型有氧燃烧

仪器信息网型有氧燃烧专题为您整合型有氧燃烧相关的最新文章,在型有氧燃烧专题,您不仅可以免费浏览型有氧燃烧的资讯, 同时您还可以浏览型有氧燃烧的相关资料、解决方案,参与社区型有氧燃烧话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

型有氧燃烧相关的耗材

  • 氧弹燃烧装置
    氧弹燃烧装置为有机试样中非金属元素的样品前处理装置,样品在密闭的纯氧系统内燃烧,待测组分从样品基体中释放出来,并被吸收在置于氧瓶中的吸收液中,即可进行IC分析。用于电器塑料制品和电路板中重金属和有害卤素元素的定量分析等。可对卤素、硫以及挥发性金属汞、砷和镉等进行定量分解;可在液态介质中吸收可燃样品;高等级特种不锈钢压力容器。性能参数:型号耐压氧弹气密性充氧重量点火电源SH20MPa3.5MPa2kg0-3V交流安全电压
  • 一氧化二氮-乙炔5 cm单缝燃烧头
    高效的燃烧头系统对原子吸收光谱仪器达到最佳性能而言是必不可少的,同时适当的维护也是获得精准测定结果的必要条件。特点和优势:100%钛燃烧头是珀金埃尔默产品的一个独有特点,可在分析任何类型的样品时提供最强的耐腐蚀性能。燃烧室由可润湿的惰性塑料制成,这可将过量样品正确排出并避免燃烧头受到之前所分析样品的交叉污染。多翼扰流器可去除掉喷雾中的大滴样品并减弱对分析干扰物的敏感性。专为用于水溶性样品和有机样品而设计了垫圈。您可选择将橡胶O形圈用于水溶液或者将Corkprene或KALREZ垫圈用于有机溶液。PinAAcle和AAnalyst系列使用相同的燃烧头。最新设计式样是在边缘处开一个孔,以便于运行期间进行旋转。该器械附带一个手柄。一氧化二氮-乙炔5 cm单缝燃烧头进行一氧化二氮-乙炔操作时需要使用这种5 cm一氧化二氮燃烧头。这种燃烧头也可用于空气-乙炔环境中或通过旋转而使其灵敏度降低。一氧化二氮-乙炔5 cm单缝燃烧头产品描述部件编号一氧化二氮-乙炔5cm单缝燃烧头N0400100
  • 提供全套替换燃烧头和燃烧室
    ? PerkinElmer提供全套替换燃烧头和燃烧室?燃烧头有四种适用的燃烧头可用于燃烧头系统,全部由固体钛制造,可防腐蚀,且不含大多数原子吸收要检测的常见元素。高效的燃烧头系统对于您的AA仪器获得最佳性能非常重要,同时正确的维护对于获得精密、准确的检测结果也是必需的。燃烧头系统组件的特点100%钛燃烧头是PerkinElmer独有的特点。在分析任何类型的样品时,可提供最强的耐腐蚀性能。燃烧室由惰性的可润湿塑料制成,可适当排空过量样品并可防止燃烧头样品的残留。多翼扰流器可消除掉喷雾中的大液滴并降低分析干扰敏感性特制的垫圈用于不同的样品。选择了橡胶O形圈用于水溶液或Corkprene或KALREZ? 垫圈用于有机溶液。燃烧头说明长 度火焰类型用AAnalyst50/100/200/300/400/700/800零件编号用于2280、2380、3030(B)、3100、3110、3300、4000、5000、 5100PC零件编号用于1100(B)、2100、4100零件编号单缝 一氧化二氮——乙炔操作中需要使用5cm一氧化二氮燃烧头。 该燃烧也可配合空气——乙炔使用或旋转提供较低灵敏度。?5cm一氧化二氮——乙炔N040010000400277B0162669单缝 该10cm燃烧头设计用于空气——乙炔焰。由于其拥有较长的燃烧头路径长度,故其可为空气——乙炔元素提供最佳灵敏度。10cm空气——乙炔N040010200400266B0162668三缝 当应用中所需灵敏度较低时,可使用5cm空气——乙炔燃烧头。它在旋转后可提供更低的灵敏度,而且它的缝较宽,可防止堵塞。10cm空气——乙炔N040010300400289 单缝 设计的三缝燃烧头专用于分析高浓度的溶解固体样品。该三缝燃烧头与某些较旧的气体控制系统不相容。5cm空气——乙炔N0400101 燃烧头系统组件说明用于AAnalyst50/100/200/300/400/700/800零件编号用于2280、2380、3030(B)、3100、3110、3300、4000、5000、5100PC零件编号用于1100(B)、2100、4100 零件编号燃烧头O形圈099022190990221909902219燃烧头燃烧室组件005709480057094800570948压圈N040117100572616 扰流器00572561005725610572561标准端盖O形圈0990214709902147B0158690有机物端盖O形圈(Corkprene)0047201400472014B0158598有机物端盖O形圈(KALREZ?)09921044 端盖组件00570984 端盖组件N037039200570984*B0151573燃烧头垫圈套件0047098800470988 排空管道02507987 撞击球0057261500572615B0158616密封塞0057262400572624 O形圈(1/4 in 6mm内径)0990224009902240 O形圈(1/8 in 3mm内径)0990223609902236 燃烧头排空组件(用于50/200/400)N0400058 用于有机溶液的燃烧头排空组件(用于50/200/400)N3150232 燃烧头排空组件(用于700/800)N2011074 用于有机溶液的燃烧头排空组件(用于700/800)N3150230 燃烧头排空组件00470391 燃烧头排空组件(用于3100, 3110, 3300)N0370149 电缆和针组件(用于空气——乙炔) 0040027600400276电缆和针组件(用于一氧化二氮) 0040027500400275压具电缆 0303013003030130燃烧头垫圈套件(用于水溶液) B0155546燃烧头垫圈套件(用于有机溶液) B0173404燃烧头清洁工具030315730303157303031573?

型有氧燃烧相关的仪器

  • 氧指数燃烧性试验机 400-860-5168转5976
    氧指数燃烧性试验机模塑将模具温度调节到有关国际标准规定或有关各方确认的模塑温度的±5℃以内。将称量过的材料(粒料或预成型片)放人经预热的模具中。如果模塑粒料,确认其均匀地铺展在模具表面,熔融后,材料的量要足够充满模腔,溢料式模具允许有约10%的损失,不溢料式模具允许有约3%的损失。用溢料式模具时,铺上软质信(见4.2.3.2),然后将其放入已预热的模压机内,闭合模压机并在接触压力下对加入的材料预热5min,然后施加全压2min(模塑时间见3.4),并随即冷却(见5.3)。为模塑2mm的压塑片,对已均匀键开的物料,标准的预热时间是5min,而较厚的模塑件预热时间应相应调整,注,接触压力是指压机刚好闭合,不致使材料流动的足够低的压力,全压是指足够使材料成型并把多余的材料挤出的压力。5.3冷却5.3.1概述对于某些热塑性塑料,冷却速率影响其最终的物理性能。因此在表1中规定了冷却方法,表1冷却方法平均冷却速率冷却速率冷却方法(第3.5)/(见3.6)/备注(℃/min)(℃/h)10±B15±5C60±30急冷D±0.5缓冷冷却方法应同压塑试片的最终物理性能一起加以说明。一般在材料的有关国际标准中给出合适的冷却方法,如未指定方法,可使用方法B(见5.3.2)。5.3.2 冷却方法应从表1中选择合适的冷却方法。在采用急冷的情况下(见表中方法C),应使用合适的方法,例如使用一对钳子,迅速将模具从热压机移到冷压机上。如果没有给出其他说明,脱模温度≤40℃。用方法C(见4.1)时,需使用两台模压机。推荐使用方法D制备没有任何内应力的模塑片或对预制片进行退火后的缓冷。6模塑试样或试片的检验冷却后检查模塑试样或试片的外观(如缩痕,收缩孔、空色),并检查是否符合规定尺寸。如发现有任何缺陷,应舍弃该试样或试片。使用有关国际标准规定的或由有关利益双方协商同意的方法,确保没有降解或不需要的交联现象,7试验报告试验报告应包括下列内容:a)注明采用本标准。b)试样尺寸及预期用途,氧指数燃烧性试验机1. 采用进口氧传感器,数字显示氧气浓度无需计算,精度更高更准确,范围 0— 100%2. 数字分辨率:±0.1%3. 整机测量精度:0.4 级4. 流量调节范围:0-10L/min(60-600L/h)5. 响应时间:<5S6. 石英玻璃筒:内径≥75 ㎜ 高 480mm7. 燃烧筒内气体流速:40mm±2mm/s8. 压力表精度 2.5 级,分辨率:0.01MPa9. 流量计:1-15L/min(60-900L/H)可调,精度 2.5 级 10. 试验环境:环境温度:室温~40℃;, 相对湿度:≤70%;11. 输入压力:0.2-0.3MPa12. 工作压力:氮气 0.05-0.15Mpa 氧气 0.05-0.15Mpa 氧气/氮气混合气体入口:包括稳压阀,流量调节阀,气体过滤器和混合室。氧指数燃烧性试验机1. 采用进口氧传感器,数字显示氧气浓度无需计算,精度更高更准确,范围 0— 100%2. 数字分辨率:±0.1%3. 整机测量精度:0.4 级4. 流量调节范围:0-10L/min(60-600L/h)5. 响应时间:<5S6. 石英玻璃筒:内径≥75 ㎜ 高 480mm7. 燃烧筒内气体流速:40mm±2mm/s8. 压力表精度 2.5 级,分辨率:0.01MPa9. 流量计:1-15L/min(60-900L/H)可调,精度 2.5 级 10. 试验环境:环境温度:室温~40℃;, 相对湿度:≤70%;11. 输入压力:0.2-0.3MPa12. 工作压力:氮气 0.05-0.15Mpa 氧气 0.05-0.15Mpa 氧气/氮气混合气体入口:包括稳压阀,流量调节阀,气体过滤器和混合室。氧指数燃烧性试验机GB/T 2406的本部分描述了在规定试验条件下,在氧、氮混合气流中,刚好维持试样燃烧所需最低氧浓度的测定方法,其结果定义为氧指数。本部分适用于试样厚度小于10.5mm能直立自撑的条状或片状材料。也适用于表观密度大于100kg/m3的均质固体材料、层压材料或泡沫材料,以及某些表观密度小于100kg/m3的泡沫材料。并提供了能直立支撑的片状材料或薄膜的试验方法。为了比较,本部分还提供了某种材料的氧指数是否高于给定值的测定方法。本方法获得的氧指数值,能够提供材料在某些受控实验室条件下燃烧特性的灵敏度尺度,可用于质量控制。所获得的结果依赖于试样的形状、取向和隔热以及着火条件。对于特殊材料或特殊用途,需规定不同试验条件。不同厚度和不同点火方式获得的结果不可比,也与在其他着火条件下的燃烧行为不相关。本部分获得的结果,不能用于描述或评定某种特定材料或特定形状在实际着火情况下材料所呈现的着火危险性,只能作为评价某种火灾危险性的一个要素,该评价考虑了材料在特定应用时着火危险性评定的所有相关因素之一。注1:这些方法用于受热后呈现高收缩率的材料时不能获得满意结果。例如:高定向薄膜。注2:评价密度小于100kg/m3的泡沫材料火焰传播特性参照GB/T 8332。氧指数燃烧性试验机GB/T 9352—2008 塑料 热塑性塑料材料试样的压塑(ISO 293:2004,IDT)GB/T 2828.1—2003 计数抽样检验程序 第1部分:按接收质量限(AQL)检索的逐批检验抽样计划(ISO 2859-1:1989,IDT)GB/T 11997—2008 塑料 多用途试样(ISO 3167:2002,IDT)GB/T 17037.1—1997 塑料 热塑性塑料材料注塑试样的制备 第1部分:一般原理及多用途试样和长条试样的制备(idt ISO 294-1:1996)GB/T 17037.3—2003 塑料 热塑性塑料材料注塑试样的制备 第3部分:小方试片(ISO 294-3:2002,IDT)GB/T 17037.4—2003 塑料 热塑性塑料材料注塑试样的制备 第4部分:模塑收缩率的测定(ISO 294-4:2001,IDT)ISO 294-2:1996 塑料 热塑性材料注塑试样 第2部分:拉伸条状试样ISO 294-5:2001 塑料 热塑性材料注塑试样 第5部分:用于研究各向异性的标准试样ISO 2818:1994 塑料 用机加工方法制备试样ISO 2859-2:1985 计数抽样检验程序 第2部分:隔批检验极限质量(LQ)的抽样计划塑料热塑性塑料材料试样的压塑
    留言咨询
  • DT-1型建材及制品单体燃烧试验装置 一、概述本试验装置为专用测试仪器,测试建筑材料或制品(不包括铺地材料)在单体燃烧试验中对火的反映,以确定其本体物理性能的试验装置。本试验装置满足国标中对测试条件的要求,规范依据测试规程(方法)。通过试验装置测试后可以确定样品燃烧性能(等级),包含量化(定性)测试参数:样品燃烧热释放率、是否发生火焰横向传播、计算样品总产烟量(产烟性能)、样品燃烧是否有滴落物和颗粒物产生。本试验装置具备多重测试功能,为质检部门及企业提供高优性价比的检测工具 本技术资料不能作为向本公司提出任何要求的依据。 本技术资料的解释权在本公司。 本公司保留在满足客户要求的基础上变更设计的权利(不低于约定参数要求)。二、依据标准GB/T 20284-2006 《建筑材料或制品的单体燃烧试验》三、系统测试项目:序号测试项目1材料(制品)燃烧热释放率2材料(制品)总产烟量3材料(制品)火焰横向传播(速率)4材料(制品)滴落物、颗粒物四、主要技术参数1、系统温度测量范围:0~400℃;测量精度:≤±0.5℃;2、系统压差测量范围:0~100Pa(MAX);测量精度:≤±2Pa;3、排烟流量测量范围:0.25m3/s~0.8 m3/s(MAX);测量精度:≤±1.5%;4、燃气流量控制精度:<647mg±10mg5、氧气分析(顺磁型)范围:16%~21%,响应时间12s,6、二氧化碳(IR型)测量浓度范围:0%~10%,线性度为大于满量程的1%,8、光密度测量:测量范围0%~99.9%;测量精度:不超过滤光片示值的±5%;9、空气相对湿度测量:测量范围:20%~80,精度 :≤±5%;10、燃料 :商用丙烷气体,纯度≥95%(由用户提供);11、电源:AC380V ,6KW;12、设备占地尺寸(燃烧室及排烟管道外形尺寸):6100mm×5500mm×4600mm(长×宽×高);13、燃烧室外形尺寸:3000mm×3000mm×2500mm(长×宽×高);14.可通过局域网 15.具有点火失败报警检测系统(选配)1主(副)燃烧器点火方式全自动电子点火器1安全措施1防爆开关电磁阀安全措施3安全措施2高频响应火焰探测器安全措施4安全措施3高频电子点火器安全措施5安全措施4国产知名品牌燃气胶管安全措施6安全措施5防爆电器隔离箱安全措施7燃烧室占地面积3000×3000×4300(mm)8控制柜电脑桌1200×800×1200(mm)9系统需要试验室面积6000×5500×4600(mm)系统总功率380V、6Kw;设备电缆长度外伸设备2m箱体全钢框架,钢板喷塑或不锈钢蒙板本系统为计算机全自动控制本系统不包含测试用氧气及丙烷钢瓶五、系统构成及功能特点介绍:装置组成简介:DT-1建材及制品单体燃烧试验装置包括:控制系统、燃烧室、试件安装小车、燃烧器、烟道及排烟系统、分析及测量系统、除尘装置组成,如图所示。试验原理:将长、短翼的试验件(建筑材料)成L型固定在小车上,将小车推入燃烧室内,开动风机并通过变频器将排烟管道的体积流量调整到规定范围,点燃远离试件的辅助燃烧器,确定燃烧器本身的热释放量,关闭辅助燃烧器,以相同质量流量的燃气点燃主燃烧器,通过20min试验,计算和评估建筑材料的热释放、产烟量、火焰横向传播和燃烧滴落物及颗粒物。装置系统图: 装置各组成部件及特点简介:1.燃烧室:纵横金鼎仪器公司生产的设备燃烧室有两种结构,用户可自由选择。一种是砖混结构,另一种是钢板框架结构。砖混结构燃烧室的优点是安全,结实耐用,保温效果好,外观上整洁美观,缺点是制作麻烦,拆装不便;钢板框架结构的燃烧室优点是拆装简单,缺点是不够结实耐用,长期进行燃烧试验会有受热变形,密封不严,墙壁钢板因受高温会有氧化变色,使用寿命短等缺点。如果用户不考虑试验室搬迁,我公司建议用户选用砖混结构燃烧室。2.烟道及排烟系统:该部分由集气罩,排风管道,测量管道,排风机等组成,测量管道为双层中间具有保温功能的设计结构,严格符合标准要求,保证数据测量、采集的准确性。排烟管道的数据测量采集管段,安装有用以测量温度、光衰减、O2和CO2浓度、压差的传感器,设备采集的数据进行计算和评估,采用3.5KW的离心式引风机,完全能保证试验所需的风速风量要求。 3.燃烧系统:燃烧气体为高纯商用丙烷气体,质量流量控制器精确控制丙烷气体送气量,采用电磁阀控制可燃气体的输送,采用高频电子点火器及点火针自动点火,选配火焰探测器探测点火结果。除此以外,设备还设计配备了足够的安全措施。首先,整个可燃烧气体的输送、控制元器件单独配置在一个独立的防爆箱内,单独隔离放置4.分析及测量系统1)氧气及二氧化碳分析仪:该分析仪是该装置的关键测量元件,精度也能够满足标准的要求,而且分析仪是直接镶嵌放置于控制柜上,测量数据直接显示在液晶屏上,非常直观,便于操作,仪器后面板配有专用标定入口,非常便于用户后期标定校准。2)管道压力的测量采用压力变送器测量,管道气体温度采用热电偶测量,采用一体式温湿度变送器测量燃烧室的温湿度指标。3)烟密度分析仪:该分析仪由发光单元及受光单元组成,根据发出的光波被 管道内烟气遮挡的多少来分析管道内烟密度的大小。分析仪配有自校准程序,可随时进行校准,近一步地保证测量精度 。5.控制系统:由控制柜及微机系统构成,整个装置采用计算机自动控制,控制软件界面图如下: 六、装置的安装尺寸如果除尘装置放在室内,则室内尺寸长*宽*高≥7500*7500mm*4500mm;若除尘装置放置在室外,则室内尺寸长*宽*高≥6000*4500mm*4500mm.
    留言咨询
  • 产品特点 ◆适用标准:JIS-K6269、K7201、ASTM-D2863、ISO-4589-2 ◆根据塑料,橡胶的氧指数对其进行燃烧性评价的氧指数方式燃烧性试验机。测定在燃烧柱内被垂直支撑的小试验片在可以维持有焰燃烧所需氧气与氮气的混合气体的最小氧气浓度(氧气指数) 技术特点 燃烧圆柱 内径&phi 75+3mm、高度450± 5mm 内径&phi 95mm、高度450mm 流量计 氧气用,氮气用 氧气用,氮气用,数字显示 压力计 氧气用,氮气用,泄漏点检用 燃烧器 火焰长度6~25mm可调节 试片 塑料,橡胶,纤维等 附件 U字形保持治具,玻璃颗粒 U字形保持治具 电源 - AC100V、单相、3A、50/60Hz 热源 丙烷气 或 管道煤气 尺寸 约W600× D290× H660mm 重量 约30kg
    留言咨询

型有氧燃烧相关的方案

  • 湍流甲烷OXY型有氧燃烧的动力学,稳定性和比例效应
    采用LaVision的DaVis软件平台构成粒子成像测速系统,对湍流甲烷OXY型有氧燃烧的动力学,稳定性和比例效应进行了实验研究和理论分析。
  • 燃烧效率分析仪在陶瓷行业的应用
    燃料燃烧时,根据燃料燃烧化学反应方程式计算出来的单位燃料完全燃烧时所需要的空气量叫理论空气量。在实际燃烧过程中为保证燃料的完全燃烧,实际供给的空气量往往要大于理论空气量,称为实际空气量。实际空气量与理论空气量的比值称为空气过剩系数α 。燃烧时根据操作、控制α 的大小不同,火焰的气氛也不同,也就有氧化焰、还原焰和中性焰之分。〈1〉氧化焰,空气过剩系数α >1,燃烧产物中有过剩的氧而不含可燃成分(如CO等)。〈2〉还原焰,空气过剩系数α <1,燃烧产物中含有可燃成分(如CO等)未燃完。〈3〉中性焰空气过剩系数α =1,燃烧产物中没有过剩的氧,也没有过剩的可然性成分。理论上中性焰的温度最高,但这往往难以控制。现时陶瓷窑炉基本上是采用油或气作为燃料。气体燃料燃烧时的空气过剩系数α 值为1.05~1.15,而液体燃料燃烧时的空气过剩系数α 值为1.15~1.25。 实际窑炉炉膛内尤其是辊道窑、隧道窑等连续性窑炉炉膛内,不仅存在燃烧产物,还存在因压力制度而导致的外界空气的侵入和急冷、各种气幕等打入的空气量。所以,炉膛内烟气的气氛指炉膛内有否及有多少CO、O2等。窑炉不同区域,单独侵入的空气量不同(尤其在密封性能不好,即辊棒与多孔砖之间、窑顶马弗板处石棉未塞好时),气氛也就不同。而陶瓷制品不是靠哪一个烧嘴烧成的,所以,考察炉膛内气氛是根本。
  • 塑料燃烧性能试验方法氧指数法
    将试样垂直固定在燃烧简中,使氧、氮混合气流由下向上流过,点燃试样顶端,同时记时和观察试样燃烧长度,与所规定的判据相比较。在不同的氧浓度中试验一组试样,测定塑料刚好维持平稳燃烧时的最低氧浓度,用混合气中氧含量的体百分数表示。

型有氧燃烧相关的论坛

  • 【求助】请教氧瓶燃烧,硫元素测定的问题。

    我最近要做一个化合物中硫元素的测定。我想用氧瓶燃烧,然后用氯化钡滴定。该化合物中硫元素的含量约15%我想用500ml的氧瓶,用12cm^2(约0.1g)的滤纸,吸取0.05g的样品。然后在氧瓶之中燃烧。最后参照硫酸根的检测方法测定硫酸根。请问这种氧瓶燃烧的方法可以吗?如何根据取样量选择氧瓶的容积,最后既能保证样品充分燃烧又能保证操作安全不爆炸呢?还有样品如果易吸水而且具有一定的渗透性怎么办呢?我做预试验就发现样品能从滤纸扩散到托盘上。还有做定量分析元素要选择哪种滤纸呢?急盼赐教!!!

  • 【资料】燃烧与灭火的十一个认识误区!

    误区一:燃烧必须有氧气参加    分析:我们学过的化学反应中,绝大部分燃烧都是可燃物与氧气在点燃或加热的条件下发生的,如木炭、硫、磷、铁、镁的燃烧。但有些燃烧就不一定是物质与氧气的反应,如金属镁可以在氮气和二氧化碳中燃烧,这些化学反应都具有发光、发热的现象。因此燃烧不一定都有氧气参加。    误区二:燃烧不能在水中发生,因为水可以灭火    分析:只要满足燃烧的三个条件,在水中仍然可以发生燃烧现象。如往80℃的热水中加入一小块白磷,然后往白磷附近通入氧气,就会发现白磷在水中燃烧,因为此时白磷燃烧的三个条件均已满足。    误区三:燃烧时必须有火焰产生    分析:有许多燃烧发生时,可燃物以固态形式直接与氧气反应,这种燃烧只发光、放热,或出现火星四射的现象,如碳在氧气中燃烧发出白光,铁在氧气中燃烧产生火星四射的现象。因此燃烧不一定产生火焰。    误区四:燃烧不一定发光、发热    分析:通常所说的燃烧是可燃物跟氧气发生的剧烈的发光、发热的氧化反应,所以燃烧必须发光、发热。    误区五:有发光、发热现象的,一定是燃烧    分析:不一定。燃烧属于化学变化,许多物理变化也有发光、发热的现象,如电灯通电后发光、发热,电炉通电后也有发光、发热的现象,但都不是燃烧。    误区六:爆炸一定属于化学变化    分析:不一定。如自行车轮胎爆炸、高压锅爆炸都属于物理变化。一般由燃烧引起的爆炸一定属于化学变化。 误区七:可燃物的燃烧与爆炸是两个化学反应    分析:可燃物的燃烧与爆炸是同一个化学反应,两种不同的反应现象。

型有氧燃烧相关的资料

型有氧燃烧相关的资讯

  • 用户之声|CIC燃烧离子色谱-OLED材料卤素分析利器
    关注我们,更多干货和惊喜好礼陈洁 郑洪国 荆淼随着我国新冠疫情逐渐得到控制,各行各业复工复产进程不断加快。多家智能手机企业相继推出新款机型,折叠手机更是其中的重头戏。知名手机厂商近年来推出的折叠手机一经推出,随即售罄,市场火爆程度可见一斑。OLED作为折叠手机最重要的元器件,也得到前所未有的关注和重视。OLED面板具有可折叠、可弯曲的特性,可以彻底改变当前智能手机、甚至平板和笔记本电脑的既有形态。OLED是什么?OLED全称为有机发光二极管,是一种全新的平面显示技术,能够实现自发光。OLED材料作为OLED显示技术的核心,因高性能、低能耗、响应快速、超薄、柔性显示等优点,正从液晶显示器(LCD)手中夺取越来越多的市场份额。OLED有机材料OLED材料包括传输层材料,注入层材料及有机发光材料。与液晶显示组件相比,由于终端材料层替代了液晶面板中的滤光片、背光模组和液晶材料,使得OLED有机材料在整个OLED屏幕中占据了举足轻重的地位。发光材料是 OLED 器件中最重要的材料,一般发光材料应该具备较高的发光效率和良好的电子空穴传输性能。按化合物的分子结构,有机发光材料一般分为两大类: 高分子聚合物和小分子有机化合物。图 OLED基本结构(点击查看大图)OLED有机材料卤素限量要求光的亮度或强度取决于有机发光材料的性能。有机发光材料中卤素,会严重影响制成器件的寿命。业内一般规定有机光电材料卤素限值F、Cl为2 mg/Kg,Br、I为1 mg/Kg。OLED有机材料卤素测试难点有机发光材料为复杂有机基质,且纯度通常都比较高,所含的卤素杂质含量低,样品量小。因此,复杂样品基体消除、痕量卤素的释放和较低的检测灵敏度需求,均对分析方案带来极大的挑战。标准中OLED有机材料卤素检测方法简单、快速、准确的卤素测试方法一直吸引着大家的关注。卤素的测定,主要有氧瓶/氧弹燃烧离子色谱法,CIC在线燃烧离子色谱法,ICP-OES及ICP-MS等方法,不同测试方法各有其特色。材料中卤素释放及含量检测—不同方法对比• 无需前处理a:氧弹燃烧需要的手动制样燃烧,ICP-OES及ICP-MS需要微波消解等其他前处理方法。• 无人为操作误差b:样品转移过程存在人为误差。• 测定所有卤素c:ICP-OES无法测定F元素;ICP-MS F的第一电离能高于Ar,Cl在Ar等离子体中难电离。• 样品卤素检出浓度d:氧瓶/氧弹燃烧-离子色谱样品检出浓度>10mg/Kg(参考文献7);ICP-OES样品检出浓度Cl>50mg/Kg,Br>30mg/Kg(参考文献6);ICP-MS样品检出浓度>10mg/Kg。CIC燃烧离子色谱法具有简单易行,灵敏度高的优势,已经成为电子电器行业卤素检测的权威方法。韩国标准《KS M0180》,日本标准《JEITA ET-7304》,国际标准《IEC 62321 Part 3-2》及我国出入境标准《SN/T 3019.2-2013》均推荐CIC在线燃烧离子色谱法。赛默飞OLED有机材料卤素检测方案图 典型样品分离谱图(点击查看大图)
  • 水质总有机碳的测定燃烧氧化 非分散红外吸收法TOC分析仪
    XY-2201E总有机碳TOC分析仪  水质总有机碳的测定燃烧氧化 非分散红外吸收法TOC分析仪  水质总有机碳的测定燃烧氧化-非分散红外吸收法(TOC分析仪)是一种常用的水质检测方法,用于测量水中的总有机碳。这种方法通过燃烧样品,将有机碳转化为二氧化碳,然后使用红外光谱仪测量其浓度。  具体步骤包括:  1. 样品处理:将水样进行适当的前处理,如去除悬浮物和金属氧化物等,以避免干扰。  2. 燃烧氧化:将处理过的水样在高温下进行燃烧,使有机物氧化为二氧化碳,以便测量其浓度。  3. 非分散红外吸收法:使用红外光谱仪测量生成二氧化碳的浓度,从而推算出总有机碳(TOC)的含量。  这种方法的优点是测量范围广、灵敏度高、选择性好,可以用于测量不同类型和浓度的水样。同时,TOC分析仪是一种连续测量的仪器,可以实时监测水样的TOC浓度,有助于及时了解水质状况。  一、产品介绍:  XY-2201E总有机碳TOC分析仪采用了高温催化燃烧氧化法,将试样连同净化气体(高纯氧)分别导入高温燃烧管和低温反应管中,经高温燃烧管的试样被高温催化氧化,其中的有机碳和无机碳均转化为二氧化碳,经低温反应管的试样被酸化后,其中的无机碳分解成二氧化碳,两种反应管中生产的二氧化碳经载气输送依次被导入非分散红外气体检测器NDIR中, CO?被检测。从而分别测得水中的总碳(TC)和无机碳(IC)。总碳与无机碳之差值,即为总有机碳(TOC)。即:TOC=TC-IC  二、产品特点:  1.高温催化氧化,对于难消解的有机碳,也能高效率的氧化,使得产品易于分析高浓度的TOC样品;  2.快速分析(1~4min);  3.更高的安全性,燃烧炉加热采用多重保护,独立于温度控制系统的过热保护电路,过热能自动切断加热,确保产品安全;  4.实时流量监视,保持流路稳定,保证数据的可靠性;  5.管路多方位清洗和吹扫,可以根据需求,按操作要求清洗内部回路,大大减少了故障发生率及仪器维护时间;  6.仪器自动排废,自动排酸和进酸,进酸量控制稳定;  7.较少的样品和试剂消耗,每次测量需消耗高纯水0.5μL,酸试剂2ml(IC测试时),高纯氧气约2000ml(标况下,流速100ml/min,通气时间20min.);  8.NDIR检测器的CO?检测有良好的线性和高准确性。CO?信号转化成为一个峰曲线,然后再由内置的数据处理器计算出TOC数值(TC与IC之差);  9.催化燃烧氧化法氧化能力强,几乎可以氧化所有的有机物且性能稳定。680℃燃烧法几乎是在所有盐份的融点以下,这样可以延长催化剂和燃烧管的寿命,这一点尤其是在测定对象是含盐份的水样时很重要;  10.仪器使用高分辨率7寸触摸宽屏,采用智能系统,全中文界面,使得界面友好,操作简便。  三、技术参数:  1.测定范围:0~1000mg/L(非稀释状态),稀释状态可达到0~30000mg/L  2.重 复 性:≤ 3%  3.示值误差:TC:±0.1%F.S或±5%(取较大者)  IC:±0.1%F.S或±4%(取较大者)  4.线 性:R2≥99.9%  5.检出下限:0.5mg/L  6.分析时间:2~4min  7.注 射 量:10μL~500μL  8.外部存储:U盘  四、使用范围:  地表水、地下水、生活污水、工业废水中总有机碳(TOC)的测定,应用于环境监测、城市给排水、疾病控制、化工电力等行业。
  • 燃烧吧,卡路里!经典膨化食品热量的科学测试——自动氧弹量热仪 ATC300A
    摘要本文利用ATC 300A自动氧弹量热仪测试了四种膨化类食品(薯片、仙贝、小馒头、干脆面)的燃烧热值,测试结果与其包装上营养成分表的能量值差值在0.16~0.53 kcal/g之间,RSD(相对标准偏差)均在0.2%以内。图1测试样品展示前言卡路里(calorie)作为一种热量单位被广泛应用于营养计量和健身指导中,它和食品包装上营养成分表里单位为焦耳(joule)的能量值一样,都反映了食品氧化过程中所释放的热量,我们可以根据 1 cal= 4.1868 J对其进行换算。那么食物能提供给我们的热量与其完全燃烧后所释放的热量有什么区别?食物在人体内的消化吸收过程是非常复杂的,对于一些食物组分例如蛋白质中的氮元素等,人体无法消化吸收,在代谢产物(尿素、尿酸、肌酐等)中仍存在一定能量。但尽管人体氧化的方式与氧弹量热仪有所不同,食物完全氧化所释放出的总热量却是相同的。为了得到食物的生理热值,我们可以在氧弹量热仪燃烧测试的基础上进行一些代谢校正。例如,不考虑人体基础代谢等复杂因素,分别测量食物的燃烧热值以及排泄物热值,就可以确定某种食物的有效热值。食品营养成分表中的能量值就是三大营养素的能量系数(脂肪37 kJ/g、碳水化合物17 kJ/g,蛋白质代谢校正后17 kJ/g)与其含量的乘积之和。本文利用ATC 300A自动氧弹量热仪测得四种膨化类食品的燃烧热值并与营养成分表中的能量值进行了对比,同时计算了不考虑蛋白质代谢校正(能量系数为22 kJ/g)时的能量值;可以发现代谢校正所带来的总体偏差不大,但不同食品样品的燃烧热值偏差不同。除了蛋白质含量的因素,可能还因为相同营养素有着不同来源;像牛肉、牛奶中脂肪的燃烧热值实际是不同的,但营养素归类下却有着相同的能量系数。图2 自动氧弹量热仪 ATC 300A实验方法1. 实验条件&bull 测试仪器:之量科技 ATC 300A自动氧弹量热仪&bull 测试方法:GB/T 213-2008&bull 环境温度:24.4~ 26.3 oC&bull 实验样品:薯片、仙贝、小馒头、干脆面2. 测试过程&bull 打开ATC 300A自动氧弹量热仪;&bull Step1:在样品池中称取一定质量样品,用棉线连接点火丝与样品并固定;&bull Step2:安装氧弹,并设置实验参数,填写样品质量等;&bull Step3:开始实验,在测试环境准备好后,仪器自动进行测试;&bull Step4:实验结束,取下氧弹并进行清理;&bull Step5:重复三组测试,记录实验数据。实验结果在实验开始前,我们对每种样品分别进行了碾碎与压片处理以保证测试样品的均匀性与一致性,如图3所示。在压片过程中需控制压片力度,如薯片含油量较高,力度过大会导致油分析出影响测试结果。图3样品预处理(a)碾碎后样品(b)小馒头压片展示(c)压片后样品(d)装样薯片、小馒头、仙贝和干脆面每种样品进行3次重复测试,燃烧热测试结果汇总见表1。测试结果重复性较好,RSD均在0.2%以内。表1 燃烧热测试结果汇总燃烧热J / g薯片小馒头仙贝干脆面123935.0 16548.921535.522750.7223925.716558.121505.322766.8323995.116544.921505.222771.6平均值23951.9 16550.6 21515.3 22763.0 包装能量值22666.715870.0 20620.0 20550.0 无代谢校正能量值22967.6 16017.3 20860.7 21018.1 RSD(%)0.1570.0410.0810.078燃烧热平均值与包装上营养成分表(如图4所示,蛋白质能量系数17 kJ/g)里的能量值相比,差值在680.6~2213.0 J/g之间,不考虑蛋白质代谢校正(能量系数22 kJ/g)的差值在533.3~1745.0 J/g之间。图4(a)薯片(b)小馒头(c)仙贝(d)干脆面样品包装上的营养成分表由于本次选择的样品为膨化类食品,成分以脂肪和碳水化合物为主,蛋白质含量较低,代谢校正对测试结果的影响相对较小,更多考虑为营养素能量参数对不同来源的相同营养素存在一定偏差导致的。根据上述测试结果,燃烧热值一定程度上可以代表我们能够从食物中获取的“卡路里”。除了人体代谢外,不同来源的相同营养素用同样的能量参数去计算也会带来一定误差;以本文测试的膨化类食品为例,不考虑蛋白质代谢修正的燃烧热值与包装能量值差值为12.7~41.7 kcal(大卡)/100g,对“卡路里”摄入严格的人群可能需要考虑该影响。结论本文利用ATC 300A自动氧弹量热仪测试了四种膨化类食品的燃烧热值,测试结果与其包装上营养成分表的能量值较为接近,其差值可能包含了营养学上对于不同营养素的燃烧热值基于人体代谢的修正,以及不同来源的相同营养素能量参数的差异。 仪器推荐自动氧弹量热仪 ATC 300A符合GB 384、GB/T 213、ASTM 4809、ASTM D240等标准,测试时间<10min(快速法),热容量波动≤0.20%,功能高度自动化,能快速准确地测试各种可燃物的燃烧热值。欢迎联系我们,了解更多技术亮点、参数规格及应用案例。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制