仪器信息网APP
选仪器、听讲座、看资讯
立即体验
APP内打开
回版面
评论
收藏
点赞
拍砖
举报
取消
发布
当前位置:
仪器社区
>
实验室建设/管理
>
实验室建设
>
帖子详情
【金秋计划】原子吸收分光光度计仪器性能要求与最佳条件设置
Ins_f12036f2
2024/09/11
私聊
实验室建设
第一节 仪器结构与性能要求
一、仪器结构与类型
原子吸收
分光光度计由光源、原子化、分光和检测读出系统组成。光源系统提供待测元素的特征辐射光谱;原子化系统将样品中的待测元素转化成为自由原子;分光系统将待测元素的共振线分出;检测读出系统将光信号转换成电信号进而读出吸光度值。
目前使用最普遍的仪器是单道单光束和单道双光束
原子吸收
分光光度计。
二、光源系统
基于峰值吸收测定原理,必须提供锐线光源。目前普遍使用的是空心阴极灯。无极放电灯和高强度空心阴极灯的应用,明显地改善了许多元素的分析性能。
空心阴极灯是一种辐射强度大和稳定度高的锐线光源,其放电机理是一种特殊的低压辉光放电。
三、原子化系统
原子化系统直接影响分析灵敏度和结果的重现性。原子化系统主要分为火焰原子化和石墨炉原子化两种,我们主要讲述火焰原子化。
火焰原子化系统,一般包括雾化器、雾化室和燃烧器三部分,该系统的任务是产生大量的基态自由原子,并能保持原子化期间基态原子浓度恒定。
1、雾化器
雾化器是火焰原子化系统的核心部件,
原子吸收
分析灵敏度和精密度在很大程度上取决于雾化器的工作状态,现在普遍使用同心气动雾化器。雾化器的喷嘴形状和毛细管喷口与节流嘴端面的相对位置及同心度是影响雾化效果的主要因素。从使用者考虑,该相对位置和同心度可通过实验仔细调整。
雾化器的作用是吸喷雾化。高质量的雾化器应满足下面要求:
(1)雾化效率高
(2)雾滴细
(3)喷雾稳定
2.雾化室
雾化室的作用,一是细化雾滴,二是使空气和乙炔充分混合,三是脱溶剂,四是缓冲和稳定雾滴输送。因此,一个合乎要求的雾化室,应当具有细化雾滴作用大,输送雾滴平稳,记忆效应小,噪声低等性能。
为了细化雾滴,目前商品仪器通常采用设置碰撞球和扰流器的办法。目前国产雾化器均采用前种方法。毛细管喷出的雾滴撞击碰撞球,直径较大的雾滴被进一步破碎,同时减缓气流速度,而有利于雾滴细化,对于分析工作者来说,应仔细调节碰撞球与雾化器喷嘴之间的相对位置,才能得到最佳的雾化效果。一般而言,碰撞球靠近喷口细化雾滴效果显著,灵敏度较高,但噪声显著上升,对检出产生显著不利影响。碰撞球远离喷口,细化雾滴效果较差,但雾滴输送平稳,噪声较小,最佳位置应通过实验来确定。
4、燃烧器
雾滴由雾化室进入燃烧器,在火焰中经历脱溶剂、熔融、蒸发、解离和还原等过程,产生大量的基态自由原子。燃烧器应具有高的脱溶剂效率,挥发效率和解离还原效率,并且噪声小,火焰稳定和燃烧安全。
目前商品
原子吸收
分光光度计普遍采用预混合燃烧器。预混合式火焰分预热区,第一反应区,中间薄层区和第二反应区等四个区域。各个区域的温度和还原性气氛不同,因此,各个区域的原子浓度和干扰成分的浓度也不同,一般来说,中间薄层区是主要的原子化区。
根据燃助比,火焰可分为贫燃焰,化学计量焰和富燃焰三大类。火焰中发生着复杂的化学反应(解离、还原、化合、电离),分析工作者的任务就在于如何创造条件使火焰中的各种化学平衡向有利于生成非化合、非缔合、非电离、非激发的基态自由原子转化,以提高原子化效率。
四、分光系统
目前商品
原子吸收
分光光度计普遍采用光栅单色器。
单色器由入射狭缝、准直光镜、光栅、成象物镜和出口狭缝组成。光栅单色器的特性可用色散率;分辨率和闪耀波长来表达。
五、检测读数系统
检测读数系统的主要部件是光电倍增管。光电倍增管的工作原理在这里就不详述了,但光电倍增管的疲劳现象应引起分析工作者的注意。光电倍增管刚开始时灵敏度低,过一段时间之后趋向稳定,长时间使用后则又下降。疲劳的程度随照射光强度和外加电压而加重。因此设法阻挡非信号光进入检测器,同时尽可能不要使用过高的负高压,以保持光电倍增管的良好工作特性。
第二节 火焰
原子吸收
分析最佳条件选择
一、吸收线的选择
在
原子吸收
分析中,为获得稳定的灵敏度,稳定度和稳定的线形范围及无干扰测定,须选择合适的吸收线。选择合适吸收线应根据分析目的,待测元素浓度,试样性质组成,干扰情况,仪器波长范围以及光电倍增管光谱特性等加以综合考虑和具体分析。
1.灵敏度
原子吸收
分析通常用于微量元素分析。因此,一般选择最灵敏的共振吸收线。而测定高含量元素时,可选用次灵敏线。附录列出了各元素的主要吸收线的灵敏度,供选择时参考。
2.稳定度
选用不同的吸收线,测定的稳定度会有差别。在灵敏度能满足要求的情况下,应从稳定度来考虑吸收线的选择。
3.干扰度
选择吸收线,应当避免可能的干扰。当分析线附近有其它非吸收线存在时,将使灵敏度降低和工作曲线弯曲。例如,Ni232.0nm吸收线附近有几条非吸收线和吸收很弱的谱线(如231.98nm、232.14nm、231.6nm),即使使用很窄的光谱通带,也难于将它们完全分辨开,因此有时宁愿牺牲一些灵敏度而选用吸收系数稍低的Ni341.48nm非吸收谱线用于实际测定。在某些情况下,还应该考虑到吸收线重叠干扰问题。吸收线的选择,还会受到背景吸收的限制。例如,测定Pb时,在Pb 217.0nm波长处,背景吸收最大,测定精度较差,目前一般选用次灵敏线Pb283.3nm作吸收线。
4.直线性
在实际分析中,总是希望获得直线性较好的工作曲线,线性范围宽,能适用于较大的分析区间,且测定精密度较好。选用不同的吸收线,工作曲线的线性和测定精度会有差异。
5.光敏性
大多数
原子吸收
分光光度计的波长范围是190—900nm,并且一般都有一只光电倍增管,它对紫外和可见光光敏性强,具有较高的光谱灵敏度。因此对于那些共振吸收线在真空紫外区或红外区的元素,通常选用次灵敏线作吸收线。例如:测定钾,不用红外区的K766.5nm,而用K404.4nm;测定Hg,不用Hg184.9 nm而采用Hg 253.7nm 。
最合适的吸收线的选择,应视具体情况通过实验来决定。
实验选择方法是:参考波长表,实地扫描元素的发射光谱,了解有哪几条可供选择的谱线,吸喷适当浓度的标准溶液,观测吸收值大小,稳定度和工作曲线线性范围,根据分析要求和样品性质组成;待测元素浓度及干扰情况加以抉择。
二、灯电流的选择
原子吸收
分析要求光源能发射强而锐的共振线,空心阴极灯的发射特性依赖于灯电流,为得到较高的灵敏度和稳定度,就要选择合适的灯电流。
从灵敏度角度考虑,灯电流宜选用小些。灯电流小,谱线的多普勒变宽和自吸效应减少,元素灯发射线半宽变窄,灵敏度较高。但是灯电流太小,元素灯放电不稳。当使用较低的灯电流时,为了保证必要的信号输出,则须增加负高压,这样引起噪声增加,使谱线的信噪比降低,读数稳定度降低,测定精密度变差。
从稳定度角度考率,灯电流宜用大些。灯电流大,阴极放光稳定,谱线强度高,达到必要的信号输出所需要的负高压较低,因此提高了信噪比,使读数稳定度提高和改善测定精密度。对于常量和高含量元素分析,灯电流宜大些,可提高测定的精密度。
因此,灵敏度和稳定度这两个指标,对灯电流的要求是相互矛盾的,故在选择灯电流时应兼顾这一矛盾的两个方面。对于微量元素分析,应在保证读数稳定的前提下尽量选用小一些的灯电流,以获得足够高的灵敏度。对于高含量元素分析,在保证有足够灵敏度的前提下,尽量选用大一点的灯电流以获得足够高的精密度。
从维护灯和使用寿命角度考虑,对于高熔点、低溅射的金属,如铁、钴、镍、铬等,灯电流允许用的大些;对于低熔点,高溅射的金属如锌、铅等,灯电流宜用小些。对于低熔点,低溅射的金属,如锡,若需增加光强度,允许灯电流稍大些。
三、光谱通带的选择
光谱通带的宽窄直接影响测定的灵敏度和标准曲线的线性范围,单色器的光谱通带取决于仪器色散能力和狭缝宽度:
光谱通带=线色散率的倒数×缝宽
光谱通带的选择,实际上是通过改变狭缝宽度来实现的。光谱通带的选择原则是,在保证只有分析线通过出口狭缝到达检测器的前提下,尽可能选用极宽的光谱通带,以获得较高的信噪比和读数稳定性。对于谱线简单的元素,(如贱金属、碱土金属)宜用较宽的光谱通带,以得到较高的信噪比和分析准确度。对于多谱线元素,(如铁族、稀有元素)和火焰连续背景较强的情况,宜用较窄的光谱通带,这样不仅能提高分析灵敏度,标准曲线的线性也会明显改善。
四、燃助比的选择
火焰的温度和气氛对脱溶剂、熔融、蒸发、解离或还原过程有较大影响,为了获得较高的原子化效率需选择适宜的火焰条件,实际上是通过选择燃助比来实现的。
对于确定类型的火焰,根据火焰温度和气氛,可分为贫燃火焰,化学计量火焰、发亮性火焰和富燃火焰四种类型。对于贫燃火焰燃烧充分,火焰温度较高,燃烧不稳定,测定重线性差,高温区和原子化区域很窄,不具有还原性,通常燃助比(空气/乙炔)在1:6以上,火焰处于贫燃状态。化学计量火焰层次清晰、分明、稳定,噪声少,背景低,适宜于热解离,稍有还原性,在这种火焰状态下测定,具有较高的灵敏度和精密度,其燃助比为1:4。
发亮性火焰,带黄色光亮,层次稍模糊,火焰温度较化学计量火焰低而还原性强,燃助比小于1:4。富燃火焰温度低,黄色发亮,层次模糊,还原性强,电子密度较高,其燃助比小于1:3。
由此可见,燃助比不同,火焰温度和氧化还原性质也不同,原子化效率也就发生改变,因此影响分析的灵敏度和精密度,应当通过实验选择最佳燃助比。一般是在固定助燃气流量的条件下,改变燃气流量,吸喷测定标准溶液的吸光度,绘制吸光度---燃助比曲线,吸光度大而且读数稳定的燃助比为最佳燃助比。
通常情况下,测定高熔点的惰性元素,如银、金、铂、钯、镓、铟宜用贫燃火焰。多数元素宜用化学计量火焰。难解离和易还原的元素,宜用发亮性和贫燃火焰,铬是一个典型。
有些元素易原子化,其对燃助比反应迟钝,铜是一个典型例子。对燃助比反应敏感的元素,如铬、铁、钙要特别注意燃气和助燃气的流量和压力的恒定,才能保证得到良好的分析结果。
五、观测高度的选择
就火焰的结构而言,分四个区域。预热区:燃气经此区域被加热到着火温度。第一反应区:燃烧不充分,发生着复杂的反应,其中有一个兰色的核心。中间薄层区:温度较高,厚度较小,是产生自由原子的主要区域。其厚度因元素性质不同而异。铜、镁、银原子产生后,因再化合速度较慢,则此区较宽。钙、钡、锶原子产生后,在化合速度快,则此区较窄。
第二反应区:氧化剂较充分,燃烧充分,反应产物扩散进入大气。由此可见,由于火焰不同区域具有不同的温度和具有不同的氧化性或还原性,因此,火焰不同区域的待测元素自由原子密度及干扰成分浓度也不同。为了获得较高的灵敏度和避免干扰,应选择最佳观测高度,让光束通过火焰的最佳区域。观测高度可大致分三个部位:
光束通过氧化焰区。这一高度大约是离燃烧器缝口6---12mm处。此处火焰稳定,干扰较少,对紫外线吸收较弱,但灵敏度稍低。特别是吸收线在紫外区的元素,适于这种高度。
光束通过氧化焰和还原焰。这一高度大约是离燃烧器缝口4---6mm处。此处火焰稳定性比前一种差,温度稍低,干扰较多,但灵敏度较高。适用于铍、铅、硒、锡、铬等元素分析。光束通过还原焰。这一高度大约是离燃烧器缝口4mm以下,此处火焰稳定性最差,干扰最多,对紫外线吸收最强,而吸收灵敏度较高,适用于长波段元素的分析。
燃烧器高度的选择,通常是在固定的燃助比的条件下,测量标准溶液在不同燃烧器高度时的吸光度进而绘制吸光度---高度曲线,根据曲线选择合适的燃烧器高度,以获得较高的灵敏度和稳定性。
第三章 火焰
原子吸收
分析干扰及其消除
第一节 物理干扰及其消除方法
物理干扰是指试样在转移、蒸发和原子化过程中,由于试样任何物理性质的变化而引起
原子吸收
信号强度变化的效应。物理干扰属非选择性干扰。
一、物理干扰产生的原因
在火焰
原子吸收
中,试样溶液的性质发生任何变化,都是直接或间接地影响原子化效率。当试液的粘度发生改变,则影响吸喷速率,进而影响雾量和雾化效率。毛细管的直径和长度,测量液面的相对高度以及空气流量的改变,同样影响吸喷速率。试液的表面张力和粘度的变化又将影响脱溶剂效率和蒸发效率,最终影响到原子化效率。当试样中存有大量基体元素时,它们在火焰中蒸发解离时,不仅要消耗大量的热量,而在蒸发过程中,有可能包裹待测元素,延续待测元素的蒸发,影响原子化效率。样品含盐量高时,不仅影响吸喷速率和雾化效率,还可能造成燃烧器缝口堵塞而改变燃烧器的工作特性。
物理干扰一般都是负干扰,最终影响火焰分析体积中的原子密度。
二、消除物理干扰的方法
1.配制与待测试液基体相似的标准溶液,这是最常用的方法。
2.当配制其基体与试
液相
似的标准溶液有困难时,需采用标准加入法。
3.当被测元素在试液中的浓度较高时,可用稀释溶液的方法来降低或消除物理干扰。
第二节 光谱干扰及其消除方法
原子吸收光谱
分析中的光谱干扰较原子发射光谱少的多。理想的
原子吸收
,应当是在所选用的光谱通带内仅有光源的第一条共振发射线和波长与之对应的一条吸收线,当光谱通带内多于一条吸收线或光谱通带内存在光源发射的非吸收线时,灵敏度降低,工作曲线线性范围变窄。当被测试液中含有吸收线重叠的两种元素时,无论测定其中哪一种元素,都将产生干扰,这种干扰俗称“假吸收”,导致结果偏高。
一、光谱通带内多于一条吸收线
如果在光谱内存在光源的几条发射线,而且被测元素对这几种辐射光均产生吸收,这时便产生光谱干扰。
每一条吸收线具有不同的吸收系数,所测得的吸光度是每个独立成分贡献的结果,多重谱线干扰以过渡元素较多,尤其是铁、钴、镍等多谱线元素。
为消除上述干扰,若多重吸收线和主吸收线的波长差不是很小,则可通过减小狭缝宽度的办法来克服多重吸收线引起的干扰,但当波长差很小时,通过减小狭缝仍难消除干扰,并且可能使信噪比大大降低,此时需另选吸收线。
二、光谱通带内存在光源发射的非吸收线
待测元素的非吸收线出现在光谱通带内,这非吸收线可以是待测元素的谱线,也可能是其它元素的谱线。造成这种干扰的原因有以下几种:
1.具有复杂光谱的元素本身就发射出单色器难于完全分开的谱线,如铁、钴、镍等。
2.光源阴极材料中的杂质引起非吸收线干扰。例如:铝灯阴极中的微量铜发射216.5nm谱线而干扰铝217.0nm谱线测定。
3.光源填充的惰性气体的辐射线引起非吸收线干扰。例如:充氩的铬灯,氩的357.7nm谱线干扰铬的357.9nm谱线的测定。
克服这种干扰的常用方法是减小狭缝宽度,使光谱通带小到足以分离掉非吸收线,但会使信噪比变坏,这时可改用其他分析线,虽然灵敏度稍低,但允许较大的光谱通带,有利于提高信噪比。
三、吸收线重叠干扰
火焰中有两种以上原子的吸收线完全重叠,而分析元素含量很低时,测得的只是共存元素的吸收信号。当分析元素吸收线中心位置与共存元素吸收线的中心位置稍有偏离,但仍有相当程度的重叠,此时得到的吸收信号中仍有小部分是共存元素产生的。只有分析元素的吸收线和共存元素的吸收线完全分离时,共存元素才不会产生干扰。干扰的大小取决于吸收重叠的程度,干扰元素的浓度及其灵敏度。当两元素吸收线的波长差等于或小于0.03nm时,这种干扰是严重的,若重叠的吸收线是灵敏线,即使相差0.1nm,干扰也会明显表现出来。
消除这种吸收线重叠干扰的途径有三条:
一是选用被测元素的其他分析线,
二是预先分离干扰元素
三是利用塞曼效应或自吸效应背景校正技术。
相关话题
1
【金秋计划】流动相缓冲盐的正确使用!
2
【金秋计划】质谱中各种离子的意义
3
【金秋计划】搞懂液相色谱自动进样器,这一篇就足够了
4
【金秋计划】不确定度与误差的14点区别
5
【金秋计划】萃取与水洗的小技巧
近期热榜
仪器信息网“仪友会”招募令
科学仪器品牌联合“仪器心得”征文活动
【生活中的仪器检测】有奖征文
LC-MS实验瓶颈的突破与优化
热门活动
宝藏核磁实验室的得力助手征文活动
【售后专场--招聘会】
猜你喜欢
最新推荐
热门推荐
更多推荐
【分享】国家实验室简介
2009/10/03
【原创】看图猜设备----八
2011/06/18
装修一个评级室大约需要什么工作?
讨论
2022/12/01
看图猜仪器
讨论
2014/12/24
【原创】小型HIV初筛实验室的建设
2008/12/12
你的第一份检验原始记录是什么?
讨论
2014/04/16
【讨论】气相色谱与液相色谱放在同一实验室能放在一间屋里吗?
2010/06/04
谁知到哪有现代实验室装备设计、研发、生产、销售、工程施工服务的一站式专业化公司
求助
2012/04/05
主题:【原创】2024年10月份实验室建设版面积分发放
原创
2024/11/01
【汇总贴】第十七届原创大赛10月份参赛作品汇总展示
原创
2024/11/01
【汇总贴】第十七届原创大赛9月份参赛作品汇总展示
原创
2024/11/01
不确定度评定的6个标准步骤,再难的不确定度评定,你就按照这6个步骤套
分享
2024/10/31
实验室内务检查都是查什么?
讨论
2024/10/28
对于小型的纺织品实验室来说一般需要几个房间?
已应助
2024/10/27
大家帮忙看看这个是什么光源啊?
讨论
2024/10/25
涉及两个领域 四川正式启动新一批省重点实验室优化重整
分享
2024/10/25
气相色谱法同时测定实验废水中24种防腐剂含量
第十七届原创
2024/10/27
【仪器检测】石墨炉原子吸收法测定酱油中的铅
第十七届原创
2024/10/28
表层水温表能不能把金属外壳去掉后,按照玻璃液体温度计进行校准?出具带CNAS logo证书?
求助
2024/10/26
又遇气相色谱GC-2014新出问题,求大神们指导解决
求助
2024/10/28
记录的修改是不是必须写名字全称,能用名字的首字母代替吗?
讨论
2024/10/30
求助!GB23200.121的液质方法
求助
2024/10/30
天美GC7900严重拖尾
求助
2024/10/31
报告变更需要在新的报告中写明更改内容吗?
已应助
2024/10/28
【金秋计划】GC色谱柱选择指南
分享
2024/09/11
【金秋计划】如何优化离子源参数?
分享
2024/09/11
【金秋计划】流动相/添加剂选择对 LC-MS 电离的影响
分享
2024/09/11
【金秋计划】液质联用使用禁忌
分享
2024/09/11
【金秋计划】杂质增长明显被CDE发补,解释了两次
分享
2024/09/11
【金秋计划】如何评价ICP-MS的稳定性
分享
2024/09/11
【金秋计划】系统扩散、梯度配比精度及其对质谱结果的影响
分享
2024/09/11
【金秋计划】顶空进样器连接不当引起的进样口无柱前压
分享
2024/09/11
品牌合作伙伴
岛津
日立科学仪器
珀金埃尔默仪器(上海)有限公司(PerkinElmer)
日本电子株式会社
丹纳赫
安捷伦
赛默飞世尔科技
普析通用
欧波同
天美
天瑞仪器
德国耶拿
海能技术
马尔文帕纳科
磐诺科技
上海仪电科仪
梅特勒托利多
聚光科技
莱伯泰科
盛瀚
多宁生物
丹东百特
科哲
卓立汉光
屹尧科技
华谱科仪
宝德仪器
优莱博
HORIBA
布鲁克核磁
举报帖子
执行举报
点赞用户
好友列表
加载中...
正在为您切换请稍后...