[1] Skog J, Würdinger T, Van Rijn S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers[J]. Nature Cell Biology, 2008, 10(12):1470-1476.
[2] Al-Nedawi K, Meehan B, Kerbel R S, et al. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR[J]. Proceedings of the National Academy of Sciences, 2009, 106(10):3794-3799.
[3] Bretz N P, Ridinger J, Rupp A K, et al. Body fluid exosomes promote secretion of inflammatory cytokines in monocytic cells via Toll-like receptor signaling[J]. The Journal of biological chemistry, 2013, 288(51):36691.
[4] Chalmin F, Ladoire S, Grégoire M, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells[J]. Journal of Clinical Investigation, 2010, 120(2):457-471.
[5] Gross J C, Chaudhary V, Bartscherer K, et al. Active Wnt proteins are secreted on exosomes[J]. Nature Cell Biology, 2012, 14(10):1036-1045.
[6] Yang C, Kim S H, Bianco N R, et al. Tumor-Derived Exosomes Confer Antigen-Specific Immunosuppression in a Murine Delayed-Type Hypersensitivity Model[J]. PLoS ONE, 2011, 6(8):1-11.
[7] Hoffmann T K, Dworacki G, Tsukihiro T, et al. Spontaneous Apoptosis of Circulating T Lymphocytes in Patients with Head and Neck Cancer and Its Clinical Importance[J]. Clinical Cancer Research, 2002, 8(8):2553-2562.
[8] Zhang H G, Grizzle W E. Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions[J]. The American Journal of Pathology, 2014, 184( 1):28-41.
[9] Hood J L, San R S, Wickline S A. Exosomes Released by Melanoma Cells Prepare Sentinel Lymph Nodes for Tumor Metastasis[J]. Cancer Research, 2011, 71(11):3792-3801.
[10] Peinado H, Aleckovic M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET[J]. Nature Medicine, 2012, 18(6):883.
[11] Yu S, Liu C, Su K, et al. Tumor Exosomes Inhibit Differentiation of Bone Marrow Dendritic Cells[J]. Journal of Immunology, 2007, 178(11):6867-6875.
[12] Altevogt P, Bretz N P, Ridinger J, et al. Novel insights into exosome-induced, tumor-associated inflammation and immunomodulation[J]. Seminars in Cancer Biology, 2014, 28:51-57.
[13] Schuler P J, Saze Z, Hong C S, et al. Human CD4+CD39+ regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+ exosomes or CD73+ cells[J]. Clinical & Experimental Immunology, 2014, 177(2):531-543.
[14] Muller-Haegele S, Muller L, Whiteside T L. Immunoregulatory activity of adenosine and its role in human cancer progression[J]. Expert Review of Clinical Immunology, 2014, 10(7):897.
[15] Safaei R, Larson B J, Cheng T C, et al. Abnormal lysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovarian carcinoma cells[J]. Molecular Cancer Therapeutics, 2005, 4(10):1595-1604.
[16] Mrizak D, Martin N, Barjon C, et al. Effect of nasopharyngeal carcinoma-derived exosomes on human regulatory T cells[J]. Journal of the National Cancer Institute, 2015, 107(12):363.
[17] Ciravolo V, Huber V, Ghedini G C, et al. Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy[J]. Journal of Cellular Physiology, 2012, 227(2):658-667.
[18] Amorim M, Fernandes G, Oliveira P, et al. The overexpression of a single oncogene (ERBB2/HER2) alters the proteomic landscape of extracellular vesicles.[J]. Proteomics, 2014, 14(12):1472-1479.
[19] Claire C, Sweta R, O’Brien Keith, et al. Docetaxel-Resistance in Prostate Cancer: Evaluating Associated Phenotypic Changes and Potential for Resistance Transfer via Exosomes[J]. Plos One, 2012, 7(12):e50999-.
[20] Federici C, Petrucci F, Caimi S, et al. Exosome Release and Low pH Belong to a Framework of Resistance of Human Melanoma Cells to Cisplatin[J]. Plos One, 2014, 9(2):e88193.
[21] Szczepanski M J, Szajnik M, Welsh A, et al. Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membraneassociated transforming growth factor-beta1[J]. Haematologica, 2011, 96(9):1302-1309.
[22] Whiteside T L. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes)[J]. Biochemical Society Transactions, 2013, 41(1):245-251.
[23] Curtale G, Citarella F, Carissimi C, et al. An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activationinduced cell death in T lymphocytes[J]. Blood, 2010, 115(2):265-273.
[24] Dinarello C A. Interleukin-1 and interleukin-1 antagonism.[J]. Blood, 1991, 77(8):1627.
[25] Schuler P J, Schilling B, Harasymczuk M, et al. Phenotypic and functional characteristics of CD4+ CD39+ FOXP3+ and CD4+ CD39+ FOXP3neg T-cell subsets in cancer patients[J]. European Journal of Immunology, 2012, 42(7):1876-1885.
[26] Kim J W, Wieckowski E, Taylor D D, et al. Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes[J]. Clinical Cancer Research, 2005, 11(3):1010-1020.
[27] Czystowska M, Han J, Szczepanski M J, et al. IRX-2, a novel immunotherapeutic, protects human T cells from tumor-induced cell death[J]. Cell Death & Differentiation, 2009, 16(5):708-718.
[28] Czystowska M, Szczepanski M J, Szajnik M, et al. Mechanisms of T-cell protection from death by IRX-2: a new immunotherapeutic[J]. Cancer Immunology Immunotherapy, 2011, 60(4):495-506.
[29] Li W, Kong L B, Li J T, et al. MiR-568 inhibits the activation and function of CD4(+) T cells and Treg cells by targeting NFAT5[J]. International Immunology, 2014, 26(5):269–281.
[30] Gracias D T, Katsikis P D. MicroRNAs: key components of immune regulation[J]. Advances in experimental medicine and biology, 2011, 780:15-26.
[31] Baxevanis C N, Anastasopoulou E A, Voutsas I F, et al. Immune biomarkers: how well do they serve prognosis in human cancers?[J]. Expert review of molecular diagnostics, 2015, 15(1):49–59.
[32] Chowdhury F, Williams A, Johnson P. Validation and comparison of two multiplex technologies, Luminex and Mesoscale Discovery, for human cytokine profiling[J]. Journal of Immunological Methods, 2009, 340(1):55-64.
[33] Dai R, Ahmed S A. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases[J]. Translational Research, 2011, 157(4):163-179.