×126×686×6185972-042020绿色128×10×834×5185972-043030绿色109×109×843×3185972-051313红色102×102×566×6185972-051616红色126×126×686×6185972-052020红色128×103×834×5185972-053030红色109×109×843×318
  • Nalgene 5970 Unwire试管架ResMer制造技术
    Nalgene 5970 Unwire试管架ResMer制造技术?完整尺寸的Unwire 试管架可以稳固地满载试管或离心管,具有以下常用的尺寸:13、16、20、25 和30 mm。一次最多可以安放72 个直径较小的试管。这些试管架在模制时采用六种亮丽而持久的颜色,ResmerTM 制造技术使它们能够更长久地保持其亮色不变。可用于广泛的温度范围,具有较强的耐化学性。可高温高压灭菌订货信息:Nalgene 5970 Unwire试管架ResMer制造技术目录编号试管大小 , mm颜色L×W×H,mm阵列每盒数量每箱数量5970-001313白色200×102×576×12185970-001616白色248×127×706×12185970-002020白色250×102×834×10185970-002525白色300×121×924×10185970-003030白色283×108×833×8185970-011313橙色200×102×576×12185970-011616橙色248×127×706×12185970-012020橙色250×102×834×10185970-012525橙色300×121×924×10185970-013030橙色283×108×833×8185970-021313黄色200×102×576×12185970-021616黄色248×127×706×12185970-022020黄色250×102×834×10185970-022525黄色300×121×924×10185970-023030黄色283×108×833×8185970-031313蓝色200×102×576×12185970-031616蓝色248×127×706×12185970-032020蓝色250×102×834×10185970-032525蓝色300×121×924×10185970-033030蓝色283×108×833×8185970-041313绿色200×102×576×12185970-041616绿色248×127×706×12185970-042020绿色250×102×834×10185970-042525绿色300×121×924×10185970-043030绿色283×108×833×8185970-051313红色200×102×576×12185970-051616红色248×127×706×12185970-052020红色250×102×834×10185970-052525红色300×121×924×10185970-053030红色283×108×833×818

制造缺陷相关的仪器

  • 钢研纳克钢管视觉表面缺陷自动检测系统:由高速CCD相机系统、同步成像光源系统、存储及图形分析服务器系统、景深自动调节的检测平台系统及软件等组成,可实现二维+三维表面缺陷连续自动检测、分类评级和记录。可以快速且有效检测裂纹、凹坑、折叠、压痕、结疤等各类缺陷,能够适应于复杂的现代钢铁工业生产环境,能够完美替代目视检测,达到无人化生产的水平。 图1 钢管视觉表检系统 图2 CCD高速相机系统1.特点独特二维+三维成像技术:二维+三维集成成像,不仅能准确检测开口缺陷深度,而且深度很浅的细小缺陷也能有效检测。二维、三维结合技术解决了目前三维检测系统只能检出有一定深度缺陷、无法检测表面深度较浅但危害性较大的缺陷的问题。相机景深自动调整技术:能够对不同规格的工件进行自动调整,实现大景深变化背景下的高清成像。卷积神经网络缺陷算法:基于深度学习的表面缺陷检测算法,能够在复杂背景下有效地减少计算时间快速的采集缺陷特征,具有领先的缺陷检出率及分类准确率。2.主要功能在线缺陷实时检测:系统在线检测折叠、凹坑、裂纹等钢管外表面常见自然缺陷缺陷高速识别:快速分析获取缺陷数量、大小、位置(在长度、宽度方向上位置)、类型等信息,显示宽度缺陷模式缺陷分类统计:可按缺陷种类、长度、深度、位置、面积、等进行分类及合格率统计。实时图像拍照:实时过钢图像以及每根钢管记录的图像的“回放”功能,可进行多个终端显示图像回放。机器自学习:系统检出的缺陷和人工核对后,进行对应缺陷的样本训练,形成机器自学习,提高同类缺陷的识别准确率3.检测效果图3 图软件主界面图4 系统分析界面图5 缺陷样本自动标注常见缺陷 划伤 辊印 结疤 裂纹图6 检测到的常见表面缺陷目前该产品已在钢管生产线投入使用,解决了长期困扰客户的表面缺陷实时检测的难题。详情可咨询钢研纳克无损检测,电话: 手机:,E-mail:
    留言咨询
  • VOHCL沃驰-VC400DHF-高速智能电火花堆焊修复机设备原理电火花沉积工艺是将电源存储的高能量电能,在金属电极与金属母材间瞬间高频释放,通过电极材料与母材间的空气电离形成通道,使母材表面产生瞬间高温、高压微区,同时离子态的电极材料在微电场的作用下融渗到母材基体,形成冶金结合。由于该工艺是瞬间的高温-冷却过程,不仅使金属表面因淬火形成马氏体,而且在狭窄的沉积过度区形成超细奥氏体组织。电火花沉积工艺不是焊接,也不是喷涂或元素渗入工艺,简单的讲,是介于其间的工艺。公 司:上海沃驰实业有限公司联系人:康军手 机:(微信同号)电 话:Q Q:网 址:地 址:上海市嘉定区外冈工业园四区373号VOHCL-VC400DHF智能高速电火花堆焊修复机设备特点:1、沃驰技术领先:采用超精密高性能处理器,双端控流技术,能量回收和斩波技术,运行更高速,输出控制超精确,智能数字化一键启动调节、操作更简单、效率更高、性能更稳定。2、焊补强度高:单次输出能量达到几十焦耳,所以焊材能完全熔融到基体,形成冶金结合,产生极强的结合力。3、焊补精度高:焊补精度可达到微米级,可直接进行车、铣、磨、钻等加工,无气孔、沙眼、色差小或无色差。即便是无余量的加工表面,也可焊补,且无变形,无咬边,无灼伤现象。4、无退火和变形:1秒内可输出五百能量束,形成能量束输入、回收的反复过程,使基体不会有过多的温升,因而无变形、咬边和残余应力,无局部退火。5、高端战略机型一机多用:适用与对质量要求较高客户,可进行金属工件缺陷焊补、金属工件及模具表面强化被覆,且焊补范围广(如黑色金属:球铁、灰铁、钢等;有色金属:铝、铜等)。尤其对有色金属,焊补效率提升明显,且焊补强度高。6、强大的存储功能:⑴固定存储功能:使用者可以快速调取机器出厂时已存储在机器中的铸钢、铸铁、铜、铝、镁、锌、被覆强化最佳参数实施工作;智能化高、操作更简单,无需要专业知识工程师(女工可操作),可几分钟立刻学会使用。⑵多组参数存储:使用者也可以将自己经常使用的参数存储,以方便快速调取使用。7、对铜、铝、镁、锌、球铁、灰铁、钢的优秀焊补效果:由于瞬间的高能量输出,有效的解决了铜铝金属等高导电率金属的焊补,克服了普通电火花堆焊结合不牢的缺点。8、环保性:工作过程中无任何污染。 9、使用性:任何人都容易使用(女工可操作),无须特种焊工操作证,难焊接的地方也可进行堆焊。 10、经济性:在现场立刻修复,提高生产效率,节省费用,性价比超高、后期全国无忧。11、适用焊材广:由于VOHCL-VC400DHF不同的控制方式,输出能量高,控制精细,所以焊材的适用性较广。除常规的电火花堆焊修复机需专用焊材外,其他焊机所用的直径在0.3-4.0mm的直条焊材多数适用,普通的电焊条去药皮后也可使用。模具表面被覆强化功能: 把超硬合金在短时间內,迅速被覆在模具表面及渗透到模具组织內部,被覆后可增加模具的耐磨性、耐腐蚀性、耐冲击性、脱模性及耐热性。VOHCL沃驰VC400DHF智能高速电火花堆焊修复机适用范围:1. 适用于耐冲击性的模具(压铸模、铸模、锻造模、塑胶模、冲压模等延长3倍寿命)2. 适用於耐高热面(如模具进料口、模芯等延长3倍寿命)3. 切削工具、刀具(銑刀、车刀、绞刀、钻头等延长5倍寿命)4. 适用於夹具、夾头之被覆,增加耐磨功能。5. 被覆的厚度及粗细度可以任意调整,标准厚度在0.01-0.1mm。 VC400DHF-智能高速电火花堆焊修复机被覆强化功能可重复、多次强化,提升模具使用寿命、增强脱模性;模具表面被覆厚度可从几微米到零点几毫米,可根据需求调节;模具被覆过程中基体无须预热,常温被覆,基体不发热,被覆区域附近金相组织不改变,无应力集中现象。即每个单元被覆过程所需热能为设备的一次智能性的输出,整个被覆过程基体及被覆区域附近始终处于常温状态,不产生热变形,不出现裂纹现象。由于整个模具被覆过程中,制件始终处于常常温状态,故在传统焊补或者表面被覆工艺中出现的不足均都得已避免,解决了模具拉模、粘模的难题,被覆后无需处理即可使用,且可多次重复被覆。 VC400DHF-智能高速电火花堆焊修复机尤其突出应用表现于压铸类模具的被覆使用,当压铸模具在使用过程中出现粘模、粘料现象,先将模具表面粘附的废料、油污、脱模剂等异物简单清理,再使用本设备对粘模、粘料部位进行被覆,被覆后无需做任何处理,即可直接上机生产,被覆部位可长时间不粘模、不粘料,若经过长时间使用后出现粘模、粘料现象,重复上述步骤即可。本设备可不限次数对模具进行被覆,从而提升模具使用寿命、增强脱模性能。VC400DHF-智能高速电火花堆焊修复机设备应用: A、汽车行业:制动盘、汽车曲轴、活塞、缸体、缸盖、进排气管、轮毂、油底壳、变数箱零部件、阀门、卡钳等铸造的缺陷修复,如砂眼、气孔、缺料、裂纹、冷隔、疏松等缺陷。 B、机械及机床工业:修正超差或磨损的工件,如修复机床导轨、床身,大型机械的轴类、齿类部件、轧钢用的冷、热轧辊、工程机械的液压杆、印刷机滚筒等各种各种零配件的焊补。 C、航空与船舶制造业:压缩机壳体、空压机壳体、不锈钢精密部件、精密轴类等。石油化工、煤炭、工程机械等诸多行业的产品修补。各种行业的有色金属件,如电力行业的SF6互感器的铝合金件,风机铝合金叶轮、铝合金散热器、铜合金的水暖阀门、管件等。D、模具行业:锌铝压铸模具的蚀痕、脱落、损伤等,以及型腔和浇道口的表面强化,延长模具的使用寿命,注塑模具、铜合金模具、铝合金模具、铁模、氮化模具等,磨损、碰伤、划痕等的焊补。VOHCL-VC400DHF-智能高速电火花堆焊修复机(表面强化被覆)产品参数型号Model:VC400DHF输入电源Input power:AC220V功率Power:1500W电压范围Voltage:20-100V频率Frequency:50-500HZ输出百分Percentage:10-100%重量 Weight:20KG外形尺寸Weight:415mmx200mmx400mm
    留言咨询
  • VOHCL沃驰-VC400DHF-高速智能电火花堆焊修复机设备原理电火花沉积工艺是将电源存储的高能量电能,在金属电极与金属母材间瞬间高频释放,通过电极材料与母材间的空气电离形成通道,使母材表面产生瞬间高温、高压微区,同时离子态的电极材料在微电场的作用下融渗到母材基体,形成冶金结合。由于该工艺是瞬间的高温-冷却过程,不仅使金属表面因淬火形成马氏体,而且在狭窄的沉积过度区形成超细奥氏体组织。电火花沉积工艺不是焊接,也不是喷涂或元素渗入工艺,简单的讲,是介于其间的工艺。公 司:上海沃驰实业有限公司联系人:康军手 机:(微信同号)电 话:Q Q:网 址:地 址:上海市嘉定区外冈工业园四区373号VOHCL-VC400DHF智能高速电火花堆焊修复机设备特点:1、沃驰技术领先:采用超精密高性能处理器,双端控流技术,能量回收和斩波技术,运行更高速,输出控制超精确,智能数字化一键启动调节、操作更简单、效率更高、性能更稳定。2、焊补强度高:单次输出能量达到几十焦耳,所以焊材能完全熔融到基体,形成冶金结合,产生极强的结合力。3、焊补精度高:焊补精度可达到微米级,可直接进行车、铣、磨、钻等加工,无气孔、沙眼、色差小或无色差。即便是无余量的加工表面,也可焊补,且无变形,无咬边,无灼伤现象。4、无退火和变形:1秒内可输出五百能量束,形成能量束输入、回收的反复过程,使基体不会有过多的温升,因而无变形、咬边和残余应力,无局部退火。5、高端战略机型一机多用:适用与对质量要求较高客户,可进行金属工件缺陷焊补、金属工件及模具表面强化被覆,且焊补范围广(如黑色金属:球铁、灰铁、钢等;有色金属:铝、铜等)。尤其对有色金属,焊补效率提升明显,且焊补强度高。6、强大的存储功能:⑴固定存储功能:使用者可以快速调取机器出厂时已存储在机器中的铸钢、铸铁、铜、铝、镁、锌、被覆强化最佳参数实施工作;智能化高、操作更简单,无需要专业知识工程师(女工可操作),可几分钟立刻学会使用。⑵多组参数存储:使用者也可以将自己经常使用的参数存储,以方便快速调取使用。7、对铜、铝、镁、锌、球铁、灰铁、钢的优秀焊补效果:由于瞬间的高能量输出,有效的解决了铜铝金属等高导电率金属的焊补,克服了普通电火花堆焊结合不牢的缺点。8、环保性:工作过程中无任何污染。 9、使用性:任何人都容易使用(女工可操作),无须特种焊工操作证,难焊接的地方也可进行堆焊。 10、经济性:在现场立刻修复,提高生产效率,节省费用,性价比超高、后期全国无忧。11、适用焊材广:由于VOHCL-VC400DHF不同的控制方式,输出能量高,控制精细,所以焊材的适用性较广。除常规的电火花堆焊修复机需专用焊材外,其他焊机所用的直径在0.3-4.0mm的直条焊材多数适用,普通的电焊条去药皮后也可使用。模具表面被覆强化功能: 把超硬合金在短时间內,迅速被覆在模具表面及渗透到模具组织內部,被覆后可增加模具的耐磨性、耐腐蚀性、耐冲击性、脱模性及耐热性。VOHCL沃驰VC400DHF智能高速电火花堆焊修复机适用范围:1. 适用于耐冲击性的模具(压铸模、铸模、锻造模、塑胶模、冲压模等延长3倍寿命)2. 适用於耐高热面(如模具进料口、模芯等延长3倍寿命)3. 切削工具、刀具(銑刀、车刀、绞刀、钻头等延长5倍寿命)4. 适用於夹具、夾头之被覆,增加耐磨功能。5. 被覆的厚度及粗细度可以任意调整,标准厚度在0.01-0.1mm。 VC400DHF-智能高速电火花堆焊修复机被覆强化功能可重复、多次强化,提升模具使用寿命、增强脱模性;模具表面被覆厚度可从几微米到零点几毫米,可根据需求调节;模具被覆过程中基体无须预热,常温被覆,基体不发热,被覆区域附近金相组织不改变,无应力集中现象。即每个单元被覆过程所需热能为设备的一次智能性的输出,整个被覆过程基体及被覆区域附近始终处于常温状态,不产生热变形,不出现裂纹现象。由于整个模具被覆过程中,制件始终处于常常温状态,故在传统焊补或者表面被覆工艺中出现的不足均都得已避免,解决了模具拉模、粘模的难题,被覆后无需处理即可使用,且可多次重复被覆。 VC400DHF-智能高速电火花堆焊修复机尤其突出应用表现于压铸类模具的被覆使用,当压铸模具在使用过程中出现粘模、粘料现象,先将模具表面粘附的废料、油污、脱模剂等异物简单清理,再使用本设备对粘模、粘料部位进行被覆,被覆后无需做任何处理,即可直接上机生产,被覆部位可长时间不粘模、不粘料,若经过长时间使用后出现粘模、粘料现象,重复上述步骤即可。本设备可不限次数对模具进行被覆,从而提升模具使用寿命、增强脱模性能。VC400DHF-智能高速电火花堆焊修复机设备应用: A、汽车行业:制动盘、汽车曲轴、活塞、缸体、缸盖、进排气管、轮毂、油底壳、变数箱零部件、阀门、卡钳等铸造的缺陷修复,如砂眼、气孔、缺料、裂纹、冷隔、疏松等缺陷。 B、机械及机床工业:修正超差或磨损的工件,如修复机床导轨、床身,大型机械的轴类、齿类部件、轧钢用的冷、热轧辊、工程机械的液压杆、印刷机滚筒等各种各种零配件的焊补。 C、航空与船舶制造业:压缩机壳体、空压机壳体、不锈钢精密部件、精密轴类等。石油化工、煤炭、工程机械等诸多行业的产品修补。各种行业的有色金属件,如电力行业的SF6互感器的铝合金件,风机铝合金叶轮、铝合金散热器、铜合金的水暖阀门、管件等。D、模具行业:锌铝压铸模具的蚀痕、脱落、损伤等,以及型腔和浇道口的表面强化,延长模具的使用寿命,注塑模具、铜合金模具、铝合金模具、铁模、氮化模具等,磨损、碰伤、划痕等的焊补。VOHCL-VC400DHF-智能高速电火花堆焊修复机(表面强化被覆)产品参数型号Model:VC400DHF输入电源Input power:AC220V功率Power:1500W电压范围Voltage:20-100V频率Frequency:50-500HZ输出百分Percentage:10-100%重量 Weight:20KG外形尺寸Weight:415mmx200mmx400mm
    留言咨询

制造缺陷相关的试剂

制造缺陷相关的方案

制造缺陷相关的论坛

  • 【分享】戴尔Inspiron被指有缺陷 接连在加美遭起诉

    【赛迪网讯】1月16日消息 戴尔加拿大公司眼下正面临着一起集体诉讼,控方代表了戴尔Inspiron笔记本电脑数个机型的加拿大用户。诉讼指控称戴尔有意销售存在缺陷的产品。  据newsfactor网站报道,这起在安大略省高级法院提起的诉讼称,戴尔Inspiron电脑1100、1150、5100、5150和5160机型使用的主板存在缺陷,而且戴尔不可能不知道这些问题的存在。  “多数人都依赖他们的笔记本电脑来谋生,或用于学习目的,”代表原告的律师约耳罗钦(Joel P. Rochon)说。“这起诉讼要求戴尔给予拥有这些电脑的加拿大消费者以公平的赔偿。”  据原告称,戴尔Inspiron这几个机型出现问题的根本原因在于设计上的缺陷,它们导致电脑容易过热并缩短了主板的使用寿命。原告还称,这些故障通常会在产品一年质保期刚满之后发生。  据悉,戴尔因上述五个机型的笔记本在美国也面临着代表美国消费者的同样的集体诉讼,虽然戴尔已与Inspiron 5150的用户达成了和解协议,但其他四个机型的诉讼仍在继续。  戴尔最近遭遇了一连串的挑战——先是去年在几起电脑起火事故之后被迫召回了410万块笔记本电池,从而使名誉遭受损失,最近又不得不将全球最大个人电脑制造商的桂冠拱手让给了竞争对手惠普公司。分析师指出,戴尔接连出现的问题正在帮助惠普和联想提高它们各自的市占率。

制造缺陷相关的资料

制造缺陷相关的资讯

  • 500万!广东工业大学计划采购晶圆制造缺陷检测设备
    一、项目基本情况项目编号:1210-2341YDZB6002项目名称:晶圆制造缺陷检测设备采购采购方式:公开招标预算金额:5,000,000.00元采购需求:合同包1(晶圆制造缺陷检测设备):合同包预算金额:5,000,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)1-1其他仪器仪表晶圆制造缺陷检测设备1(台)详见采购文件5,000,000.00本合同包不接受联合体投标合同履行期限:合同生效180天内中标人完成货物安装调试并交付使用。二、申请人的资格要求:1.投标供应商应具备《政府采购法》第二十二条规定的条件,提供下列材料:1)具有独立承担民事责任的能力:在中华人民共和国境内注册的法人或其他组织或自然人, 投标(响应)时提交有效的营业执照(或事业法人登记证或身份证等相关证明) 副本复印件。分支机构投标的,须提供总公司和分公司营业执照副本复印件,总公司出具给分支机构的授权书。2)有依法缴纳税收和社会保障资金的良好记录:提供书面声明。3)具有良好的商业信誉和健全的财务会计制度:提供书面声明。4)履行合同所必需的设备和专业技术能力:提供书面声明。5)参加采购活动前3年内,在经营活动中没有重大违法记录:参照投标函相关承诺格式内容。 重大违法记录,是指供应商因违法经营受到刑事处罚或者责令停产停业、吊销许可证或者执照、较大数额罚款等行政处罚。(较大数额罚款按照《财政部关于第十九条第一款 “较大数额罚款”具体适用问题的意见 》(财库〔2022〕3号)执行)2.落实政府采购政策需满足的资格要求:合同包1(晶圆制造缺陷检测设备)落实政府采购政策需满足的资格要求如下:参与的供应商提供的货物全部由符合政策要求的中小企业制造3.本项目的特定资格要求:合同包1(晶圆制造缺陷检测设备)特定资格要求如下:(1)供应商未被列入“信用中国”网站(www.creditchina.gov.cn)“记录失信被执行人或重大税收违法失信主体或政府采购严重违法失信行为”记录名单;不处于中国政府采购网(www.ccgp.gov.cn)“政府采购严重违法失信行为信息记录”中的禁止参加政府采购活动期间。(以采购代理机构于投标截止时间当天在“信用中国”网站(www.creditchina.gov.cn) 及中国政府采购网(http://www.ccgp.gov.cn/) 查询结果为准, 如相关失信记录已失效, 供应商需提供相关证明资料)。(2)单位负责人为同一人或者存在直接控股、 管理关系的不同供应商,不得同时参加本采购项目(或采购包) 投标(响应)。 为本项目提供整体设计、 规范编制或者项目管理、 监理、 检测等服务的供应商, 不得再参与本项目投标(响应)。 投标(报价) 函相关承诺要求内容。(3)供应商已递交投标保证金。三、获取招标文件时间: 2023年03月01日 至 2023年03月21日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取四、提交投标文件截止时间、开标时间和地点2023年03月22日 14时30分00秒 (北京时间)递交文件地点:线上递交开标地点:广州市天河北路626号保利中宇广场A座25楼第一会议室五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.本项目采用电子系统进行招投标,请在投标前详细阅读供应商操作手册,手册获取网址:https://gdgpo.czt.gd.gov.cn/help/transaction/download.html。投标供应商在使用过程中遇到涉及系统使用的问题,可通过020-88696588 进行咨询或通过广东政府采购智慧云平台运维服务说明中提供的其他服务方式获取帮助。2.供应商参加本项目投标,需要提前办理CA和电子签章,办理方式和注意事项详见供应商操作手册与CA办理指南,指南获取地址:https://gdgpo.czt.gd.gov.cn/help/problem/。3.如需缴纳保证金,供应商可通过"广东政府采购智慧云平台金融服务中心"(http://gdgpo.czt.gd.gov.cn/zcdservice/zcd/guangdong/),申请办理投标(响应)担保函、保险(保证)保函。4.本项目支持电子保函,可通过登录项目采购电子交易系统跳转至电子保函系统进行在线办理。电子保函办理办法详见供应商操作手册。5.本项目采用远程电子开标,供应商的法定代表人或其授权代表应当按照本招标公告载明的时间和模式等要求参加开标。在递交投标文件截止时间前30分钟,应当登录云平台开标大厅进行签到,并且填写授权代表的姓名与手机号码。若因签到时填写的授权代表信息有误而导致的不良后果,由供应商自行承担。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:广东工业大学地 址:广州市广州大学城外环西路100号联系方式:020-393400322.采购代理机构信息名 称:广东有德招标采购有限公司地 址:广州市天河北路626号保利中宇广场A座25楼联系方式:020-836295903.项目联系方式项目联系人:莫小姐电 话:020-83629590广东有德招标采购有限公司2023年02月28日
  • 利用原子力显微镜对半导体制造中的缺陷进行检测与分类
    利用原子力显微镜进行的自动缺陷复检可以以纳米级的分辨率在三维空间中可视化缺陷,因此纳米级成像设备是制造过程的一个重要组成部分,它被视为半导体行业中的理想技术。结合原子力显微镜的三维无创成像,使用自动缺陷复查对缺陷进行检测和分类。伴随光刻工艺的不断进步,使生产更小的半导体器件成为可能。 随着器件尺寸的减小,晶圆衬底上的纳米级缺陷已经对器件的性能产生了限制。 因此对于这些缺陷的检测和分类需要具有纳米级分辨率的表征方法。 由于可见光的衍射极限,传统的自动光学检测(AOI)无法在该范围内达到足够的分辨率,这会损害定量成像和随后的缺陷分类。 另一方面,使用原子力显微镜 (AFM) 的自动缺陷复检 (ADR)技术以 AFM 常用的纳米分辨率能够在三维空间中可视化缺陷。 因此,ADR-AFM 减少了缺陷分类的不确定性,是半导体行业缺陷复检的理想技术。 缺陷检查和复检 随着半导体器件依靠摩尔定律变得越来越小,感兴趣的缺陷(DOI)的大小也在减小。DOI是可能降低半导体器件性能的缺陷,因此对工艺良率管理非常重要。DOI尺寸的减小对缺陷分析来说是一个挑战:合适的表征方法必须能够在两位数或一位数纳米范围内以高横向和垂直分辨率对缺陷进行无创成像。 传统上,半导体行业的缺陷分析包括两个步骤。第一步称为缺陷检测,利用高吞吐量但低分辨率的快速成像方法,如扫描表面检测系统(SSIS)或AOI。这些方法可以提供晶圆表面缺陷位置的坐标图。然而,由于分辨率较低,AOI和SSIS在表征纳米尺寸的DOI时提供的信息不足,因此,在第二步中依赖高分辨率技术进行缺陷复检。对于第二步,高分辨率显微镜方法,如透射或扫描电子显微镜(TEM和SEM)或原子力显微镜(AFM),通过使用缺陷检测的缺陷坐标图,对晶圆表面的较小区域进行成像,以解析DOI。利用AOI或SSIS的坐标图可以最大限度地减少感兴趣的扫描区域,从而缩短缺陷复检的测量时间。 众所周知,SEM和TEM的电子束可能会对晶圆造成损伤,所以更佳的技术选择应不能对晶圆产生影响。那么选择采用非接触测量模式的AFM可以无创地扫描表面。不仅有高横向分辨率,AFM还能够以高垂直分辨率对缺陷进行成像。因此,原子力显微镜提供了可靠的缺陷定量所需的三维信息。 原子力显微镜 通过在悬臂末端使用纳米尺寸的针尖对表面进行机械扫描,AFM在传统成像方法中实现了最高的垂直分辨率。除了接触模式外,AFM还可以在动态测量模式下工作,即悬臂在样品表面上方振荡。在这里,振幅或频率的变化提供了有关样品形貌的信息。这种非接触AFM模式确保了以高横向和垂直分辨率对晶圆表面进行无创成像。由于自动化原子力显微镜的最新发展,原子力显微镜的应用从学术研究扩展到了如硬盘制造和半导体技术等工业领域。该行业开始关注AFM的多功能性及其在三维无创表征纳米结构的能力。因此,AFM正在发展成为用于缺陷分析的下一代在线测量解决方案。 使用原子力显微镜自动缺陷复检 基于 AFM 的缺陷复检技术的最大挑战之一是将缺陷坐标从 AOI 转移到 AFM。最初,用户在 AOI 和 AFM 之间的附加步骤中在光学显微镜上手动标记缺陷位置,然后在 AFM 中搜索这些位置。然而,这个额外的步骤非常耗时并且显着降低了吞吐量。另一方面,使用 AFM 的自动缺陷复检从 AOI 数据中导入缺陷坐标。缺陷坐标的导入需要准确对准晶圆以及补偿 AOI 和 AFM 之间的载物台误差。具有比 AOI 更高位置精度的光学分析工具(例如Candela),可以减少快速中间校准步骤中的载物台误差。以下 ADR-AFM 测量包括在给定缺陷坐标处的大范围调查扫描、缺陷的高分辨率成像和缺陷分类。由于自动化,测量过程中用户不必在场,吞吐量增加了一个数量级。为了保持纳米级的针尖半径,使多次后续扫描依旧保持高分辨率,ADR-AFM 采用非接触式动态成像模式。因此,ADR-AFM 可防止探针针尖磨损并确保对缺陷进行精确地定量复检。图1:用AOI和ADR-AFM测定的缺陷尺寸的直接比较,见左侧表格。右侧显示了所有六种缺陷的相应AFM形貌扫描。突出的缺陷称为Bump,凹陷的缺陷称为Pit。 AOI和ADR-AFM的比较 图1比较了 AOI 和 ADR-AFM 对相同纳米级缺陷的缺陷复检结果。AOI 根据散射光的强度估计缺陷的大小,而 ADR-AFM 通过机械扫描直接缺陷表面进行成像:除了横向尺寸外,ADR-AFM 还测量缺陷的高度或深度,从而可以区分凸出的“bump”和凹陷的“pit”缺陷。 缺陷三维形状的可视化确保了可靠的缺陷分类,这是通过 AOI 无法实现的。当比较利用 AOI 和 ADR-AFM 确定缺陷的大小时,发现通过 AOI估计的值与通过 ADR-AFM 测量的缺陷大小存在很大差异。对于凸出的缺陷,AOI 始终将缺陷大小低估了一半以上。 这种低估对于缺陷 4 尤其明显。在这里,AOI 给出的尺寸为 28 nm ,大约是 ADR-AFM 确定的尺寸为 91 nm 的三分之一。 然而,在测量“pit”缺陷 5 和 6 时,观察到了 AOI 和 ADR-AFM 之间的最大偏差。 AOI将尺寸在微米范围内的缺陷低估了两个数量级以上。 用 AOI 和 ADR-AFM 确定的缺陷大小的比较清楚地表明,仅 AOI不足以进行缺陷的成像和分类。图 2:ADR-AFM 和 ADR-SEM 之间的比较,a) ADR-SEM 之前遗漏的凸出缺陷的 AFM 图像。 ADR-SEM 扫描区域在 AFM 形貌扫描中显示为矩形。 b) 低高度 (0.5 nm) 缺陷的成像,ADR-SEM 无法解析该缺陷。 c) ADR-SEM 测量后晶圆表面上的电子束损伤示例,可见为缺陷周围的矩形区域。 ADR-SEM和ADR-AFM的比较 除了ADR-AFM,还可以使用 ADR-SEM 进行高分辨率缺陷复查。ADR-SEM根据AOI数据中的DOI坐标,通过SEM测量进行自动缺陷复检,在此期间,高能电子束扫描晶圆表面。虽然SEM提供了很高的横向分辨率,但它通常无法提供有关缺陷的定量高度信息。为了比较ADR-SEM和ADR-AFM的性能,首先通过ADR-SEM对晶圆的相同区域进行成像,然后进行ADR-AFM测量(图2)。AFM图像显示,ADR-SEM扫描位置的晶圆表面发生了变化,在图2a中,AFM形貌显示为矩形。由于ADR-AFM中ADR-SEM扫描区域的可见性,图2a说明ADR-SEM遗漏了一个突出的缺陷,该缺陷位于SEM扫描区域正上方。此外,ADR-AFM具有较高的垂直分辨率,其灵敏度足以检测高度低至0.5nm的表面缺陷。由于缺乏垂直分辨率,这些缺陷无法通过ADR-SEM成像(图2b)。此外,图2c通过总结高能电子束对样品表面造成的变化示例,突出了电子束对晶片造成损坏的风险。ADR-SEM扫描区域可以在ADR-AFM图像中识别为缺陷周围的矩形。相比之下,无创成像和高垂直分辨率使ADR-AFM非常适合作为缺陷复检的表征技术。
  • 利用原子力显微镜对半导体制造中的缺陷进行检测与分类
    利用原子力显微镜进行的自动缺陷复检可以以纳米级的分辨率在三维空间中可视化缺陷,因此纳米级成像设备是制造过程的一个重要组成部分,它被视为半导体行业中的理想技术。结合原子力显微镜的三维无创成像,使用自动缺陷复查对缺陷进行检测和分类。伴随光刻工艺的不断进步,使生产更小的半导体器件成为可能。 随着器件尺寸的减小,晶圆衬底上的纳米级缺陷已经对器件的性能产生了限制。 因此对于这些缺陷的检测和分类需要具有纳米级分辨率的表征方法。 由于可见光的衍射极限,传统的自动光学检测(AOI)无法在该范围内达到足够的分辨率,这会损害定量成像和随后的缺陷分类。 另一方面,使用原子力显微镜 (AFM) 的自动缺陷复检 (ADR)技术以 AFM 常用的纳米分辨率能够在三维空间中可视化缺陷。 因此,ADR-AFM 减少了缺陷分类的不确定性,是半导体行业缺陷复检的理想技术。缺陷检查和复检随着半导体器件依靠摩尔定律变得越来越小,感兴趣的缺陷(DOI)的大小也在减小。DOI是可能降低半导体器件性能的缺陷,因此对工艺良率管理非常重要。DOI尺寸的减小对缺陷分析来说是一个挑战:合适的表征方法必须能够在两位数或一位数纳米范围内以高横向和垂直分辨率对缺陷进行无创成像。传统上,半导体行业的缺陷分析包括两个步骤。第一步称为缺陷检测,利用高吞吐量但低分辨率的快速成像方法,如扫描表面检测系统(SSIS)或AOI。这些方法可以提供晶圆表面缺陷位置的坐标图。然而,由于分辨率较低,AOI和SSIS在表征纳米尺寸的DOI时提供的信息不足,因此,在第二步中依赖高分辨率技术进行缺陷复检。对于第二步,高分辨率显微镜方法,如透射或扫描电子显微镜(TEM和SEM)或原子力显微镜(AFM),通过使用缺陷检测的缺陷坐标图,对晶圆表面的较小区域进行成像,以解析DOI。利用AOI或SSIS的坐标图可以最大限度地减少感兴趣的扫描区域,从而缩短缺陷复检的测量时间。众所周知,SEM和TEM的电子束可能会对晶圆造成损伤,所以更佳的技术选择应不能对晶圆产生影响。那么选择采用非接触测量模式的AFM可以无创地扫描表面。不仅有高横向分辨率,AFM还能够以高垂直分辨率对缺陷进行成像。因此,原子力显微镜提供了可靠的缺陷定量所需的三维信息。原子力显微镜通过在悬臂末端使用纳米尺寸的针尖对表面进行机械扫描,AFM在传统成像方法中实现了最高的垂直分辨率。除了接触模式外,AFM还可以在动态测量模式下工作,即悬臂在样品表面上方振荡。在这里,振幅或频率的变化提供了有关样品形貌的信息。这种非接触AFM模式确保了以高横向和垂直分辨率对晶圆表面进行无创成像。由于自动化原子力显微镜的最新发展,原子力显微镜的应用从学术研究扩展到了如硬盘制造和半导体技术等工业领域。该行业开始关注AFM的多功能性及其在三维无创表征纳米结构的能力。因此,AFM正在发展成为用于缺陷分析的下一代在线测量解决方案。使用原子力显微镜自动缺陷复检基于 AFM 的缺陷复检技术的最大挑战之一是将缺陷坐标从 AOI 转移到 AFM。最初,用户在 AOI 和 AFM 之间的附加步骤中在光学显微镜上手动标记缺陷位置,然后在 AFM 中搜索这些位置。然而,这个额外的步骤非常耗时并且显着降低了吞吐量。另一方面,使用 AFM 的自动缺陷复检从 AOI 数据中导入缺陷坐标。缺陷坐标的导入需要准确对准晶圆以及补偿 AOI 和 AFM 之间的载物台误差。具有比 AOI 更高位置精度的光学分析工具(例如Candela),可以减少快速中间校准步骤中的载物台误差。以下 ADR-AFM 测量包括在给定缺陷坐标处的大范围调查扫描、缺陷的高分辨率成像和缺陷分类。由于自动化,测量过程中用户不必在场,吞吐量增加了一个数量级。为了保持纳米级的针尖半径,使多次后续扫描依旧保持高分辨率,ADR-AFM 采用非接触式动态成像模式。因此,ADR-AFM 可防止探针针尖磨损并确保对缺陷进行精确地定量复检。图1:用AOI和ADR-AFM测定的缺陷尺寸的直接比较,见左侧表格。右侧显示了所有六种缺陷的相应AFM形貌扫描。突出的缺陷称为Bump,凹陷的缺陷称为Pit。AOI和ADR-AFM的比较图1比较了 AOI 和 ADR-AFM 对相同纳米级缺陷的缺陷复检结果。AOI 根据散射光的强度估计缺陷的大小,而 ADR-AFM 通过机械扫描直接缺陷表面进行成像:除了横向尺寸外,ADR-AFM 还测量缺陷的高度或深度,从而可以区分凸出的“bump”和凹陷的“pit”缺陷。 缺陷三维形状的可视化确保了可靠的缺陷分类,这是通过 AOI 无法实现的。当比较利用 AOI 和 ADR-AFM 确定缺陷的大小时,发现通过 AOI 估计的值与通过 ADR-AFM 测量的缺陷大小存在很大差异。对于凸出的缺陷,AOI 始终将缺陷大小低估了一半以上。 这种低估对于缺陷 4 尤其明显。在这里,AOI 给出的尺寸为 28 nm ,大约是 ADR-AFM 确定的尺寸为 91 nm 的三分之一。 然而,在测量“pit”缺陷 5 和 6 时,观察到了 AOI 和 ADR-AFM 之间的最大偏差。 AOI将尺寸在微米范围内的缺陷低估了两个数量级以上。 用 AOI 和 ADR-AFM 确定的缺陷大小的比较清楚地表明,仅 AOI不足以进行缺陷的成像和分类。图 2:ADR-AFM 和 ADR-SEM 之间的比较,a) ADR-SEM 之前遗漏的凸出缺陷的 AFM 图像。 ADR-SEM 扫描区域在 AFM 形貌扫描中显示为矩形。 b) 低高度 (0.5 nm) 缺陷的成像,ADR-SEM 无法解析该缺陷。 c) ADR-SEM 测量后晶圆表面上的电子束损伤示例,可见为缺陷周围的矩形区域。ADR-SEM和ADR-AFM的比较除了ADR-AFM,还可以使用 ADR-SEM 进行高分辨率缺陷复查。ADR-SEM根据AOI数据中的DOI坐标,通过SEM测量进行自动缺陷复检,在此期间,高能电子束扫描晶圆表面。虽然SEM提供了很高的横向分辨率,但它通常无法提供有关缺陷的定量高度信息。为了比较ADR-SEM和ADR-AFM的性能,首先通过ADR-SEM对晶圆的相同区域进行成像,然后进行ADR-AFM测量(图2)。AFM图像显示,ADR-SEM扫描位置的晶圆表面发生了变化,在图2a中,AFM形貌显示为矩形。由于ADR-AFM中ADR-SEM扫描区域的可见性,图2a说明ADR-SEM遗漏了一个突出的缺陷,该缺陷位于SEM扫描区域正上方。此外,ADR-AFM具有较高的垂直分辨率,其灵敏度足以检测高度低至0.5nm的表面缺陷。由于缺乏垂直分辨率,这些缺陷无法通过ADR-SEM成像(图2b)。此外,图2c通过总结高能电子束对样品表面造成的变化示例,突出了电子束对晶片造成损坏的风险。ADR-SEM扫描区域可以在ADR-AFM图像中识别为缺陷周围的矩形。相比之下,无创成像和高垂直分辨率使ADR-AFM非常适合作为缺陷复检的表征技术。结论随着现代技术中半导体器件尺寸的不断减小,原子力显微镜作为一种高分辨率、无创的缺陷分析方法在半导体工业中的作用越来越明显。AFM测量的自动化简化并加快了之前AFM在缺陷表征方面低效的工作流程。AFM自动化方面的进展是引入ADR-AFM的基础,在ADR-AFM中,缺陷坐标可以从之前的AOI测量中导入,随后基于AFM的表征不需要用户在场。因此,ADR-AFM可作为缺陷复检的在线方法。特别是对于一位或两位级纳米范围内的缺陷尺寸,ADR-AFM补充了传统的AOI,AFM的高垂直分辨率有助于可靠的三维缺陷分类。非接触式测量模式确保了无创伤表面表征,并防止AFM针尖磨损,从而确保在许多连续测量中能够维持高分辨率。作者:Sang-Joon Cho, Vice President and director of R&D Center, Park Systems Corp.Ilka M. Hermes, Principal Scientist, Park Systems Europe.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制