生物医学研究

仪器信息网生物医学研究专题为您整合生物医学研究相关的最新文章,在生物医学研究专题,您不仅可以免费浏览生物医学研究的资讯, 同时您还可以浏览生物医学研究的相关资料、解决方案,参与社区生物医学研究话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

生物医学研究相关的资讯

  • 微观世界显真容:质谱成像助力生物医学研究
    质谱成像(MSI)作为一种新兴的分子成像工具,凭借其高灵敏度、特异性及无需标记等优势,已经在生物医学研究领域展现了巨大潜力。其可以直接获取分子轮廓,并直观地显示每种离子化化合物在样品(尤其是生物组织)中的空间分布。作为探索空间多组学最有前途和最有发展前景的技术之一,MSI 不仅能定位药物和代谢物的分布,还能深入了解疾病进展和药物干预背后的表型变化。本文将结合多种质谱成像技术,包括常压透射式激光解吸/后光电离质谱成像、基质辅助激光解吸电离质谱成像、解吸电喷雾离子化质谱成像、飞秒激光电离成像质谱、离子迁移率分离、飞行时间二次离子质谱、激光剥蚀电感耦合等离子体质谱、成像质谱显微镜等技术,深入探讨了其在肿瘤研究、药物代谢分析和单细胞研究中的突破性成果。◆ 常压透射式激光解吸/后光电离质谱成像技术 由中国科学技术大学国家同步辐射实验室潘洋等的研究团队,共同发展的常压透射式激光解吸/后光电离质谱成像技术(t-AP-LDI/PI-MSI)新方法,能够在无需复杂样品前处理的情况下,实现对生物组织中多种内源性化合物的原位可视化分析。该技术结合了透射式激光解吸电离和紧凑型后紫外光电离装置,显著提高了空间分辨率和灵敏度。在复杂临床样本分析中,t-AP-LDI/PI-MSI被用来分析肿瘤组织的代谢物分布,揭示了黑素瘤微环境的代谢异质性,这为深入了解肿瘤发生的复杂分子机制具有很大的参考价值。点击了解最新进展~◆ 基质辅助激光解吸电离质谱成像技术 (→点击查看相关仪器)基质辅助激光解吸电离质谱成像(MALDI-MSI)是一种经典的技术,通过在样品表面添加基质,使得样品在激光照射下能够能够高效地解吸和电离组织样品中小分子代谢物、脂质和蛋白质。MALDI-MSI在肿瘤标志物发现、药物分布研究等方面应用广泛,为生物内源性化合物的直接鉴定和定位提供了强有力的支持。已有研究使用不同的纳米材料作为衬底,从而显著提高分析物的解吸电离效率和检测灵敏度。此外,MALDI-MSI还被成功应用于单细胞分析,通过优化样品制备和基质选择,能够在单细胞水平上检测代谢物和脂质,这对于细胞异质性研究具有重要意义。例如,杭纬等相继研发出的质谱仪器能够实现单细胞内药物分子的3D成像分析,揭示了抗癌药物诱导癌细胞凋亡的动态过程。蔡宗苇等研发出冰冻3D细胞微球方法用于MSI分析,并结合代谢组学揭示了环境污染物对细胞球增殖的影响。点击了解最新进展~◆ 解吸电喷雾离子化质谱成像技术 解吸电喷雾离子化质谱成像(DESI-MSI)是一种无需样品前处理的即时质谱成像技术,可在大气压下进行快速、直接的化学成分分析。近年来,DESI-MSI在临床诊断中的应用逐渐增多,能够在手术过程中实时识别癌组织边界,为外科医生提供重要的指导信息。此外,DESI-MSI在环境科学中也展现出潜力,尤其是在分析复杂环境基质中的污染物时,DESI-MSI能够快速、准确地检测和定位多种化学物质。贺玖明团队还开发出基于AFADESI-MSI技术的空间分辨代谢组学新方法,揭示肿瘤转移机制,建立了以空间分辨代谢组学技术为特色的代谢研究平台。点击了解最新进展~◆ 飞秒激光电离成像质谱技术 飞秒激光电离成像质谱(fs-Laser Ionization Imaging Mass Spectrometry)技术凭借其超快激光脉冲和精确的电离能力,在质谱成像领域独树一帜。该项技术可高效分析热敏性和易碎性样品,超越了传统光学显微镜的分辨率限制。通过微米级分辨率进行激光烧蚀和质谱仪的软电离源,其能够鉴别和分析生物分子和其他微观物质,在分子水平上揭示样品的化学组成和空间分布,推进了多个研究领域的进展。其已经能够在亚细胞水平上进行高分辨率质谱成像,为细胞生物学、神经科学等领域的研究提供了前所未有的视角。◆ 离子迁移率分离技术 (→点击查看相关仪器)离子迁移率分离技术(IMS)的引入,为质谱成像带来了革命性的变化。IMS通过分离气相中的离子,根据它们在电场中的迁移速度不同来实现分离,这取决于离子的碰撞截面积和电荷状态。离子迁移率质谱成像(IM-MSI)利用IMS的优势,提高了分子特异性和空间分辨率,尤其是在分析小分子异构体方面表现出色。这项技术在药物开发、疾病诊断和生物标志物的发现等领域展现出巨大的潜力,为生物医学研究提供了新的视角。李灵军团队利用离子迁移率分离和双极性电离质谱成像(MSI)技术实现了单细胞脂质组高通量、原位和双极性成像,揭示了小鼠小脑皮质细胞层特异性脂质分布。点击了解最新进展~◆ 飞行时间二次离子质谱技术 (→点击查看相关仪器)飞行时间二次离子质谱(TOF-SIMS)技术是一种仍然处于高速发展中的高分辨率表面分析技术,具有高空间分辨率、高化学专一性、高灵敏度的独特优势,广泛应用于生物组织和单细胞成像等生命科学研究领域。TOF-SIMS是迄今为止,能在亚细胞水平上对生物分子进行无标记2D和3D成像的、为数不多的分析技术之一,为研究细胞膜组成、药物分布和疾病标志物提供了宝贵的信息。汪福意课题组长期致力于TOF-SIMS方法与应用研究,发展了基于TOF-SIMS和荧光共聚焦显微镜联用的成像分析方法,并在单细胞水平上开展了金属抗肿瘤化合物、细胞内生物大分子蛋白质与DNA之间的相互作用等研究。点击了解最新进展~◆ 激光剥蚀电感耦合等离子体质谱技术 (→点击查看相关仪器)激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)技术通过激光剥蚀样品并结合ICP-MS的高灵敏度检测,实现了对生物组织中金属元素和有机化合物的空间分布分析。该技术在金属组学和元素生物化学研究中,特别是对揭示元素在生物体内的分布和功能方面,提供了强有力的手段。LA-ICP-MS技术能够以高空间分辨率对生物样本进行元素成像,对于研究微量元素与疾病的关系以及药物代谢等领域具有重要价值。中科院高能物理研究所丰伟悦研究团队对LA-ICP-MS在单细胞分析和生物成像方面的研究,为理解生物样本中的元素分布和相互作用提出了新的见解,也为生物医学研究和纳米材料的安全性评估提供了重要的技术支持。◆ 成像质谱显微镜 (→点击查看相关仪器)成像质谱显微镜结合了光学显微镜和质谱成像技术的优势,能够在单细胞甚至亚细胞水平上提供高分辨率的化学信息,并对生物分子进行定量分析。该技术为研究细胞内的分子动态和相互作用提供了可能,对于理解疾病的发生和发展机制具有重要意义。成像质谱显微镜为揭示细胞内复杂的分子网络和相互作用提供了新的研究工具。点击了解最新进展~质谱成像技术的不断创新与发展,极大提升了生物样本化学信息的解析能力,并在细胞、组织及器官层面揭示了样品的复杂化学组成及空间分布。随着技术的发展,质谱成像将在未来生物医学研究中继续发挥重要作用,为疾病诊断、治疗方案优化以及生命科学研究带来新的突破与希望。更多精彩内容↓↓↓上述内容综合了当前质谱成像技术在生物医学研究中的最新研究进展和应用实例。有关更多信息和研究讨论,欢迎大家报名参加2024年9月19日由仪器信息网召开的“第四届质谱成像技术与进展”主题网络研讨会,届时将有来自国内外的顶尖专家分享他们在质谱成像领域的最新研究成果和见解,赶紧点击下方的图片报名吧。
  • 香山科学会议呼吁加快太赫兹技术生物医学研究
    很多患者在医院检查病情时,需要做X光、CT、核磁共振等一系列检查。太赫兹(THz)波,一个尚未充分开发的电磁波段,或许将会改变这种状况。   4月8日&mdash 9日,在以&ldquo 太赫兹波在生物医学应用中的科学问题与前沿技术&rdquo 为主题的第488 次香山科学会议上,与会专家指出,由于太赫兹波具有反应物质结构与性质的指纹特性,并且光子能量低,远远小于X射线能量,不会对生物大分子、生物细胞和组织产生有害电离,特别适合于对生物组织进行活体检查。因此,相较于现有医学成像技术,太赫兹波光谱成像技术具有更独特、更适用的物理特征。   太赫兹波是频率在0.1&mdash 10THz的电磁波,处于宏观电子学向微观光子学过渡的波段。国际上,太赫兹生物医学研究随着欧盟2000年设立的国际联合项目&ldquo THz-Bridge&rdquo 正式启动。美国政府将太赫兹技术评为&ldquo 改变未来世界的十大技术&rdquo 之一,日本将其列为&ldquo 国家支柱十大重点战略目标&rdquo 之首,并将生物医学应用列为主要方向之一,欧洲也连续10年将生物医学应用作为首要研究方向。   本次会议的执行主席之一姚建铨院士介绍说,围绕太赫兹技术生物医学应用研究,国际上已经开展了很多大型国际合作项目。目前,国内外在太赫兹技术生物大分子、细胞、组织、器官等生物监测及生物效应研究方面,已取得部分代表性成果。   本次会议的执行主席之一杜祥琬院士指出,在所有物理技术中,电磁波技术对医学的促进作用尤其突出。从1901年X线获得第一届诺贝尔物理学奖开始,已有5项与生物医学相关的诺贝尔奖授予了X光谱技术领域。&ldquo 这次会议就是研讨太赫兹技术和生物医学前沿的交叉,推动这个领域的深入研究与合作。&rdquo   针对太赫兹技术在生物医学方面的应用,吉林大学教授崔洪亮介绍,生物大分子相互作用是重大生命现象与病变产生的关键动因,而太赫兹光子能量覆盖了生物大分子空间构象的能级范围。该频段包含了其他电磁波段无法探测到的直接代表生物大分子功能的空间构象等重要信息。因此,可以发展一种利用太赫兹探测和干预生物大分子相互作用过程的新理论和新技术,为当前重大疾病诊断、有效干预提供先进的技术手段。   太赫兹技术最终应用到生物医学领域,还需要落实到具体的医疗设备上,在产业化上形成一定规模。   &ldquo 我国检验医学现有的核心技术和临床设备主要都被国外垄断,国产品牌市场占有率极低。&rdquo 第三军医大学西南医院府伟灵教授对此忧心忡忡。他指出:&ldquo 目前,太赫兹波侦检分子与细胞的检测理论和关键技术是我国第一个与全球同步开展的研究,将从新的视角为检验医学领域提供分子和细胞侦检的革命性科学手段,有望阐明和提供全新的检验医学理论与技术体系,形成太赫兹波&mdash 检验医学优势新学科和产业基础。&rdquo   中国工程物理研究院流体物理研究所李泽仁研究员也表示,目前通过国家对太赫兹源、探测器及成像系统等关键技术与仪器设备的大力支持,我国已基本具备开展太赫兹生物医学研究的基础。   &ldquo 可以说,太赫兹技术在生物医学微观领域,将为揭示生物大分子之间、细胞之间的相互作用物质规律,呈现这些作用和活动的物性特征,最终解释各种生命现象提供革命性科学方法 在生物医学宏观层面,将为疾病的诊断、治疗、评估、监测和预警及后续药物设计、研发、生产和评价带来革命性改变。&rdquo 对太赫兹技术的未来,天津大学教授姚建铨院士充满信心。   然而,国内太赫兹波生物医学研究刚刚起步,缺乏学科间深入有效的交叉融合,缺乏全国性的学术战略发展规划,还不具备国际竞争力。在相关科研支持方面,目前我国只有6项与太赫兹波生物医学相关的国家自然科学基金项目。   &ldquo 国内目前有多个团队正在开展太赫兹波生物医学研究,但还缺乏交叉融合、联合攻关、体系研究的平台、团队和技术支撑,实现实质性突破任重道远。&rdquo 会议执行主席之一、中国工程物理研究院刘仓理研究员呼吁,这不仅需要研究人员奋起直追,也需要在国家层面上给予规划、支持和协调。
  • 第四届中国、澳大利亚生物医学研究大会通知
    第四届中国、澳大利亚生物医学研究大会暨2013国际衰老生物学和衰老性疾病研讨会   大会时间:2013年10月10-13日   会议论文提交截止日期:2013年7月30日   会议优惠注册截止日期:2013年7月30日   大会地点:中国浙江省杭州市西苑宾馆   大会语言为英文   大会宗旨:进一步加强各国在医学、生物学领域的横向交流与合作,促进医学和衰老生物科学研究的国际化快速发展。   主办单位:杭州市政府、杭州师范大学、澳大利亚华人生物医学协会   承办单位:杭州师范大学衰老研究所、浙江杭州未来科技城、澳大利亚华人生物医学科学协会   协办单位:首都医科大学、山东大学   大会主题:   1、脑退行性疾病   2、心血管疾病   3、癌症生物学   4、消化、代谢与内分泌疾病   5、呼吸系统疾病及肺衰老   6、骨髓与血液疾病   7、病毒感染与免疫相关性疾病   8、细胞治疗与干细胞生物学   9、中药及药物研发与临床试验   10、流行病学、公共健康与健康管理。   特邀报告人: No. 姓名 单位 1 David Adams 皇家墨尔本理工大学 2 David Anderson 墨尔本伯纳特研究所 3 Greg Anderson 昆士兰医学研究院 4 Perry Bartlett 昆士兰脑研究所 5 Michael Berndt 澳大利亚科廷大学 6 Richard Boyd 蒙纳士大学免疫及干细胞实验室 7 Judith Clements 昆士兰科技大学 8 Qihan Dong 悉尼大学 9 Greg Dusting 墨尔本大学澳大利亚眼科研究中心 10 Matthias Ernst 沃尔特和伊丽莎. 霍尔医学研究所 11 Roger Evens 蒙纳士大学 12 David Finkelstein 墨尔本大学心理健康研究院 13 Eric Gilson 里昂高等师范学校分子与细胞生物学实验室 14 Tom Gonda 癌症、免疫学和代谢药物研究所 15 Peter Gunning 新南威尔士大学 16 Adrian Herington 昆士兰科技大学 17 David Huang 沃尔特和伊丽莎. 霍尔医学研究所 18 Evan Ingley 西澳大利亚医学研究所 19 Fang-Xu Jiang 西澳大利亚医学研究所 20 David Jans 蒙纳士大学 21 LevonKhachigian 新南威尔士大学 22 Rajiv Khanna 昆士兰医学研究院 23 KumKumKhanna 昆士兰医学研究院 24 Martin Lavin 昆士兰医学研究院 25 Han-Woong Lee 延世大学实验动物研究中心 26 Peter Leedman 西澳大利亚医学研究所27 Peter Little 皇家墨尔本理工大学 28 Kate Loveland 蒙纳士大学医学院 29 Xia Lou 澳大利亚Curtin大学 30 Barry Marshall 诺贝尔生理与医学奖获得者 31 Christina Mitchell 蒙纳士大学医学、护理与健康学院 32 Grant Morahan 西澳大利亚医学研究所 33 Judy MY Wong 不列颠哥伦比亚大学 34Hilda Pickett 儿童医学研究所 35 Susan Prescott 儿科和儿童健康学校 36 Andrew Roberts 沃尔特和伊丽莎. 霍尔医学研究所 37 Rob Saint 墨尔本大学 38 Peter Schofield 新南威尔士大学 39 Ian Smith 蒙纳士大学 40 Wayne Tilley 阿得雷德大学 41 Shaofang Wang 澳大利亚Chemcentre 42 Xueying Wang 新加坡国立大学 43 Wang Zhaoqi Leibniz衰老研究所 44 Bryan Williams 蒙纳士大学医学院 45 Steve Wilton 神经肌肉和神经系统紊乱中心 46 Jianping Wu 澳大利亚Curtin大学 47 曹雪涛 中国医学科学院、北京协和医学院 48 陈畅 中国科学院生物物理研究所 49 陈晨 昆士兰大学 50 陈丰原 中南大学 51 陈佺 中国科学院动物研究所 52 陈香美 解放军肾脏病研究所 53 陈小章 香港中文大学 54 陈雁 中科院上海生命研究院营养科学研究所 55 陈晔光 清华大学 56 程涛 中国医学科学研究院 57 丛羽生 杭州师范大学衰老研究所 58 丁长海 Tasmania大学、蒙纳士大学 59 丁健 中国科学院上海药物研究所 60 范汉东 杭州师范大学衰老研究所 61 冯新华 浙江大学 62 郭清 杭州师范大学 63 何琪杨 中国医学科学院药物生物技术研究所 64 贺福初 军事医学科学院放射医学研究所 65 贺林 复旦大学生物医学研究院 66 鞠振宇 杭州师范大学衰老研究所 67 柯未名 澳大利亚驻上海总领事 68 柯杨 北京大学 69 黎健 北京老年医学研究所 70 李碧波 克利夫兰州立大学 71 李春光 西悉尼大学 72 李林 上海生科院73 刘峰 中南大学 74 刘海燕 苏州大学 75 刘建平 北京大学 76 刘俊平 杭州师范大学衰老研究所 77 刘林 南开大学生命科学院 78 刘平生 中科院生物物理所 79 罗建红 浙江大学 80 马大龙 北京大学 81 孟安明 清华大学 82 倪崖 浙江省医学科学院 83 聂广军 国家纳米科学中心 84 欧汝冲 Baker心脏研究所 85 裴钢 同济大学 86 秦晓群 中南大学 87 饶子和 清华大学 88 沈月全 南开大学生命科学学院 89 史丽云 杭州师范大学医学部 90 宋保亮 中国科学院上海生命科学研究院生物化学与细胞生物学研究所 91 田小利 北京大学生命科学学院 92 童坦君 北京大学医学部 93 王炳辉 蒙纳士大学 94 王福俤 浙江大学 95 王晗 苏州大学 96 王红阳 东方肝胆外科医院 97 王林发 澳大利亚联邦科学与工业研究组织 98 王明荣 协和医科大学 99 王文恭 北京大学 100 王晓民 首都医科大学 101 吴国瑞 阳明大学 102 吴励 清华大学 103 吴缅 中国科技大学 104 肖智雄 四川大学 105 徐大为 瑞典Karolinska研究院 106 徐家科 西澳大学 107 徐涛 中国科学院生物物理所 108 许大康 杭州师范大学衰老研究所 109 许宏球 浙江杭州未来科技城 110 杨宝峰 哈尔滨医科大学 111 杨磊 杭州师范大学 112叶纪明 皇家墨尔本理工大学 113 尹玉新 北大基础医学院 114 俞迪 蒙纳士大学 115 詹启敏 中国医学科学院 116 张学军 安徽医科大学 117 张运 山东大学 118 周金秋 上海生命科学研究院 119 周中军 香港大学 120 朱大海 北京协和医科大学 121 朱宏建 墨尔本大学 122 朱学良 上海生命科学院   持续更新   议程: 2013.10.10 星期四 12:00-23:00 注册(参观杭州未来科技城) 18:00-21:00 欢迎晚宴 2013.10.11 星期五 8:40-9:00 开幕式(主会场) 9:00-10:30 大会主题报告一(主会场) 诺贝尔奖获得者Barry Marshall教授 10:30-10:50 茶歇 10:50-12:00 大会主题报告二(主会场) 12:00-13:00 午餐 13:00-15:00 大会分会报告 脑疾病(1)(一号分会场) 心血管疾病(1)(二号分会场) 病毒性疾病(三号分会场) 消化、代谢与内分泌疾病(四号分会场) 衰老生物学和长寿(1)(五号分会场) 15:00-15:20 茶歇 15:20-17:30 大会分会报告 脑疾病(2)(一号分会场) 心血管疾病(2)(二号分会场) 基因表达和调控机制(三号分会场) 肥胖与糖尿病(四号分会场) 衰老生物学和长寿(2)(五号分会场) 18:00-20:00 市政府招待晚宴2013.10.12 星期六 9:00-10:30 大会主题报告三(主会场) 10:30-10:50 茶歇 10:50-12:00 大会主题报告四(主会场) 12:00-13:00 午餐 13:00-15:00 大会分会报告 衰老生物学和长寿(3)(一号分会场) 免疫相关疾病(1)(二号分会场) 信号转导的机制(三号分会场) 离子和细胞器的动态平衡(四号分会场) 流行病学、公共健康与健康管理(五号分会场) 15:00-15:20 茶歇 15:20-17:30 大会分会报告 骨髓与血液疾病(一号分会场) 免疫相关疾病(2)(二号分会场) 癌症(1)(三号分会场) 干细胞(1)(四号分会场) 澳大利亚和中国间的国际合作(五号分会场) 18:00-20:00 大会晚宴 2013.10.13 星期日 9:00-10:30 大会主题报告五(主会场) 10:30-10:50 茶歇 10:50-12:00 大会主题报告六(主会场) 12:00-13:00 午餐 13:00-15:30 大会分会报告 激素、生长因子、类固醇(一号分会场) 新技术与手段(二号分会场) 癌症(2)(三号分会场) 干细胞(2)(四号分会场) 中医学、药物开发和临床试验(五号分会场) 15:30-16:00 茶歇 16:00-17:30 闭幕式(主会场)18:00-21:00 晚宴 2013.10.14 星期一 全天 参观杭州未来科技城、西湖博览会   大会注册:   请参会人员在线提交注册文件至邮箱:ACBRC2013@hznu.edu.cn   邮件主题格式:ACBRC注册+姓名+单位   邮件请附以下内容(见附件1):   1. 大会注册表   2. 汇款凭证扫描件   3. 大会论文   4. 有效学生证件扫描件。   注册费用: 2013年7月30日(含30日)之前注册 中方普通代表:1500元人民币 中方学生代表:800元人民币 外籍普通代表:490美元 外籍学生代表:290美元 特邀报告嘉宾:800人民币或150美元 2013年7月30日之后注册 中方普通代表:2000元人民币 中方学生代表:1100元人民币 外籍普通代表:690美元 外籍学生代表:390美元特邀报告嘉宾:1600人民币或300美元 团体注册 每五人减免其中一人注册费   费用说明:   ①注册费包含餐费(午餐、晚餐、会议茶歇)、材料费、会务费等,住宿自行安排(如需入住大会酒店,请详细填写注册表中的相关内容。由于大会酒店房间有限,会务组将按预定先后顺序安排。费用报到时自行支付)。   ②会议安排墙报交流区,选择&ldquo 墙报交流&rdquo 的会员,请按照90cm x 120cm(宽x高)的标准进行制作。   ③会议提供50个学生交通补贴名额,分别为中方和外方学生代表提供1500元和4000元人民币的交通补贴,并且免除住宿费。欲申请该项补贴的学生代表请提交论文摘要,会务组将选取最为优异的50名学生予以资助。   付款方式:   1. 银行汇款   人民币账户:   收款单位:杭州师范大学   开户银行:浙江省杭州市中国交通银行下沙支行   银行账号:331065950018000482533   美元账户:   收款单位:杭州师范大学   开户银行:交通银行浙江省分行   银行账号:331065950146300000896   2. 会场现金支付(人民币)   大会卫星会议   1、脑疾病研讨会,2013年10月14-15日,北京   2、心血管疾病研讨会,2013年10月14-15日,济南   联系方式:   电话:86-571-28865725   邮箱:ACBRC2013@hznu.edu.cn   secretariat@acabs.org.au   会议网址:http://ageing.hznu.edu.cn   http://www.acabs.org.au   大会地址:   浙江西苑宾馆   文一西路1008号   Telephone: 86-400-6464-888

生物医学研究相关的方案

  • 易科泰能量代谢测量技术——生物医学研究案例
    北京易科泰提供的高分辨率能量代谢测量系统,主要由呼吸代谢测量仪、无铅微型植入式温度(心率)自动记录仪(监测核心体温或体表温度)、Thermal-RGB红外热成像、以及RF-O2荧光光纤血氧测量单元等组成,可用于各种模型动物的体温与呼吸代谢功能监测与评估,助力于传染病学、病毒学、生理学、转化医学、内分泌学、细胞代谢、以及常见慢性病等生物医学科学研究。
  • 扫描电镜如何促进生物医学研究
    生物医学研究是一个广泛的领域。 它描述了一个致力于研究生命过程,疾病预防和治疗以及与疾病和健康有关的遗传和环境因素的科学领域。而且,由于该领域的多样化,其研究所用到的设备也是相当广泛。 扫描电镜(SEM)作为这些类型的设备之一, 通过观察组织或器官结构,可以了解到可能的改变和疾病。 这篇博客通过介绍扫描电镜(SEM)在各个领域中的应用,来展示其强大功能,下面具体介绍三项科学研究。
  • 斑马鱼呼吸代谢及行为分析技术在生物医学领域的应用
    斑马鱼作为一种模式动物,与人类共享高达 70% 的基因组,保留了多达 80% 的人类疾病相关蛋白。同样作为一种脊椎动物,斑马鱼与人类的组织和发育生物学过程相似,故而针对各种癌症、肝病、血液疾病、心脏病和行为障碍的斑马鱼模型被建立起来,斑马鱼进而成为了基因表达调控、发病机理、药物筛选领域的主要模式动物,在生物医学研究的地位越来越重要(Patton et al., 2021)。北京易科泰提供生物医学领域斑马鱼呼吸代谢及行为分析的全套技术方案,包括斑马鱼成鱼和鱼卵、胚胎、幼鱼的呼吸代谢测量、斑马鱼视频跟踪和行为分析及游泳能力评估。

生物医学研究相关的论坛

  • 【讨论】稳定同位素δ13C在生物医学研究中的应用

    稳定同位素δ13C因其具有安全、无损伤和非侵害性等特点己被广泛应用于生物医学等研究领域。尤其是应用不同的δ13C标记物所进行的呼气试验,更是在生物学、临床医学的诊断与研究中发挥了重要作用,应用前景广阔。热忱欢迎广大版友对此相关问题展开积极讨论![img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=141293]稳定同位素δ13C在生物医学研究中的应用[/url]

  • 《现代生物医学进展》杂志介绍及投稿指南

    《现代生物医学进展》杂志介绍及投稿指南欢迎大家投稿到《现代生物医学进展》,我刊是一个以生物医学为主的综合性期刊。《现代生物医学进展》是国家科技部中国科技论文统计源期刊,中国科技核心期刊。国内统一刊号: CN 23-1544/R 国际标准刊号:ISSN 1671-2285 月刊 邮发代号:14-12 定价:9元/期 本刊网址: http://swcx.chinajournal.net.cn http://swcx.periodicals.net.cn本刊原刊名为《生物磁学》,(详见科技部信息所网站:http://cstpcd.istic.ac.cn),据科技部信息所2005年版的中国科技期刊引证报告,本刊影响因子0.734,在本学科(生物学)排名列第9位,在1608种统计源核心期刊总排名列第169位.刊名变更是本刊的自然过渡,已经国家新闻出版总署新出报刊[2006]4号批准。本刊已经经国务院新闻办、国家新闻出版总署审核备案,已被科技部中国科技论文与引文数据库(CSTPCD)、中国科技文献数据库(CSTDB)、中国期刊全文数据库(CJFD)、中国学术期刊综合评价数据库、《中国期刊网》、《中国学术期刊》(光盘版)、科技部中文科技期刊数据库,《中国生物学文摘》,中国生物学文献数据库,中国生物医学文献数据库(CBM disc)、中文生物医学期刊文献数据库(CMCC)等权威数据库收录。《现代生物医学进展》办刊宗旨:生物医学是本世纪生命科学的研究热点和前沿,可以说生物医学发展代表着一个时期生命科学发展的主流和方向,起着带动性和变革性的重大作用,并对人类社会发展和科学本身产生革命性影响。当前,生物医学的发展异常迅猛,不断出现新的研究领域,而且有的正处于取得重大突破的边缘。我们变更刊名的目的和任务就是顺应生物医学发展的形势需要,更好的适应新的历史时期生物医学领域面临的机遇和挑战,及时报道国内外具有前瞻性、创新性和有较高学术水平的生物医学进展(包括基础实验研究和临床实践应用)的原著,以此来传播现代生物医学的新理论,新方法和前沿领域的科研成果,反映生物医学的学术水平与发展动向,有效地促进生物医学领域的学术交流,提高国内生物医学的研究水平,引导研究人员的科研活动与研究方向,推动生物医学的进步,为广大科研人员提供一个发表、交流的平台,为冲刺世界一流杂志打好基础。读者对象:承担生物医学领域国家“863”计划、攻关计划、国家自然科学基金项目的课题负责人和研究人员,大专院校生物系教师、研究生、高年级本科生,国家和省部级重点实验室与生物技术研究开发机构的科研人员,医疗卫生单位医务人员,制药、化工、轻工食品、农业、环境、海洋等相关领域的企业管理人员与专业技术开发人员,与生命科学相关的仪器试剂生产经营者,生物技术管理部门和相关学术团体的领导和专家、生物医学技术投资与金融研究专家以及其他相关人士等。栏目设置:本刊除一些常规栏目固定外,其他栏目均不固定,栏目的安排完全按照当期收录的优秀论文进行科学的设置,固定栏目如下:1.述评:对当前研究的新动向、新趋势进行前瞻性评论;对当前研究热点、焦点问题进行导向性的分析和探讨;对传统或新流行的治疗方法及研究进行权威性综论和概括;对有争议的论题及论点进行争鸣或商榷等。要求述评具有权威性。2. 研究快报:具有“高、尖、新”的创新性科研成果。实行速审快发,承诺在一个月内发表,确保第一时间发布最新研究成果。3.基础研究:为生物医学基础理论研究与实验研究的成果,要求具有先进性。报道有重要学术价值、数据完善、有原始性和创造性的科研成果4.临床研究:具有推广和实用价值的临床研究及经验总结,中西医结合研究,预防和康复研究等,侧重实用性。5.专论与综述:深入评介生物医学领域研究的最新进展。要求选题重要新颖、评述精辟、注重时效性,作者应在所评介领域具有较深厚的造诣,并结合所从事的研究工作进行撰稿。或对当前某一研究专题进行全面的、客观的、有见解的精辟论述,对一些新理论和新观点进行系统的、条理化的、深入浅出的阐述,力求选题新颖、实用。6技术与方法:报道对生物医学领域某一研究方法或某项实验技术的重要改进,或对国际上重大前沿技术作最新介绍.,在基础研究或临床研究中总结出来的新技术、方法以及新发明的技术专利等。7.研究简报:抢先发表的科研新发现,以简报形式发表。要求有客观证据以及相关证明材料,力求简短精辟。8.生物磁学:变更刊名后,本刊将保留生物磁学的主要栏目,刊载与生命科学相关的生物磁学领域研究论文与科研成果。9.编读往来:对本刊已发表的文章进行追踪,提出读者的不同结果或看法;对编辑工作提出建议及意见等。订阅方式:本刊每期定价9元,今年本刊全年10期(今年因刊名变更的时间因素)订费90元,全国各地邮局均可订阅,邮发代号:14-12,国际标准大开本,月刊,96页。也可在本刊编辑部直接订阅(免收邮寄费),汇款时请详细写明订阅单位(发票抬头)、收件地址、邮政编码、收件人姓名、电话、传真、电子信箱、汇款金额与汇款日期等,收款后即寄出正式发票。汇款地址:黑龙江省哈尔滨市54号信箱《现代生物医学进展》编辑部(150001)联系电话:0451-53658268,传真:0451-53671582,电子信箱:liudhui_21@126.com,biomagnetis@163.com。征稿范围:凡是和生物医学有关或者是生物科学最新研究领域的论文均可投稿,因为我们旨在办一个以生物医学为主的综合性生命科学杂志。我们会在最短时间内对来稿作出录用与否的答复,欢迎从事自然科学领域的各个专业科研人员、研究生踊跃投稿,我们将为广大的研究人员提供相对较高的稿酬。同时本刊为了鼓励新思想、新思路的产生和促进创新性思维,为中国科技进步作贡献,对一些优秀的本科生论文也会酌情予以刊载,对特别优秀的本科生论文的版面费可以予以优惠或减免,也欢迎广大的本科生踊跃投稿。本刊“快通道”承诺下列稿件可优先发表★首席科学家项目课题;★国家及省部级各项基金资助项目;★国家及省部级重点科研课题;★国家及省部级重点科研项目中心及实验室课题;★国家及省部级专利技术项目;★博士后流动站课题,博士、硕士优秀答辨论文;上述项目中与生物医学相关的研究原著及专论与综述,尤其是多个项目、多单位联合协用联合资助的稿件,需要领先在国际、国内发表时,本刊承诺收到稿件后2个工作日内与您联系。本刊网址:http://swcx.periodicals.net.cn http://swcx.chinajoumal.net.cn联系方式:E-mail:liudhui_21@126.com, biomagnetis@163.comTel:+86-0451-53658268,刘冬晖。也可直接发到本刊中南区通联部编委处进行预审:E-mail:whitewolf1101@gmail.com,whitewolf1101@qq.com

  • 请问有人了解生物医学工程这个专业吗?

    (1)生物医学工程这个专业毕业后主要能从事什么职业?在国内发展比较好的医疗器械公司和事业单位有哪些?我已经知道生物医学工程本科毕业后一般去向主要有以下:医院设备科医疗仪器公司销售/售后、培训、安装工程师(2)研究生毕业和本科生毕业选择的职位种类差别大吗?(3)生物医学工程有好几个方向,从开始时间来说,哪几个方向是开展比较早的?谢谢各位的回答。

生物医学研究相关的资料

生物医学研究相关的仪器

  • 量子新星,一种用于生物医学研究的技术,用于发现氧化应激在健康状况中的作用。长期氧化应激会损害细胞、蛋白质和 DNA,加速衰老并导致各种健康状况。实时监测 细胞(或生物体)对氧化应激的反应是一项挑战。解决了这些挑战,这项技术已在荷兰 格罗宁根大学医学中心得到充分应用。它是一种诊断和研究工具,它集成了钻石磁力仪 和共聚焦显微镜来测量受压细胞中的自由基。 产品已用于测量单个细胞中纳摩尔级和亚细胞分辨率的自由基。这种精确的工程设计可以解决因细胞长期氧化应激而导致的不良健康状况。量子自由基测试系统的应用 量子比特技术 使用弛豫法测量人类精液中的自由基 内皮细胞中的量子感应 药物疗效的量子传感人类原代颗粒细胞中的量子感应 用于追踪细胞和组织中单个聚合物颗粒的荧光纳米金刚石 利用荧光纳米金刚石增强支架金刚石纳米传感和机器学习用于 SARS-CoV-2 诊断 利用钻石量子传感技术破解亨廷顿氏病 荧光纳米金刚石用于精子细胞活力 采用金刚石宽场弛豫法进行快速宽带磁共振波谱分析 了解酵母细胞代谢:来自钻石磁力仪的见解 细菌对抗生素反应的松弛测量法
    留言咨询
  • 徕卡 DMI6000 B 倒置显微镜适用于生物医学研究,它具有微分干涉差显技术(DIC),可利用不同的折射率生成标本的浮雕图像。 直观、自动的徕卡 DMI6000 B 显微镜适用于荧光成像、活细胞成像、延时成像、高速多路荧光断层成像与显微操作。 该系统具有自动差显与激发管理器、电动 Z 轴聚焦、齐焦调节、自动亮度与光阑调节,以及其它许多自动功能,可确保操作便捷与分析结果的一致性。您的优势 组合差显组合差显功能可将透射光差显技术与荧光差显(PH/FLUO 或 DIC/FLUO)技术相结合;两种光轴均可单独控制。采用人体工学设计的倾斜镜筒所有徕卡 DMI 系列显微镜均可配备符合人体工学设计的倾斜镜筒或倾斜三目镜筒(100% 或50%),可安装或不装伯特朗透镜;所有镜筒均可精确设置操作提示。种类繁多的沃拉斯顿棱镜徕卡显微系统公司提供各种沃拉斯顿棱镜,可为不同种类的标本提供高质量的微风干涉差显技术、不同的差显剪切,以及针对厚标本或薄标本的分辨率优化功能。差显管理器与光线管理器差显管理器与光线管理器可一起使用以自动调节光线强度、视野光阑与光圈孔径,无需连续调节即可提供最佳图像。
    留言咨询
  • 全自动生物医学照明系统ML8500是用途蕞广泛的体外研究照明设备。ML8500 可同时支持多达 7 种不同的波长,可灵活控制照明参数,并内置培养箱,用于在常氧和缺氧条件下进行细胞研究。ML8500 是用于多孔样品板顺序照明和可选荧光成像/测量的绝佳工具。准备样品,装入 ML8500,全自动系统将完成剩下的工作。通过直观的触摸屏界面和Modulight的云,操作生物医学照明系统非常容易。该系统支持多个照明站,可照亮样品中不同大小的区域。例如,一个工位可用于直径达 95 mm 的培养皿,另一个工位可用于 96 孔板,分别以特定的持续时间和强度照亮每个孔。可以为各种孔板(24、96、384、1536 孔)提供不同的照明站,一个系统中总共可以安装 4 个照明站。该设备还可以配备环境控制装置,以优化基于细胞的检测。缺氧功能还允许在生理相关条件下进行细胞实验,因为肿瘤通常是缺氧的,这会影响光动力疗法等氧依赖性疗法的疗效。ML8500 支持单个孔的照明以及孔板上的较大区域照明。这既可以灵活地控制样品之间的参数,又可以在对多个样品运行照明方案时节省大量时间。全自动生物医学照明系统应用案例:用于缺氧背景:缺氧是一种在组织水平上氧气不足的状态。理想情况下,体外研究条件应尽可能接近生理条件(例如,肿瘤中心通常是缺氧的)采用 ML8500 的 Modulight 解决方案:ML8500 是针对缺氧实验优化的培养箱。对缺氧动力学、蕞佳气体流速和不同氧浓度进行了优化,以用于 ML8500 的药物研究热休克蛋白90靶向太平洋夏季时间治疗炎症性乳腺癌的开发背景:一种新型光活化药物HS 在这里,通过将临床批准的维替泊芬与热休克蛋白 90 的小分子抑制剂联合起来,开发了一种治疗乳腺癌的新型靶向药物。Modulight的ML8500解决方案:ML8500用于研究药物高通量活化的蕞佳参数。将高侵袭性 MDA-MB-231 乳腺癌细胞接种在 96 孔板上,用不同浓度 (0-3 μM) 的维替泊芬或 HS201 孵育,并在不同孔中以不同剂量 (0-30 J/cm2) 用 689 nm 波长激光照射。此外,还研究了不同的药物光照间隔(0、3 和 6 小时),并增加了光剂量 (0-120 J/cm2)。蕞高缺氧活性的锇基抗癌光敏剂背景:缺氧是癌症治疗的一大挑战,因为低氧条件使恶性组织同时更具侵袭性,并且不易接受标准治疗。为了解决这个问题,开发了一种用于治疗缺氧肿瘤的新型缺氧活性光敏药物。Modulight 的 ML8500 解决方案:ML8500 为使用 525 nm 和 630 nm 波长表征药物提供了蕞佳条件。在实验中,辐照度恒定在 300 mW/cm2 处,通量在 10-300 J/cm2 之间变化,而在第二个实验中,辐照度在 100 J/cm2 处变化,辐照度在 25-300 mW/cm2 mW/cm2mW/cm2 之间变化。用于现代癌症药物开发的全自动照明研究系列背景:光活化药物的研究需要受控和系统的样品照明过程。制药公司使用连接到 ML7710 医用激光器的 ML8500 自动照明系统对新型光敏药物进行了表征。目的是研究辐照度和光剂量对癌细胞系的影响,同时保持光敏药物剂量恒定。用吲哚菁绿脂质体进行光诱导药物递送动机:脂质体的被动药物释放不稳定且效率低下,因此光触发释放为在所需地点和时间有效释放药物提供了有吸引力的可能性。Modulight 的 ML8500 解决方案:将光敏分子吲哚菁绿掺入脂质体中,在激光照射下释放内容物。通过用ML8500照射脂质体来研究光触发释放,并通过照明强度和持续时间进行精确控制。全自动生物医学照明系统支持宽波长范围Modulight Cloud 连接可实现实时连接、治疗监控、远程支持和诊断。互联网连接可通过云服务平台流畅地传输和查看数据以及远程诊断。照明协议可以从计算机下载到云端,荧光测量值实时存储在那里,以便进一步分析。此外,云连接允许对仪器软件进行远程故障排除和更新。可以从 cloud.modulight.com 查看诊断数据有保障的服务设备安装人员现场培训定期预防性维护软件更新和硬件升级现场或远程技术支持支持应用程序测试生命周期管理/回收更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
    留言咨询

生物医学研究相关的耗材

  • 涡旋相位板
    涡旋相位板是一种光学厚度与旋转方位角成正比的纯相位衍射光学元件,入射平面波通过涡旋相位板的出射光束具有涡旋相位波前。涡旋相位板作为一种新型的衍射光学元件,已在光信息处理,光学微操作,生物医学,形貌测量,天文观测等诸多领域得到实际应用。目前,对涡旋相位板的研究已经发展为现代光学的一个重要领域。
  • 无菌采样袋 多种
    Labplas TWIRL'EM® 无菌采样袋是一种安全、无污染的采样容器,能确保分析结果的可靠性。TWIRL'EM® 系列产品被证实是一种经济且高效的方法来采集、储存及运输样品。这种无菌采样袋主要用于环境取样、生物医学及制药学研究、品质检测(QA/QC)、食品行业应用,以及临床用药和兽医用药等领域。
  • 无菌采样袋
    Labplas TWIRL'EM® 无菌采样袋是一种安全、无污染的采样容器,能确保分析结果的可靠性。TWIRL'EM® 系列产品被证实是一种经济且高效的方法来采集、储存及运输样品。这种无菌采样袋主要用于环境取样、生物医学及制药学研究、品质检测(QA/QC)、食品行业应用,以及临床用药和兽医用药等领域。

生物医学研究相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制