血脑屏障

仪器信息网血脑屏障专题为您整合血脑屏障相关的最新文章,在血脑屏障专题,您不仅可以免费浏览血脑屏障的资讯, 同时您还可以浏览血脑屏障的相关资料、解决方案,参与社区血脑屏障话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

血脑屏障相关的资讯

  • 显微镜|Echo Revolve显微镜在血脑屏障功能研究中的应用
    血脑屏障 (BBB) 是哺乳动物的一种特殊结构,通过调节血液和血液之间离子、氧气和营养物质的流入和流出,将大脑与血液分开,并维持中枢神经系统 (CNS) 的稳态。该屏障主要由脑微血管内皮细胞 (BMEC)、星形胶质细胞和周细胞组成。转化生长因子β1 (TGFβ1) 是转化生长因子β (TGFβ) 家族成员之一,是一种多效性细胞因子,在多种病理和生理过程中发挥重要作用。Hedgehog信号通路是重要的信号传导通路,在多个物种中是保守的,并且在生理和病理过程的许多方面发挥着重要作用。典型Hedgehog信号由三种分泌配体Shh、Ihh和Dhh激活,细胞间信号由转录因子Gli1、Gli2和Gli3转导。在中枢神经系统中,Hedgehog信号通路决定了神经管的形成和发育。目前,已有研究表明Hedgehog信号与TGFβ1级联反应在癌症发展和转移中的相互作用。那么Hedgehog信号和TGFβ1级联反应之间的串扰是否会影响血脑屏障的功能呢,目前还尚不清晰。华中农业大学兽医学院农业微生物学国家重点实验室和湖北省预防兽医学重点实验室联合在Brain Sciences杂志上发表了一篇名为《Astrocyte-Derived TGFβ1 Facilitates Blood–Brain Barrier Function via Non-Canonical Hedgehog Signaling in Brain Microvascular Endothelial Cells》,该文阐明了TGFβ1 介导的星形胶质细胞和大脑内皮细胞之间的细胞间交流,这一发现将拓宽关于血脑屏障内稳态的现有知识,也可能有助于进一步改善血脑屏障功能障碍的治疗策略。作者通过构建人脑微血管内皮细胞 (hBMECs) 与U251的单培养和共培养模型,证实了星形胶质细胞衍生的TGFβ1增强了BMECs的屏障功能。实时荧光定量PCR、免疫印迹和酶联免疫吸附试验等多种实验表明TGFβ1在BMECs中触发Smad2/3的激活增加了Gli2的表达,Gli2是Hedgehog信号转导的关键转录因子。Gli2与ZO-1启动子结合,增强ZO-1的表达,从而维持血脑屏障。星形胶质细胞来源的TGFβ1触发BMECs中的TGFβ1-TGFBRII-Smad2/3-Gli1/2-ZO-1轴并维持正常的BBB功能。文中作者通过免疫荧光技术,利用Echo Revolve正倒置一体显微镜进行免疫荧光观察。使用50ng/mL的重组TGFβ1 (rTGFβ1) 来刺激单层hBMECs,BMECs用绿色CD31标记,结果表明与对照组相比,ZO-1表达显著增加。用4mg/kg的TGFβ/Smads信号抑制剂SD208处理小鼠,图中虚线环表示BMECs中的Gli1或Gli2的表达量,结果表明与对照组相比,ZO-1、 Gli1和Gli2表达量均减少。内皮屏障功能方面发挥重要作用,提高了对血脑屏障功能的研究。这一发现也可能表明未来有可能使用TGFβ1和Hedgehog信号级联来辅助治疗血脑屏障功能障碍。参考文献:Fu J, Li L, Huo D, et al. Astrocyte-Derived TGFβ1 Facilitates Blood-Brain Barrier Function via Non-Canonical Hedgehog Signaling in Brain Microvascular Endothelial Cells. Brain Sci. 2021 11(1):77. Published 2021 Jan 8. doi:10.3390/brainsci11010077
  • Kirkstall Quasi Vivo仿生动态多细胞共培养系统用于建立血脑屏障
    (一)文献解析英国利兹大学医学和健康学院,利兹心血管和代谢医学研究所开发了一种新的动态多细胞共培养系统,用于研究脑疾病中的个体血脑屏障细胞类型和细胞毒性测试。作者详细讨论了血脑屏障(BBB)多细胞共培养系统的开发和优化过程,以及其在研究BBB功能障碍和神经退行性疾病中的潜在应用。1. 研究背景:血脑屏障(BBB)在中枢神经系统(CNS)的生理和病理过程中扮演关键角色。BBB功能障碍与许多神经退行性疾病,包括阿尔茨海默病(AD),有关联。1. BBB的组成:BBB由毛细血管内皮细胞、包围内皮的周细胞以及向其延伸的星形胶质细胞组成。1. 研究目的:开发一种体外多细胞共培养模型,用于研究BBB中各个细胞类型在神经毒性中的具体作用,特别是在没有形成屏障的情况下评估每种细胞类型对整体反应的贡献。1. 实验仪器设备:研究者使用了英国Kirkstall Quasi Vivo培养系统,并成功开发了一种体外多细胞共培养模型,该系统允许在流动条件下培养不同类型的细胞,同时共享相同的培养基。1. 实验设计:研究者优化了人类大脑内皮细胞、周细胞和星形胶质细胞的培养条件,包括改进的培养基、适当的支架系统和最佳流速。1. 细胞表型鉴定:通过免疫细胞化学方法确认了人类星形胶质细胞、周细胞和内皮细胞的表型。1. 多细胞共培养系统:研究者建立了一个多细胞共培养系统,通过不同组合的细胞培养来确定共培养的重要性以及改进的培养基和流动对细胞活性的影响。1. Aβ25-35的影响:作为概念验证,研究者探索了Aβ25-35(AD的一个标志物)对BBB各个细胞类型的影响。1. 实验结果:发现Aβ25-35对周细胞有负面影响,降低了其活性,而对内皮细胞和星形胶质细胞在早期毒性阶段没有显著影响。1. 结论:这种多细胞共培养系统可以成为未来研究CNS疾病中特定BBB细胞类型角色以及细胞毒性测试的有价值的工具。(二)成功开展多细胞共培养实验的心得1. 选择合适的细胞类型:基于研究目的,选择具有高度特异性和代表性的细胞类型。1. 优化培养基:开发或选择适合所有共培养细胞类型的培养基,可能需要结合不同细胞类型的条件培养基。1. 控制培养条件:使用恒温培养箱和CO2控制系统来维持最佳的生长环境。1. 优化接种技术:使用适当的技术(如滴涂或悬浮接种)来确保细胞均匀分布。1. 定期更换培养基:定期更换新鲜培养基,以提供必要的营养并去除代谢废物。1. 使用支架材料:选择合适的支架材料来支持细胞附着和生长。1. 动态培养系统:使用如英国Kirkstall Quasi Vivo System这样的动态培养系统来模拟体内流动条件。1. 监测细胞间通讯:使用分子标记和示踪技术来评估细胞间的相互作用和信号传递。1. 标准化实验操作:确保所有实验步骤的一致性,包括细胞培养、操作和数据处理。1. 使用先进的成像和分析技术:利用共聚焦显微镜、流式细胞仪等技术来收集数据,并使用专业的软件进行分析。通过上述解决方案,研究者可以克服多细胞共培养实验中的技术挑战,从而更有效地模拟和研究复杂的生物学过程。参考文献:Patricia Miranda-Azpiazu, Stavros Panagiotou, Gin Jose & Sikha Saha. A novel dynamic multicellular co-culture system for studying individual blood-brain barrier cell types in brain diseases and cytotoxicity testing附: Kirkstall Quasi Vivo® 仿生动态多细胞共培养系统——产品介绍01仪器设备的功能用途 又称为微流体“芯片上器官”系统,具有相互连接的细胞培养单元,为类器官生长提供更具生理相关性的体内微环境。通过提供一种近生理的体外模型,模拟细胞微环境,具有更完整的结构和功能,解决动物与人类之间的种属差异,且可在体外模拟多种器官特异性疾病状态,反映药物在体内的动态变化规律和人体器官对药物刺激的真实响应,捕捉复杂的生理学反应,并满足高通量的要求。它是一个多室流动系统,为类器官培养提供了一个紧凑、易于使用的解决方案,包括2D、3D、屏障,或多器官。在疾病模型,药物筛选和毒性测试,再生医学和组织工程,发育生物学研究,感染与免疫研究,个性化医学,癌症研究等领域被广泛应用。兼容多种细胞来源,包括原代细胞、诱导多能干细胞(iPSC)、类器官和细胞系等,也可以引入健康细胞、患病细胞、肿瘤细胞。02性能特点Quasi Vivo® 作为一种先进的类器官芯片培养系统,专门设计用于解决学术和工业研究人员在开展体外和体内研究时遇到的主要问题,具有下列性能优势:1.功能延展性强可选择气液界面、液液界面、支架和流动方案的多样化培养方式;允许独立、可控的空气、气体或液体层流流向顶端和基底外侧;满足多器官/多细胞共培养,细胞间的信号传递等实验要求。加速类器官细胞分化和成熟,提高细胞活力,适合长期培养。2.成像友好配备了光学窗口在顶部或底部表面,便于理想的实时高分辨率成像。3.易于获取样本直接收集样本和获取组织或液体样本。4.模拟生物力学和浓度梯度 严格控制多个变量,可以模拟生理特征,如血液循环,组织间液流动态等,为细胞提供生物力学信号;可以实现免疫细胞共培养以及血管化等复杂疾病模型构建;用于研究多种生理过程,如细胞迁移、分化、免疫反应以及癌症的转移等。5.便携和易于操作紧凑型模块化腔室结构,具有更高人体生理相关性;占地面积小,节省空间,可兼容标准实验室的孵化器。03品牌制造商简介Kirkstall Ltd.成立于2006年,是Braveheart Investment Group plc 的子公司,总部位于英国约克。Kirkstall开发了一种创新的微生理系统的器官芯片模型Quasi Vivo® 。作为器官芯片技术的领导者,Kirkstall已经建立了牛津大学生物医学工程研究所等著名的大学实验室的庞大用户群,产品在全球范围内享有盛誉。北京基尔比生物科技有限公司是Kirkstall ltd.授权在中国的唯一和独家总代理商,全面负责Kirkstall公司旗下所有产品在中国的销售,市场推广和技术支持等事宜。
  • 穿越血脑屏障!UCLA卢云峰团队研发新型纳米胶囊
    p style=" text-align: justify "   在世界范围内,中枢神经系统(CNS)相关疾病已经成为各年龄段患者中致病率和致死率最高的一类疾病。尽管多年来对于中枢神经相关疾病的科学和临床研究一直未有停歇,然而针对这类疾病的治疗方法仍然极其有限。其中需要面临的最大挑战是如何有效地跨越血脑屏障,将药物,尤其是大分子药物,投递入中枢神经系统。因此,开发新型、普适性强、并能跨越血脑屏障的药物投递平台,将是治疗中枢神经相关疾病的关键突破。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/cbf11921-e8dd-4743-b80d-14448d8bfee6.jpg" title=" 卢云峰教授.jpg" alt=" 卢云峰教授.jpg" width=" 167" height=" 254" style=" width: 167px height: 254px " / /p p style=" text-align: center " strong 卢云峰教授 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/4a21eeb8-c37c-43aa-b45a-b90a114537e4.jpg" title=" 000.jpg" alt=" 000.jpg" width=" 561" height=" 374" style=" width: 561px height: 374px " / /p p style=" text-align: center " strong span style=" text-align: justify " UCLA卢云峰教授团队 /span /strong br/ /p p style=" text-align: justify "   近日, span style=" color: rgb(0, 112, 192) " strong 美国加州大学洛杉矶分校(UCLA)卢云峰教授团队 /strong /span 在材料学领域的综合性权威期刊 strong i Advanced Materials /i /strong (2018年, strong IF:21.950 /strong )上发表封面文章(图1),题目为 strong “ i A Bioinspired Platform for Effective Delivery of Protein Therapeutics to the Central Nervous System /i ” /strong ,报道了新型中枢神经系统投递平台,通过将蛋白类药物包裹在含有胆碱和乙酰胆碱类似物的纳米胶囊中,实现高效的中枢神经系统投递。该研究论文的第一作者为吴迪博士。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/5c4eaa11-bf0d-419f-9b4e-b9dd0efe3ab8.jpg" title=" 001.jpg" alt=" 001.jpg" width=" 584" height=" 211" style=" width: 584px height: 211px " / /p p style=" text-align: center " strong 图1:研究成果发表于材料领域权威期刊Advanced Materials. /strong /p p style=" text-align: justify "   尽管血脑屏障对进入中枢神经系统的分子具有极其苛刻的选择性和限制性,但为满足大脑内部的营养及信号转导需求,其对某些分子如乙酰胆碱和胆碱却有大量的受体表达和高效的转运机制。受其启发,研究者利用纳米胶囊技术将含有胆碱和乙酰胆碱的类似物(2-甲基丙烯酰氧乙基磷酸胆碱(MPC))包裹于蛋白类药物表面,在胆碱转运体及乙酰胆碱受体的介导下,使蛋白类药物得以高效的穿透血脑屏障,进入中枢神经系统(图2)。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/0eee24b0-a41e-41f4-a71f-b7164ab6edea.jpg" title=" 002.jpg" alt=" 002.jpg" width=" 548" height=" 383" style=" width: 548px height: 383px " / /p p style=" text-align: center " strong 图2:纳米胶囊的制备及中枢神经系统投递原理示意图 /strong /p p style=" text-align: justify "   为显示该方法的普适性,研究者利用纳米胶囊运载了多类蛋白分子,如牛血清蛋白(BSA),辣根过氧化物酶(HRP),利妥昔单抗(RTX)和神经生长因子(NGF)等。透射电子显微镜下,纳米胶囊显示为表面为中性,直径为30纳米的球形分子,利用可降解交联剂的断裂使纳米胶囊破裂从而实现蛋白载体的有效释放(图3)。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/12411180-b471-4ce0-bce4-2b0ba61fa14b.jpg" title=" 003.jpg" alt=" 003.jpg" width=" 586" height=" 306" style=" width: 586px height: 306px " / /p p style=" text-align: center " strong 图3:纳米胶囊水合半径(a),表面电性(b),形貌(c),释放(d)及释放后蛋白分子活性(e,f)的测定 /strong /p p style=" text-align: justify "   在小鼠和恒河猴动物模型中,该技术的中枢系统投递效率得到了有效的验证。纳米胶囊包裹的蛋白在小鼠的体内分布实验中,显示出高于未包裹的蛋白对照组40余倍的投递效率。同时,静脉注射一天后在采集到的恒河猴的脑脊液中,通过透射电子显微镜研究者观察到大量的具有相同大小(30 纳米)和形貌的纳米胶囊分子。其在恒河猴脑脊液中的浓度最高可达血液浓度的5.6%。研究者还发现,该纳米胶囊的中枢神经系统投递效率具有显著的剂量依赖性,提高静脉注射浓度可显著提高其中枢神经系统投递效率,这意味着该投递效率仍有巨大的提升空间(图4)。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201903/uepic/d44c0756-3049-403e-aea5-1dc95cb89bbb.jpg" title=" 004.jpg" alt=" 004.jpg" width=" 537" height=" 418" style=" width: 537px height: 418px " / /p p style=" text-align: center " strong 图4:纳米胶囊小鼠体内分布(a),恒河猴脑脊液中纳米胶囊形貌(b),浓度(c)及脑脊液浓度占血浆浓度百分比(d) /strong /p p style=" text-align: justify "   由于该方法制备简单,高度适用于各种蛋白药物,中枢神经系统投递效率高,并具有良好的生物安全性,这一技术为蛋白类药物用于中枢神经系统相关疾病的治疗开辟了全新的道路,具有重大的理论研究和临床转化意义。 /p p style=" text-align: justify "   ————————————————————————————————— /p p style=" text-align: center " strong 欲知更多生命科学资讯,就关注仪器信息网生命科学官微 span style=" color: rgb(0, 112, 192) " “3i生仪社” /span /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201903/uepic/632108c3-9f34-4da1-9a2e-2a7344c75fab.jpg" title=" qrcode_for_gh_91d290758d40_258.jpg" alt=" qrcode_for_gh_91d290758d40_258.jpg" width=" 223" height=" 223" style=" width: 223px height: 223px " / /p

血脑屏障相关的方案

  • 低氧/厌氧产品案例——阻塞性睡眠呼吸暂停(OSA)与血脑屏障研究
    阻塞性睡眠呼吸暂停(OSA)的特点是反复发作上呼吸道完全或部分阻塞,导致慢性间歇性缺氧(IH)。阻塞性睡眠呼吸暂停综合征(OSA)患者被认为有较高的脑血管风险,也可能存在认知障碍损害。其中一个假设是,这种紊乱可能与血脑屏障有关(BBB)功能障碍。血脑屏障是一种保护屏障,将大脑与血液流动隔开。血脑屏障通过紧密和粘附的连接限制细胞旁通路,并通过外排泵(ABC 转运体)限制细胞外通路。本研究的目的是评估IH 和持续缺氧(SH)对验证的体外血脑屏障模型的影响,并研究两种条件下表达的因子;研究表明,6 h 的IH 或SH 可诱导血脑屏障破坏,连接蛋白表达(claudin-5,VE-cadherin, ZO-1)表达降低,血脑屏障表观通透性增加,外排转运体相关蛋白P-gp 蛋白表达上调及BCRP 蛋白表达下调;此外缺氧诱导ROS、Nrf2 和HIF-1α 的产生,P-gp 和BCRP 在持续和间歇条件下均有表达,但其表达和活性不同。本研究为阻塞性睡眠呼吸暂停(OSA)患者提出新的治疗策略似乎至关重要。
  • 北卡教堂山分校黄劲松研发出强化屏障有效提高稳定性
    钙钛矿太阳能电池(PSC)作为下一代光伏技术的重要候选者,近年来取得了飞速的发展, 其光电转换效率已经接近甚至超越了传统晶硅太阳能电池。 然而,钙钛矿太阳能电池的稳定性问题依然是制约其商业化应用的关键难题。反向偏压(reverse bias)对钙钛矿太阳能电池的稳定性有着重要影响, 它可能导致钙钛矿材料分解, 进而影响电池的长期稳定性。 因此,理解反向偏压对钙钛矿结构和性能的影响是提高电池稳定性的重要研究方向。 研究人员需要深入了解反向偏压条件下钙钛矿材料的降解机制, 以找到提高其稳定性的解决方案。研究反向偏压下的降解机理能帮助科学家找出钙钛矿太阳能电池的弱点。 这些研究有助于设计更加耐用的材料和结构, 以防止电池在反向偏压条件下快速降解。 同时,反向偏压会导致效率损失,这主要是由于电荷载流子的再结合速率增加以及可能的渗透电流增大。 了解和克服这些问题对于保持高效率运行的钙钛矿太阳能电池至关重要。研究反向偏压对电池的影响还有助于改进封装技术, 防止环境因素(如湿气和氧气)在反向偏压条件下对钙钛矿材料造成的影响。近期,北卡罗来纳大学教堂山分校黄劲松教授团队在国际顶尖期刊《Nature Energy》上发表了一项重要研究成果, 揭示了钙钛矿太阳能电池在反向偏压下失效的机理, 并通过构建强化屏障, 显着提高了钙钛矿太阳能电池在反向偏压下的稳定性。
  • 环境水中(类)金属及其化合物检测方案
    环境中的汞及其化合物对人类和动物都具有极强的毒性,尤其甲基汞通过血脑屏障和胎盘,引起中枢生境系统的永久性损伤。大量研究证实,甲基汞可通过水生食物链富集放大,最终通过水产品的摄入对人类健康造成威胁。目前,鱼类是被认为是人类汞(特别是甲基汞)暴露的主要途径

血脑屏障相关的论坛

  • 【分享】内昆线铁路声屏障降噪效果研究

    随着我国铁路的不断提速和铁路网的不断完善,未来我国铁路的主要环境问题是噪声与振动以及电磁辐射所带来的一些负面影响。作为绿色铁路建设重点考察方面之一,噪声问题日益受到各方关注。 而我国人口众多,铁路两侧尤其是中、东部铁路两侧人口密集,故未来铁路的建设主要考虑噪声所带来的一些环境问题。而设置声屏障作为降低噪声的一种最行之有效的方法,其应用必然会越来越广泛。国外经济发达国家均把建造声屏障作为在改善声环境方面较为合理、经济有效的方法。 我国声屏障建设发展起步较晚,声屏障作为道路降噪声的治理措施,在国内还是上世纪90年代的事,一般用于城市高速或快速干线上。20世纪90年代初,交通部在贵黄公路上修筑了百余米圬工结构的声屏障,这是国内第一次应用于道路上作为降噪目的的措施。但到目前为止,我国铁路声屏障还存在如铁路声屏障设计的几何高度趋近于统一高度,几乎均为在线路以上2-3m高、声屏障的结构形式单一,大部分为直立式等缺陷,从而导致声屏障降噪效果低下,故有必要对不同材料、厚度和高度的铁路声屏障降噪效果进行研究。 本文首先简述了对声屏障降噪效果研究的必要性,以及目前国内外的研究进展,总结了这方面研究的不足,并提出了本论文的研究内容。其次是系统的归纳了声屏障的降噪效果、分类,并对国内外的铁路噪声预测模式进行了具体的阐述,分析彼此的利弊,并以内昆铁路:K456+370—K457+900段为例,采用德国Schall03修正模式预测了该路段火车通过时的噪声值。然后对该路段所设置的三种声屏障后火车通过时的噪声进行了实测,并与预测值进行对比、分析研究,得出A声屏障降噪值L为15.3dB,B声屏障降噪值L为14.2dB,C声屏障降噪值L为17.61dB。 从而经过分析可知,C声屏障的降噪效果最好,其次是A声屏障,最后是B声屏障,但B声屏障和A声屏障降噪值差距不大,说明声屏障降噪的好坏不仅与材料有关,还与高度和厚度有关。

  • 【分享】声屏障设计基本声学知识点

    1、绕射越过声屏障顶端绕射到达受声点的声能比没有屏障时的直达声能小。直达声与绕射声的声级之差,称之为绕射声衰减,其值用符号△Ld 表示,并随着Φ角的增大而增大。声屏障的绕射声衰减是声源、受声点与声屏障三者几何关系和频率的函数,它是决定声屏障插入损失的主要物理量。2、 透射 声源发出的声波透过声屏障传播到受声点的现象。穿透声屏障的声能量取决于声屏障的面密度、入射角及声波的频率。声屏障隔声的能力用传声损失TL来评价。TL 大,透射的声能小;TL 小,则透射的声能大,透射的声能可能减少声屏障的插入损失,透射引起的插入损失的降低量称为透射声修正量。用符号ΔLt表示。通常在声学设计时,要求TL —△Ld≥10dB,此时透射的声能可以忽略不计,即△Lt≈0。3、反射 当道路两侧均建有声屏障,且声屏障平行时,声波将在声屏障间多次反射,越过声屏障顶端绕射到受声点,它将会降低声屏障的插入损失,由反射声波引起的插入损失的降低量称之为反射声修正量,用符号△Lr 表示。 为减小反射声,一般在声屏障靠道路一侧附加吸声结构。反射声能的大小取决于吸声结构的吸声系数α,它是频率的函数,为评价声屏障吸声结构的整体吸声效果,通常采用降噪系数NRC。

  • 《声屏障技术与材料选用手册》

    随着我国经济发展,汽车保有量的增多,道路、铁路等交通产生的噪声超标情况严重。根据交通噪声监测结果,按《声环境质量标准》(GB3096-2008),即使执行要求最低的4类标准,即城市中的道路交通干线道路两侧区域,穿越城区的内河航道两侧区域,以及穿越城区的铁路主、次干线两侧等区域的昼间70dB,夜间55dB标准,公路交通噪声现状是昼间超过标准较少,夜间则普遍超标,有些甚至超标10dB以上,根据对中国高等级公路交通噪声分析,夜间交通噪声有增强趋势。研究表明,近年来随着车流量的增加,重型车、大型车比例呈增加的趋势,道路附近噪声级有上升的趋势。交通噪声是道路两侧的住宅、文教机关区和医院的主要污染源,可以说已发展成为一种污染公害。根据现有的工业发展水平和已有城市规划布局,用建立声屏障的方法来治理交通噪声是一种主要手段,其他国家的声屏障发展经验也证明了这一点。我国声屏障的应用也进入一个快速发展,大幅增加的时期。我国噪声控制行业经过半个多世纪的发展,通过噪声控制方面专家的研究和实践,发展了我国道路交通噪声控制的学术和应用水平,特别是在声屏障结构形式设计、新型材料的应用方面。在声屏障设计标准、材料标准等方面也得到规范。随着声屏障的大量应用,特别是高速铁路发展对声屏障降噪的需求,需要大量的声屏障设计人员和相关工作者,因此需要关于声屏障结构设计和材料选用方面比较系统的知识,以便于应用。同时在培养交通噪声控制方面的人才也需要类似的书籍进行引导。本书通过对噪声控制专家在声屏障领域取得的成就进行总结,形成较为系统的声屏障适用范围、结构设计、材料选择、安全设计、景观设计等方面内容,同时对声屏障施工、验收等整个过程通过完整、详实的案例进行了系统阐述。方便交通噪声控制科技工作者参考。同时对培养交通噪声控制方面的人才,来适应快速发展的道路、铁路交通噪声控制行业起到一定的引导作用,促进行业的健康快速发展。主要内容全书共9章,主要内容如下:第一章主要介绍声屏障概念和原理,声屏障的主要组成,使读者对声屏障有一个初步、总体的概念。第二章主要介绍声屏障国内外发展现状,重点介绍了声屏障分类、声屏障在结构方面特别是顶部结构应用方面进行介绍,声屏障计算机技术应用、材料发展进行了介绍。第三章主要对声屏障应用特点和发展趋势进行了总结。第四章对声屏障结构设计、材料选用、安全设计、景观设计等进行了系统介绍。第五章对声屏障整个施工过程中基础施工、声屏障屏体加工制造及质量控制、支撑结构制造、声屏障安装进行了详细介绍。第六章通过实际案例对声屏障设计、声屏障施工进行了详尽介绍,便于理解前面章节的内容。第七章对声屏障验收流程、验收要求、验收规范、验收内容进行了系统介绍。第八章对典型金属和非金属声屏障缺陷期维护保养、日常维护保养、维修保养技术进行了案例式系统介绍。第九章介绍了声屏障及材料选用的一般原则,同时展示了目前市场主流声屏障及材料,有助于对声屏障材料的了解和针对性选用。本书由声屏障信息门户网运营商福州音谷信息科技有限公司独家策划,中国建筑材料科学研究总院冀志江教授、陈继浩博士,交通运输部公路科学研究院尚晓东高级工程师、雷学东高级工程师,声屏障信息门户网(http://www.sooooob.cn/)总编龚世华共同编写完成。中国声学学会环境声学分会主任委员程明昆、国家环境保护城市噪声与振动控制工程技术中心邵斌总工程师、北京交通大学机械与电子控制工程学院宋雷鸣教授、铁道第三勘察设计院朱正清高级工程师受邀担任本书技术顾问,对书稿进行了认真地审阅并提出了宝贵的意见和建议,为本书倾注了大量心血,在此向各位专家表示衷心的感谢!同时感谢国家环境保护部环境工程评估中心 王毅研究员;上海交通设计所 褚国红、毛海亮、李晓东、邱贤峰;北京交通大学机械与电子控制工程学院噪声振动研究室 张新华高级工程师;中国环境科学研究院环境标准研究所 张国宁副研究员;大连交通大学噪声与振动控制研究所 刘岩教授;上海交通大学环境科学与工程学院 蔡俊博士等专家、学者在本书编写过程中所给予帮助和支持。由于编者水平,本书存在不足甚至谬误之处,恳请各位专家及广大读者不吝赐教。

血脑屏障相关的资料

血脑屏障相关的仪器

  • Millidisk屏障过滤器和Millipak屏障过滤器的设计,有助于除菌过滤系统的使用前在线完整性测试。所有Millidisk和Millipak过滤器均采用Durapore PVDF滤膜,保证高流速和高产量,确保低析出、良好的化学兼容性以及最小的蛋白吸附。独特的层叠式设计能让Durapore 0.22 µm除菌级亲水性滤膜和疏水性滤膜整合在同一个的过滤器中,使之既可以过滤液体又可以过滤气体。这种可渗透性的无菌屏障过滤器使系统的灭菌变得方便,也简化了除菌过滤器的湿润,冲洗和完整性测试的过程,在保持系统无菌性的同时,去掉了过滤袋或过滤罐的约束。Millidisk屏障过滤器(过滤面积可选2000 cm2)和Millipak屏障过滤器(过滤面积可选1000 cm2)分别为筒式过滤器和即用型囊式过滤器。优点:- 简化湿润,冲洗和完整性测试- 改善工艺产率- 保证下游无菌- 保证质量和除菌可靠性- 同一尺寸适用于所有用途典型用途:- 单个或多个液体过滤系统灭菌后使用前的完整性测试(PUPSIT)- 析出物冲洗通过无菌端的排放- 灭菌后排空冷却系统- 冲洗后再过滤器干燥过程中为系统通气了解更多:更多信息,e.g., 两种屏障过滤器在工艺中的使用形式,相关法规、指南的要求、具体规格信息等,可参见本页面核心参数 – 样本下载中的Datasheet。
    留言咨询
  • 器官芯片是一种多通道的三维细胞培养装置,主要用于生产和培养多种细胞组成的类器官。器官芯片由两大部分组成,一是多种类型细胞按真实器官中的比例和顺序搭建出来的 有序结构;二是器官培养微环境,包括器官芯片的基质、分泌物和应力。 器官芯片是微流控芯片技术和细胞生物学、药理病理等学科紧密结合的结果,使人们 有可能在体外模拟体内真实器官的功能,为大规模的药物筛选奠定基础。通过复制血脑屏障(BBB)建立的血脑屏障器官芯片模型,是研究细胞与细胞之间相互作用,细胞之间物质和信号传递的优秀模型。该芯片可应用于以下研究:细胞与细胞之间的物质交换和信号传递血液剪切力对细胞的影响药物对细胞的影响图一、血脑屏障器官芯片示意图芯片参数: 材质PDMS外周腔室宽度100 μm腔室高度100 μm连接沟道尺寸3*3*3 μm中心腔室直径1.5 mm开孔尺寸0.7 mm血脑屏障器官芯片的示意: 外周腔室用于培养第一种细胞,而中心腔室用于培养第二种细胞。多孔结构能够使外 周腔室中的细胞和中心腔室细胞之间进行交流。 图二、血脑屏障器官芯片实物图 图三、血脑屏障器官芯片中心腔室局部放大图
    留言咨询
  • 高通量无膜屏障芯片 400-860-5168转6071
    AVATARPLATE屏障芯片产品是具有三通道的可灌注3D培养芯片,三通道相互连接,通过固体边缘效应构建无膜式屏障,对三通道中的细胞进行定位以及更好的实现细胞间相互作用。通过重力驱动的方式实现芯片内流体的可持续流动,实现氧气、营养物质的充分交换。产品参数产品特点通量大重力驱动大大降低实验的复杂性产品应用肿瘤药敏、免疫模型构建、血管化模型构建、体外组织屏障功能估、细胞转运和迁移检测。
    留言咨询

血脑屏障相关的耗材

  • GEN3多重屏障滤芯吸头
    采用最先进的滤芯屏障技术。新的Axygen GEN3多重屏障滤芯吸头通过使用3层滤芯技术给客户提供最先进的保护,抑制交叉污染。GEN3吸头可在液体或悬浮颗粒接触滤芯时自动封闭,从而阻止液体或悬浮颗粒穿过,确保您珍贵的样品和研究不受到损害。不像其他的自封闭滤芯吸头有可能抑制PCR反应,GEN3吸头通过使用一层额外的常规聚乙烯滤芯材料保护层有效的将液体和自封闭滤芯层分开。产品特点: ●多重屏障自封闭滤芯阻止悬浮颗粒和液体交叉污染●专利滤芯设计防止可能的PCR抑制●超低残留和高回收的Maximum Recovery技术 ●便于使用的铰链盒装设计●已灭菌,无需高压灭菌●经过认证无DNase和RNase,无热源●经过认证无人源gDNA和PCR抑制物 GEN3-10-L-R-S10μl多重屏障自封闭滤芯吸头GEN3-20-L-R-S20μl多重屏障自封闭滤芯吸头GEN3-200-L-R-S200μl多重屏障自封闭滤芯吸头GEN3-1000-L-R-S1000μl多重屏障自封闭滤芯吸头
  • 人β淀粉样蛋白 1-42 (Aβ1-42) 检测试剂盒
    β-淀粉样蛋白(1-42)聚集体的形成和Aβ1-42寡聚体的细胞毒性是阿尔茨海默病(Alzheimer's disease,AD)病理学的两个重要特征,在AD的发病机理中起着关键的作用,Aβ1-42可以作为 辅助性诊断AD的生物标志物之一。但是由于受到血脑屏障的限制,外周血中脑源性蛋白的浓度较低,且易受到血浆基质蛋白的干扰。彩科(苏州)生物科技有限公司开发的单分子免疫检测平台,使用彩科生物人β淀粉样蛋白1-42(Aβ1-42)检测试剂盒在彩科生物AXL/SXL 单分子阵列免疫分析仪上可以定量检测血浆中Aβ1-42的蛋白浓度。
  • 人磷酸化Tau-181蛋白 (pTau-181)检测试剂盒
    国内外多项研究表明血浆pTau-181可以作为阿尔茨海默病(Alzheimer's disease,AD)的早期生物 标志物,有效区分AD痴呆与非AD痴呆的神经退行性疾病,但是由于受到血脑屏障的限制,外周血 中脑源性蛋白的浓度较低,且易受到血浆基质蛋白的干扰。彩科(苏州)生物科技有限公司所开发单分子免疫检测平台,使用彩科生物人磷酸化Tau181蛋白(pTau-181)检测试剂盒,在彩科生物AXL/SXL 单分子阵列免疫分析仪上可以定量检测血浆中pTau181的蛋白浓度
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制